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Conference

“Mathematical Foundations of Learning Theory II”

Ecole normale supérieure, Paris, May 31 – June 3, 2006

Welcome to the second edition of “Mathematical Foundations of Learning Theory”!

Aims and scopes

The goal of the meeting is to bring together – once again, after the conferences in Marne-La-Vallée,
2003, and Barcelona, 2004 – a diverse group of mathematicians and theoretical computer scientists work-
ing on all aspects of the theoretical analysis of machine learning techniques for prediction and other data
analysis problems.

The talks will not necessarily be directly related to learning theory, but rather they will be devoted to
interesting problems in mathematics that have had or are likely to have an impact on the development
of the mathematical theory of learning. They will cover different areas of Analysis, Statistics, Probability,
Game Theory, Information Theory, Optimization, and Computer Science.

This edition takes place at Ecole normale supérieure, Paris, a small College which is famous for its talented
students in mathematics. We expect that this will be an excellent place to encourage exchanges between
senior and young researchers (PhD students, MSc and PhD candidates, from Paris and from all over the
world).
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Wednesday, May 31

09:00 – 09:55 Registration and coffee-break

09:55 – 10:00 Opening remarks

10:00 – 10:50 Emmanuel Candes (California Institute of Technology)

The Dantzig Selector: Statistical Estimation when p is Larger than n

11:00 – 11:30 Coffee-break

11:30 – 12:20 Franck Barthe (Université Toulouse III)

About Talagrand’s Concentration Inequality for Exponential Measures

12:30 – 14:30 Lunch break

14:30 – 15:20 Dean Foster (University of Pennsylvania)

Deterministic Calibration and Nash Equilibrium

15:30 – 16:20 Neri Merhav (Technion, I.I.T.)

On Context-tree Prediction of Individual Sequences

16:30 – 17:00 Coffee-break

17:00 – 17:50 Peter Grünwald (CWI & Eurandom)

Suboptimality of MDL and Bayes in Classification under Misspecification

18:00 – 19:30 Poster session

19:30 – 21:30 Light welcoming buffet

Thursday, June 1

09:00 – 09:50 Ofer Zeitouni (University of Minnesota)

A Correlation Inequality for Nonlinear Reconstruction

10:00 – 10:30 Coffee-break

10:30 – 11:20 Ehud Lehrer (Tel-Aviv University)

Bayesian and Non-Bayesian Learning in Games

11:30 – 12:20 Bernhard Schölkopf (Max Planck Institut, Tübingen)

Applications of Kernel Methods

12:30 – 14:30 Lunch break

14:30 – 15:20 Z. D. Bai (National University of Singapore)

Statistical Analysis for Rounding Data

15:30 – 16:20 Shie Mannor (McGill University)

An Isoperimetric Inequality with Applications to Learning

16:30 – 17:00 Coffee-break

17:00 – 17:50 Ingo Steinwart (Los Alamos National Laboratory)

Learning from Dependent Observations
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Friday, June 2

09:00 – 09:50 John Shawe-Taylor (University of Southampton)

Statistical Analysis of Subspace Methods and Associated Learning Algorithms

10:00 – 10:30 Coffee-break

10:30 – 11:20 Tong Zhang (Yahoo Inc.)

Theory and Algorithms for Large Scaling Ranking Problems

11:30 – 12:20 Vladimir Koltchinskii (Georgia Institute of Technology)

Sparsity in High-Dimensional Learning Problems

12:30 – 14:30 Lunch break

14:30 – 15:20 Jean-Philippe Vert (Ecole des Mines de Paris)

Regularization of Kernel Methods by Decreasing the Bandwidth

of the Gaussian Kernel

15:30 – 16:20 Nicolò Cesa-Bianchi (Università degli Studi di Milano)

Learning and Randomization

16:30 – 17:00 Coffee-break

17:00 – 17:50 Vladimir Temlyakov (University of South Carolina)

On Optimal and Universal Estimators in Learning Theory

Saturday, June 3

9:00 – 9:50 Santosh Vempala (Massachusetts Institute of Technology)

Sampling, Integration and Optimization of High-dimensional

Log-concave Functions

10:00 – 10:30 Coffee-break

10:30 – 12:00 Nathan Linial (The Hebrew University of Jerusalem)

Complexity of Sign Matrices and its Many Aspects

12:00 – 14:00 Buffet lunch

14:00 – 14:50 Nicolas Vayatis (Université Paris VI)

Is There Life beyond the Classification Problem?

15:00 – 15:50 Peter Bartlett (UC Berkeley)

Asymptotic Properties of Convex Optimization Methods

for Multiclass Classification

16:00 – 17:00 Final coffee-break
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Emmanuel Candes (California Institute of Technology)
The Dantzig Selector: Statistical Estimation when p is Larger than n

In many important statistical applications, the number of variables or parameters is much larger than
the number of observations. In radiology and biomedical imaging for instance, one is typically able to
collect far fewer measurements about an image of interest than the unknown number of pixels. Examples
in functional MRI and tomography immediately come to mind. Other examples of high-dimensional data
in genomics, signal processing and many other fields abound. In the context of multiple linear regression
for instance, a fundamental question is whether it is possible to estimate a vector of parameters of size p
from a vector of observations of size n when n≪ p. This seems a priori hopeless.

This talk introduces a new estimator, dubbed the “Dantzig selector” in honor of the late George Dantzig
as it invokes linear programming, and which enjoys remarkable statistical properties. Suppose that the data
or design matrix obeys a uniform uncertainty principle and that the true parameter vector is sufficiently
sparse or compressible which roughly guarantees that the model is identifiable. Then the estimator achieves
an accuracy which nearly equals that one would achieve with an oracle that would supply perfect information
about which coordinates of the unknown parameter vector are nonzero and which were above the noise
level. Our results connect with the important model selection problem. In effect, the Dantzig Selector
automatically selects the subset of covariates with nearly the best predictive power, by solving a convenient
linear program.

Our results are also inspired by a recent body of work perhaps now best known under the name of
“Compressive Sampling,” a new sampling theory we introduced very recently. If time allows, I will discuss
applications of Compressive Sampling in other fields such as coding theory.

Further references: The main paper is
http://www.acm.caltech.edu/~emmanuel/papers/DantzigSelector.pdf,
but there are also many other papers on a related subject, for instance, “Decoding by linear programming”
(http://www.acm.caltech.edu/~emmanuel/papers/DecodingLP.pdf)
and “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency informa-
tion” (http://www.acm.caltech.edu/~emmanuel/papers/ExactRecovery.pdf).

Franck Barthe (Université Toulouse III)
About Talagrand’s Concentration Inequality for Exponential Measures

This lecture provides a survey on the recent works extending Talagrand’s concentration inequality for
the exponential measures, or more generally product log-concave measures. Among others, transportation
cost inequalities and modified logarithmic Sobolev inequalities will be presented and studied.

Dean Foster (University of Pennsylvania)
Deterministic Calibration and Nash Equilibrium

We provide a natural learning process in which the joint frequency of empirical play converges into the
set of convex combinations of Nash equilibria. In this process, all players rationally choose their actions
using a public prediction made by a deterministic, weakly calibrated algorithm. Furthermore, the public
predictions used in any given round of play are frequently close to some Nash equilibrium of the game.
(Joint work with Sham M. Kakade.)
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Neri Merhav (Technion, I.I.T.)
On Context-tree Prediction of Individual Sequences

Motivated by the evident success of context–tree based methods in lossless data compression, we explore,
in this talk, methods of the same spirit in universal prediction of individual sequences. By context–tree
prediction, we refer to a family of prediction schemes, where at each time instant t, after having observed
all outcomes of the data sequence x1, . . . , xt−1, but not yet xt, the prediction is based on a “context” (or a
state) that consists of the k most recent past outcomes xt−k, . . . , xt−1, where the choice of k may depend
on the contents of a possibly longer, though limited, portion of the observed past, xt−kmax

, . . . , xt−1. This
is different from the study reported in Feder, Merhav, and Gutman (2002), where general finite–state
predictors as well as “Markov” (finite–memory) predictors of fixed order, where studied in the regime of
individual sequences.

Another important difference between this study and Feder, Merhav, and Gutman (2002) is the as-
ymptotic regime. While in Feder, Merhav, and Gutman (2002), the resources of the predictor (i.e., the
number of states or the memory size) were kept fixed regardless of the length N of the data sequence,
here we investigate situations where the number of contexts, or states, is allowed to grow concurrently
with N . We are primarily interested in the following fundamental question: What is the critical growth
rate of the number of contexts, below which the performance of the best context–tree predictor is still
universally achievable, but above which it is not? We show that this critical growth rate is linear in N . In
particular, we propose a universal context–tree algorithm that essentially achieves optimum performance
as long as the growth rate is sublinear, and show that, on the other hand, this is impossible in the linear case.

Further references:
http://www.ee.technion.ac.il/people/merhav/papers/p100.pdf

Peter Grünwald (Centrum voor Wiskunde en Informatica & Eurandom)
Suboptimality of MDL and Bayes in Classification under Misspecification

We show that forms of Bayesian and MDL learning that are often applied to classification problems
can be “statistically inconsistent”. We present a classification model (a large family of classifiers) and a
distribution such that the best classifier within the model has classification risk r, where r can be taken
arbitrarily close to 0. Nevertheless, no matter how many data are observed, both the classifier inferred by
MDL and the classifier based on the Bayesian posterior will make predictions with error much larger than
r. If r is chosen not too small, predictions based on the Bayesian posterior can even perform substantially
worse than random guessing, no matter how many data are observed. Our result can be re-interpreted as
showing that, if a probabilistic model does not contain the data generating distribution, then Bayes and
MDL do not always converge to the distribution in the model that is closest in KL divergence to the data
generating distribution. We compare this result with earlier results on Bayesian inconsistency by Diaconis,
Freedman and Barron.

This work is a follow-up on joint work with John Langford of the Toyota Technological Institute, Chicago,
published at COLT 2004, available at www.grunwald.nl.
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Ofer Zeitouni (University of Minnesota)
A Correlation Inequality for Nonlinear Reconstruction

Consider the problem of reconstructing a Gaussian vector based on the maximum of its projections on
the elements of an orthogonal basis. S. Mallat and myself showed that the optimal basis for this problem
is the Karhunen-Loeve one. I will discuss the proof and conjectured generalizations.

Ehud Lehrer (Tel-Aviv University)
Bayesian and Non-Bayesian Learning in Games

I will contrast Bayesian with non-Bayesian learning to play an equilibrium. I will primarily refer to the
mathematics involved in the two corresponding research directions.

Bernhard Schölkopf (Max Planck Institut, Tübingen)
Applications of Kernel Methods

We discuss several new applications of kernel methods, including algorithms developed for the tasks
at hand. The problems we are working on range from aspects of biomedical signal processing (analysis
of neural data, brain computer interfacing) to applications in computer graphics (surface modeling and
morphing).

Z. D. Bai (National University of Singapore)
Statistical Analysis for Rounding Data

Unless the model is discrete, data rounding is unavoidable in practical measurement. However, the
errors caused by rounding of data are almost ignored by all classical statistical theories. Although some
pioneers have noticed this problem, few suitable approaches were proposed to deal with this error. In this
work, both by simulations as well as by theoretical analysis, we demonstrate that the traditionally used
sample mean and sample variance, covariance are no longer consistent nor asymptotically normal, when
rounding errors are present. Also, by some concrete examples when measurements are rounded to some
extent, we propose to use MLE or approximated MLE (AMLE) to estimate the parameters and discuss the
properties of them and tests based on the new estimators. In particular, as an example, we shall discuss
the limiting properties of the new estimator of parameters in an AR(p) model and MA(q) model when the
observations are rounded.
(Joint work with Shurong Zheng and Baoxue Zhang.)
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Shie Mannor (McGill University)
An Isoperimetric Inequality with Applications to Learning

An issue of central importance is learning in the presence of data corruption, or noise. In this talk, we
consider the case where data corruption has produced a data sample with a large margin. The essential
question is “what is the cost of this margin?” in terms of generalization error. We provide an answer for
the case where the underlying distribution has a nearly log-concave density.

First, we prove that given such a nearly log-concave density, in any partition of the space into two
well separated sets, the measure of the points that do not belong to these sets is large. Next, we apply
this isoperimetric inequality to derive lower bounds on the generalization error in classification. We further
consider regression problems and show that if the inputs and outputs are sampled from a nearly log-concave
distribution, the measure of points for which the prediction is wrong by more than ǫ0 and less than ǫ1 is
(roughly) linear in ǫ1 − ǫ0, as long as ǫ0 is not too small, and ǫ1 not too large. We also show that when the
data are sampled from a nearly log-concave distribution, the margin cannot be large in a strong probabilistic
sense.

Ingo Steinwart (Los Alamos National Laboratory)
Learning from Dependent Observations

The standard assumption in statistical learning theory is that the available samples are realizations of
i.i.d. random variables. However, in many applications this assumption cannot be rigorously justified, in
particular if the observations are intrinsically temporal. In this talk I will present some recent results on the
learnability of rather general observation-generating random processes. In particular, I will establish a weak
consistency result for support vector machine classification and regression. In addition, refined results for
e.g. α-mixing processes will be presented. If time permits I will finally discuss whether the behaviour of
certain dynamical systems can be learned.

John Shawe-Taylor (University of Southampton)
Statistical Analysis of Subspace Methods and Associated Learning Algorithms

Subspace inference is a critical component in many practical applications of learning from data, yet very
little analysis has been made of the performance of these algorithms. The talk considers the question of
providing a statistical analysis of subspace methods and of learning using the associated representations.
We begin with considering principal components analysis and the relation between process and empirical
eigenvalues. We go on to consider more advanced techniques such as canonical correlation analysis and
linear functions learned in the inferred representation. Sparse analogies of these techniques will be discussed
with associated bounds.
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Tong Zhang (Yahoo Inc.)
Theory and Algorithms for Large Scaling Ranking Problems

I will discuss machine learning problems encountered in web search and advertising, and then focus on
ranking. In the web search setting, I will talk about training relevance models based on DCG (discounted
cumulated gain) optimization. Under this metric, the system output quality is naturally determined by the
performance near the top of its rank-list. I will mainly focus on various theoretical issues in this learning
problem.

As a related practical illustration, I will talk about optimizing the ranking function of a statistical ma-
chine translation system according to the BLEU metric (standard measure of translation quality). Our
approach treats machine translation as a black-box, and can optimize millions of system parameters auto-
matically. This has never been attempted before. I will present our method and some results. (Joint work
with David Cossock, Yahoo, and Christoph Tillmann, IBM.)

Vladimir Koltchinskii (Georgia Institute of Technology)
Sparsity in High-Dimensional Learning Problems

We study penalized empirical risk minimization with convex loss over the linear span of a large finite set
H of base functions. The penalty is based on the ℓp-norm of the vector of coefficients with p = 1+c/ logN,
where N is the cardinality of H. We prove several inequalities that directly relate "the degrees of sparsity"
of empirical and true solutions of such problems and show what impact the sparsity has on on the excess
risk bounds and on the accuracy of estimation of the vector of coefficients. We discuss several other prob-
lems, such as data-driven choice of regularization parameter that provides adaptation to unknown sparsity
of the true solution as well as the problem of adaptation to linear dependencies in the set H. We also
discuss the connections of these results to recent work on aggregation of statistical estimators (Tsybakov
and coauthors) and to sparse recovery problems in computational harmonic analysis (Donoho, Candes, Tao
among others).

Jean-Philippe Vert (Ecole des Mines de Paris)
Regularization of Kernel Methods by Decreasing the Bandwidth of the Gaussian Kernel

We consider learning algorithms that minimize an empirical risk regularized by the norm in the reproduc-
ing kernel Hilbert space of the Gaussian kernel. The conditions on the loss function for Bayes consistency
of such methods have been studied recently when the regularization term asymptotically vanishes as the
sample size increases. Here we study the different situation where the regularization term does not vanish,
but the bandwidth of the Gaussian kernel instead decreases with the sample size. We will explicit the
asymptotic limit of the function selected by the algorithm, give conditions on the loss function to ensure
Bayes consistency, and provide non-asymptotic learning bounds in this case. We will deduce in particular
the consistency of the one-class support vector machine algorithm as a density level set estimator. (Joint
work with Régis Vert.)
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Nicolò Cesa-Bianchi (Università degli Studi di Milano)
Learning and Randomization

Randomization is a fundamental tool in learning. In this talk we illustrate some interesting applications
of randomized algorithms to the solution of various problems in the areas of individual sequence prediction
and pattern classification.

Vladimir Temlyakov (University of South Carolina)
On Optimal and Universal Estimators in Learning Theory

This talk addresses some problems of supervised learning. Supervised learning, or learning-from-
examples, refers to a process that builds on the base of available data of inputs xi and outputs yi,
i = 1, . . . ,m, a function that best represents the relation between the inputs x ∈ X and the corresponding
outputs y ∈ Y . The goal is to find an estimator fz on the base of given data z := ((x1, y1), . . . , (xm, ym))
that approximates well the regression function fρ (or its projection) of an unknown Borel probability measure
ρ defined on Z = X × Y . We assume that (xi, yi), i = 1, . . . ,m, are indepent and distributed according
to ρ.

There are several important ingredients in mathematical formulation of this problem. We follow the way
that has become standard in approximation theory and has been used in recent papers. In this approach
we first choose a function class W (a hypothesis space H) to work with. After selecting a class W we have
the following two ways to go. The first one is based on the idea of studying approximation of the L2(ρX)
projection fW := (fρ)W of fρ onto W . Here, ρX is the marginal probability measure. This setting is known
as the improper function learning problem or the projection learning problem. In this case we do not
assume that the regression function fρ comes from a specific (say, smoothness) class of functions. The
second way is based on the assumption fρ ∈ W . This setting is known as the proper function learning

problem. For instance, we may assume that fρ has some smoothness. We will give some upper and lower
estimates in both settings.

In the problem of universal estimators we assume that an unknown measure ρ satisfies some conditions.
Following the standard way from nonparametric statistics we formulate these conditions in the form fρ ∈ Θ.
Next, we assume that the only a priori information available is that fρ belongs to a class Θ (unknown)
from a known collection {Θ} of classes. We want to build an estimator that provides approximation of fρ

close to the optimal for the class Θ. We use a standard method of penalized least squares estimators for
construction of universal estimators.

Santosh Vempala (Massachusetts Institute of Technology)
Sampling, Integration and Optimization of High-dimensional Log-concave Functions

Logconcave functions are a common generalization of Gaussians and indicator functions of convex bod-
ies; they appear in many areas. In this talk, we survey the algorithmic and geometric ideas behind the most
recent developments in sampling, integration and optimization of logconcave functions. In particular, we
will discuss the analysis of the random walk called “hit-and-run”, and a general method called simulated
annealing which is used in the current best algorithms for both integration and optimization.
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Nathan Linial (The Hebrew University of Jerusalem)
Complexity of Sign Matrices and its Many Aspects

Consider a matrix of +1/-1 as a family of concepts to be learned. Various measures can be associated
with this matrix in an attempt to quantify how hard it is to learn this concept class. Among the better
known measures are the VC dimension and the margin. In joint work with Adi Shraibman we are putting
these notions in a broader framework of complexity measures of sign matrices. The simplest complexity
measure is the rank, and many other natural concepts arise which are related to various other fields such
as Banach Space Theory, communication complexity and discrepance theory. We are investigating these
different concepts and their mutual relationships.

Nicolas Vayatis (Université Paris VI)
Is There Life beyond the Classification Problem?

In the recent years, significant progress has been achieved on the statistical understanding of celebrated
classification algorithms such as boosting and SVM. The key for proceeding to a statistical analysis was to
interpret these algorithms as optimization procedures minimizing a penalized convex risk functional. From
there it was possible: first, to relate the convex criterion to the standard performance measure -the classi-
fication error- and then, to adapt the flourishing theory of empirical risk minimization in order to provide
generalization error bounds and oracle inequalities for convex risk minimization procedures. In the talk,
I will discuss whether this programme can be applied to another problem: the ranking/scoring problem.
Indeed, in applications such as Information Retrieval or Credit Risk screening, the goal is to rank/score
webpages or individuals, rather than simply assigning them to a specified category. In this perspective,
standard performance measures lead to statistical functionals of order two for which classification theory
does not apply straightforwardly. In the talk, I will give some insights and results on these new challenging
issues. (Joint work with Stephan Clémençon and Gábor Lugosi.)

Peter Bartlett (UC Berkeley)
Asymptotic Properties of Convex Optimization Methods for Multiclass Classification

We consider the following pattern classification problem: given a sample of i.i.d. pairs (Xi, Yi) ∈ X ×Y,
where Y is finite, find a function f : X → Y that has small misclassification probability. Many successful
algorithms for binary classification (with |Y| = 2) involve optimization of a convex criterion. These methods
can be generalized in many ways to handle the multiclass case. It turns out that the study of multiclass
methods is not a simple extension of results for the binary case. For instance, many apparently natural
generalizations of binary methods do not preserve the attractive property of universal consistency (that is,
for any probability distribution, the risk of the classifier approaches the best possible). We consider methods
that choose a vector-valued function f to optimize a convex criterion of the form

∑

i Ψ(f(Xi), Yi), where
Ψ(·, y) is convex. We give a characterization of such criteria that allow the universal consistency property,
in terms of geometric properties of the convex hull of the image of Ψ. We describe the implications for
several multiclass methods from the literature. (Joint work with Ambuj Tewari.)

Further references: See
http://www.cs.berkeley.edu/~ambuj/research/tewari05consistency.pdf
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Poster session Wednesday, May 31, 18:00 – 19:30

Felix Agakov Variational Information-Maximization and Probabilistic Self-
Supervised Training

Pierre Alquier Iterative Feature Selection in Regression and Density Estimation

Maria-Florina Balcan On a Theory of Kernels as Similarity Functions

Matthieu Cornec Distribution-free Finite Sample Results for Generalized Cross-
validation

András György The Shortest Path Problem with Limited Feedback

Matthias Hein Uniform Convergence of Adaptive Graph-based Regularization

H. X. Liu Making Markowitz’s Portfolio Optimization Theory Practically Useful

Sébastien Loustau Learning Rates for Support Vector Machines Using Sobolev Spaces

Leila Mohammadi The Nonnegative Garrote Estimator in Classification

Tsuyoshi Okita Kernel Methods for Conditional Quantities

György Ottucsák Hannan Consistency in On-line Learning in Case of Unbounded Losses
under Partial Monitoring

Kristiaan Pelckmans Risk Scores and its Use in Censored Regression

Evgeniy Rafikov About Universal Estimators in the Case of Unbounded Responses

Nima Reyhani Noise Variance Estimation, Difficulties and Applications

Manuel Samuelides Learning Surrogate Models for Optimization and Applications to
Structure Optimization

Dina Anna Sudarsky-Guez Geometry of Excursion Sets of the Non-stationary Elliptic Gaussian
Parabolic Bending Non-isotropic Scale Space Random Fields

Csaba Szepesvári Learning Near-optimal Policies with Bellman-Residual Minimization
Based Fitted Policy Iteration and a Single Sample Path

Yiming Ying Online Gradient Descent Learning Algorithms

Gilbert Young Complexity of Tetris-Packing Problem
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Variational Information-Maximization and Probabilistic Self-Supervised Training
Felix Agakov (University of Edinburgh)

In this work we investigate a relation between the variational Arimoto-Blahut (Information Maximizing)
algorithm for the channel capacity of encoder models and the variational EM for generative models and
stochastic autoencoders. Much of the previous work on relating maximization of the mutual information,
likelihood, and conditional likelihood in such models focused primarily on specifically constrained invertible
mappings (e.g. Cardoso, 1997; MacKay, 1999) or specific noiseless autoencoders (Oja, 1989), where the
computations were exact. Our goal here was to investigate relations between these learning paradigms for
more general graphical models, which could arguably be more practical for describing real-world commu-
nication channels or data-generating processes. Since in our case the optimized objectives were generally
computationally intractable, we considered their common variational relaxations. Our focus on the vari-
ational EM and IM was due to popularity and simplicity of these approaches for approximate training of
generally intractable graphical models.

Our study here was motivated by a simple observation that independently of a specific (generative,
self-supervised, or encoding) modeling approach, we may often be interested in finding latent variable
representations y which are somewhat informative about the observations x. One possible principled way to
relate such approaches could be by comparing the induced optimization surfaces with (the bounds on) the
information content between x and y, under specific modeling assumptions. Our assumption here is that
the (exact or approximate) posteriors of the considered models lie in the same parametric families; i.e. for
the fixed parameters of the posteriors, the models should lead to identical inferences.

For example, in the first part of our study we assume that the encoding distribution p(y|x) of the

encoder model MI
def
= p(y|x)p̃(x) is constrained to be equivalent to the posterior of a generative model

ML
def
= p(y)p(x|y), or its variational approximation q(y|x) (in the latter case, q(y|x) is the variational

parameter of the Jensen’s lower bound on the likelihood of ML). A simple comparison of optimization
surfaces of the variational EM for ML and the variational IM for MI gives rise to a sufficient condition
for equivalence of both learning approaches. Another simple outcome of this comparison is the observation
that under the considered parameterization, the Jensen’s lower bound on the likelihood in ML defines a
(potentially loose) lower bound on the mutual information I(x, y) in MI , which may be strengthened by
a specific tractable instance of the IM bound. In the second part of our study we analyze the fixed points
of the variational EM for a stochastic autoencoder MC , and show that the variational EM learning in
MC is identical to a special instance of the IM learning in the corresponding encoder model (again, the
encoder is assumed to satisfy the equivalent inference constraint). One of the practical results of the study
is a simplification of the conditional self-supervised training of noisy autoencoders, as the equivalent IM
formulation has a simpler form with the lower cardinality of the variational parameters.

Finally, we note that availability of simple and general lower bounds on I(x, y) (such as those based
on conditional likelihood of autoencoders) may alleviate a need of its approximations, which may often be
accurate only under strong assumptions about the encoder models. We briefly demonstrate that although
it is easy to strengthen Jensen’s lower bounds on I(x, y) (as it is on the marginal or conditional likelihood),
even simple choices of the variational distributions may lead to better estimates of I(x, y) than some of the
common (Brunel and Nadal, 1998) or more recent (Corduneanu and Jaakkola, 2003) approximations.

Further references:
The extended version is available at http://homepages.inf.ed.ac.uk/felixa/Papers/info_t03.pdf.
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Iterative Feature Selection in Regression and Density Estimation
Pierre Alquier (University Paris 6 & Crest)

In this work, we give an iterative algorithm for regression estimation in the transductive setting (the
technique described also covers regression estimation in the inductive setting and density estimation, both
with quadratic loss). We assume that we observe a learning sample (X1, Y1), ..., (XN , YN ) (i.i.d. from a
distribution P on X × R, there is no assumption on X ) and the design of a test sample, XN+1, ...,X2N ,
our aim being to estimate YN+1, ..., Y2N . We assume that we are given a large set of feature, more precisely
m functions f1, ..., fm from X to R, with m ≥ N . The aim of the method is to select functions in this
set that are relevant to estimate YN+1, ..., Y2N and to aggregate them - estimating the YN+i by f(XN+i)
where:

f(.) =
∑

k∈I

αkfk(.). (1)

Focusing on the least square error:

r(f) =
1

N

2N
∑

i=N+1

[Yi − f(Xi)]
2

we give in a first time a deviation inequality providing control for r(α̂kfk), the risk of an estimator in a
unidimensional model defined by the function fk. Actually, each of these inequalities provides a confidence
region for f , the minimizer of r under the form given by equation (1). We propose to perform successive
projections on such confidence regions using a suitable scalar product, and describe a practical algorithm
to do it. Every projection adds (at most) one feature to the estimator.

The result we prove is that with large probability, at each projection step, the performance of the current
estimator (measured by r) is actually improved, providing a guarantee against overlearning.

We focus on two particular examples. In the case where m = 2N and fi = K(Xi, .) for some kernel
K we obtain a SVM estimator. In the inductive setting (for regression or density estimation), when the
features are actually an orthogonal basis of functions, this algorithm is equivalent to a soft-tresholding
procedure. If the true regression function belongs to a space of unknown regularity β, this method adapts
to this regularity and reaches the right speed of convergence - up to a log factor: (logN/N)2β/(2β+1).

Further references:
The extended version of this work is available on
http://www.crest.fr/pageperso/alquier/alquier_eng.htm.
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On a Theory of Kernels as Similarity Functions
Maria-Florina Balcan (Carnegie Mellon University)

Kernel functions have become an extremely popular tool in machine learning, with an attractive theory
as well. This theory views a kernel as performing an implicit mapping of data points into a possibly very
high dimensional space, and describes a kernel function as being good for a given learning problem if data
is separable by a large margin in that implicit space. However, while quite elegant, this theory does not
directly correspond to one’s intuition of a good kernel as a good similarity function. Furthermore, it may
be difficult for a domain expert to use the theory to help design an appropriate kernel for the learning
task at hand since the implicit mapping may not be easy to calculate. Finally, the requirement of positive
semi-definiteness may rule out the most natural pairwise similarity functions for the given problem domain.

In this work we develop an alternative, more general, theory of learning with similarity functions (i.e.,
sufficient conditions for a similarity function to allow one to learn well) that does not require reference to
implicit spaces, and does not require the function to be positive semi-definite (or even symmetric). Our
results also generalize the standard theory in the sense that any good kernel function under the usual
definition can be shown to also be a good similarity function under our definition (though with some loss
in the parameters). In this way, we provide the first steps towards a theory of kernels that describes the
effectiveness of a given kernel function in terms of natural similarity-based properties.

Further references:
The extended version of this work is available on
http://www.cs.cmu.edu/~ninamf/papers/similarity.ps.
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Distribution-free Finite Sample Results for Generalized Cross-validation
Matthieu Cornec (Université Paris X)

In this article, we derive finite-sample results for the cross-validation estimate of the generalisation error
in the context of risk assessment and model selection. In the general setting, we prove sanity-check bounds
in the spirit of Kearns (1997) “bounds showing that the worst-case error of this estimate is not much worse
that of training error estimate”. For special algorithms (namely subbagging), our bounds can be much
tighter than Vapnik’s bounds especially in the case of small sample sizes.

General loss functions and class of predictors with both finite and infinite VC dimension are considered.
We generalize slightly the formalism introduced by Dudoit and Van der Laan (2003) to cover a large vari-
ety of cross-validation procedures including leave-one-out cross-validation, k-fold cross-validation, hold-out
cross-validation (or split sample), leave-υ-out cross-validation and the resubstitution error.

In particular, we focus on :

– proving the accuracy of the various cross-validation procedures,

– pointing out the interest of each cross-validation procedure in terms of rate of convergence. In
particular, the special interest of the k-fold cross-validation allowing both a low bias and a low
variance is emphasized. An estimation curve with transition phases depending on the cross-validation
procedure is derived. It gives a simple rule on how to choose the cross-validation method knowing
the loss function, the class of predictors and the sample size. The conclusions about the optimal
splitting procedure are different from previous ones (Kearns, 1998).

– showing when the cross-validation estimates can outperform the training estimate,

– proving that cross-validation can work out with infinite VC-dimension predictor,

– at last, providing simulation studies to illustrate our results.
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The Shortest Path Problem with Limited Feedback
András György (Computer and Automation Research Institute of the Hungarian

Academy of Sciences)
(Joint work with Tamás Linder, Queen’s University, Gábor Lugosi, Pompeu Fabra University, György

Ottucsák, Budapest University of Technology and Economics)

The on-line shortest path problem is considered with limited feedback. At each round, a decision maker
has to choose a path between two distinguished vertices of a weighted directed acyclic graph whose edge
weights can change in an arbitrary (adaptive adversarial) way such that the loss of the chosen path (defined
as the sum of the weights of its composing edges) be small. In the multi-armed bandit setting, after choosing
a path, the decision maker learns only the weights of those edges that belong to the chosen path. For this
scenario, an algorithm is given whose average cumulative loss in n rounds exceeds that of the best path,
matched off-line to the entire sequence of the edge weights, by a quantity that is proportional to 1/

√
n and

depends only polynomially on the number of edges of the graph. The algorithm can be implemented with
linear complexity in the number of rounds n and in the number of edges. The main idea in constructing
the algorithm is to modify the bandit algorithm of Auer et al. [1] such that one needs to keep weights for
the edges of the graph instead of the paths, and these weights are combined efficiently to choose a path
in each round. This result improves earlier bandit-algorithms which have performance bounds that either
depend exponentially on the number of edges or converge to zero at a slower rate than O(1/

√
n). An

extension is given for the tracking problem, where the performance of the algorithm is compared to the
performance of dynamic paths that can switch between fixed paths several times. Another extension to the
so-called label efficient setting is also given, where the decision maker is informed about the edge weights
of the chosen path only with probability ε < 1. Applications to routing in packet switched networks along
with simulation results are also presented.

Further references:
The extended version of this work is available at
http://www.szit.bme.hu/~gya/publications/GyLiLuOt06.pdf.

References

[1] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. The non-stochastic multi-armed bandit problem.
SIAM Journal on Computing, 32(1):48–77, 2002.
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Uniform Convergence of Adaptive Graph-based Regularization
Matthias Hein (Max Planck Institute for Biological Cybernetics)

The regularization functional induced by the graph Laplacian of a random neighborhood graph based
on the data is adaptive in two ways. First it adapts to an underlying manifold structure and second to the
density of the data-generating probability measure. We identify in this paper the limit of the regularizer
and show uniform convergence over the space of Hölder functions. As an intermediate step we derive
upper bounds on the covering numbers of Hölder functions on compact Riemannian manifolds, which are
of independent interest for the theoretical analysis of manifold-based learning methods. We include also
an extensive discussion of the properties of the limit smoothness functional and why and how it can be
interesting in different learning algorithms such as regression, semi-supervised learning and clustering. In
particular the adaptation to the two independent structures inherent to the data, the geometry of the data
manifold M and the density of the data generating probability measure, is discussed.

Further references:
The extended version of this work is available on
http://www.kyb.mpg.de/publications/attachments/Hein-Unif_Conv_Graph_Reg(2006)_3893[1]

.pdf.
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Making Markowitz’s Portfolio Optimization Theory Practically Useful
H. X. Liu (National University of Singapore)

(Joint work with Zhidong Bai and Wing-Keung Wong)

The Markowitz mean-variance optimization procedure to compute the optimal return is highly appre-
ciated as a one of the most important cornerstones in modern finance theory. However, the traditional
estimated return has been demonstrated not to be applicable in practice due to its serious departure from
its theoretic optimal return, attributed to the substantial measurement error. Applying the theory of large
dimensional data analysis, we first theoretically explain this phenomenon is natural when the number of as-
sets is large. We also show that the huge measurement error is due to the serious departure of the estimated
portfolio from its theoretic counterpart. Thereafter, we prove that the estimated optimal return is always
larger than its theoretic parameter when the number of assets is large. To circumvent this problem, we
utilize both the large dimensional random matrix theory and the parametric bootstrap method to develop
new bootstrap estimators for the optimal return and its asset allocation. We further theoretically prove
that these bootstrap estimates are consistent to their counterpart parameters. Our simulation confirms
the consistency and shows that, comparing with the traditional estimate, our proposed estimate improves
the estimation accuracy so substantial that its relative efficiency is as high as 220 times for sample size
of 500; implying that the essence of the portfolio analysis problem could be adequately captured by our
proposed estimates. The improvement of our proposed estimates are so big that there is a sound basis for
believing our proposed estimates to be the best estimates to date that they greatly enhance the Markowitz
mean-variance optimization procedure to be implementable and practically useful.
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Learning Rates for Support Vector Machines Using Sobolev Spaces
Sébastien Loustau (C.M.I., Marseille)

The goal of the present poster is to rely ideas from linear algebra and approximation theory with
Learning. We state learning rates to the Bayes risk approaching O(1/n) for SVMs using a new type of
kernel. This kernel will be described in terms of the spectrum of his integral operator.

For the kernel approximation, we establish polynomial rates depending on the regularity of the kernel
function. We deduce some theoretical estimates for the approximation error.

For the stochastic part of this analysis, we use tools of concentration theory and local Rademacher
averages. Recent advances on concentration inequalities improve Vapnik’s structural risk minimization for
pattern recognition. More precisely, we related the eigenvalues of the integral operator to his entropy
numbers to deduce a structural control of the RKHS considered. Gathering this with the now standard
Tsybakov’s noise assumption, our results shows that it is possible to obtain fast rates of convergence
depending on our eigenspectrum associated to the kernel. The dependence is explicitely given and is
compared with recent results on this topic.
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The Nonnegative Garrote Estimator in Classification
Leila Mohammadi (EURANDOM, Technical University of Eindhoven)

Subset selection regression is a frequently used statistical method. Suppose we are given data of the
form {(yn, x1n, ..., xMn), n = 1, ..., N}. Subset selection waives some of the predictor variables x1, ..., xM

and then the prediction equation for y is based on the remaining set of variables. Subset selection is
simple and it clearly reduces the variance if M is large. An other method for reducing the variance is ridge
regression. In this method we assume λ to be a positive value (shrinkage parameter) and the coefficients are
estimated by (XTX+λI)−1XTY . Let y =

∑

k βkxk + ε. If a few of the {βk} are nearly zero and the rest
are large, then subset selection gives more accurate prediction than ridge regression. If it is not the case,
then ridge regression acts better. Thus usually, subset selection is not as accurate as ridge. The problems
with ridge regression are for example: 1) it is not scale invariant 2) it does not give a simple equation.
As it is known, we need an intermediate method which selects subsets, is stable and gains its accuracy
by selective shrinking. The nonnegative garrote estimator in a linear regression model was introduced by
Breiman (1995). This is an intermediate method.

We define the nonnegative garrote estimator in a binary classification problem. We obtain the rate of
convergence of the risk of the estimator which is (log n)/n. It shows that the same asymptotic convergence
rate as the hard and soft shrinkage estimates holds for the nonnegative garrote estimator.

Further references:
A paper related to this work is available on
http://www.math.leidenuniv.nl/%7Eleila/publicat.html.
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Kernel Methods for Conditional Quantities
Tsuyoshi Okita (Vrije Universiteit Brussel)

(Joint work with Bernard Manderick)

Kernel methods have rapidly become popular in the last decades. Despite the easy usage without
prior knowledge about data, they can handle vast categories of learning problems with high accuracies
(Shawe-Taylor and Cristianini, 2004; Scholkopf and Smola, 2002; Herbrich, 2001; Joachims, 2002; Vapnik,
1998). Easy usage is due to the IID assumption on the data generation process which lets us free from
annoying about which assumptions we need to make on a data generation process which is often required
for a Bayesian approach (MacKay, 2003; Neal, 2005; Jordan and Bishop, 2000; Gharamani, 2005; Korb
and Nicholson, 2004; Neapolitan, 2003; Koller and Friedman, 2003). An intuitive concern is that if we
may employ some prior knowledge about data which contradicts the IID assumption, we could get better
test accuracies: indeed this is the Bayesian argument towards kernel methods. As a primal source of prior
knowledge, Bayesian incorporates the correlations among random variables, which can be described by the
conditional probabilities P (Xi|Xj), and uses the priors (prior belief), both of which bases on the Bayes rule.
The similar situation occurs as well in a different context: the context of reduction approach (based on
information theory) (Dietterich and Bakiri, 1995; Langford and Beygelzimer, 2005) and that of an on-line
learning (Cesa-Bianchi et.al., 2005). In a reduction approach after reducing a problem into subproblems,
the target bits of error correction is the bits which are likely to be modified by a noisy channel, which
can be discribed by the conditional entropy H(XR|YS). Similarly in on-line learning, if we see the random
variables along a time sequence, the natural strategy how to choose the next time step can be described
using the conditional expectation E(Xn+1|Xn, · · · ,X1), which is related to the martingale for gambling.
The interesting similarities among Bayesian, on-line learning, and reduction approach are in their common
usage of conditional quantities (conditional probability / expectation / entropy).

This poster shows one approach to handle those conditional quantities by kernel methods. The key
ingredient is to incorporate an order statistics to represent the exchangeability principle (de Finetti, 1939),
where this principle states that the conditionally independent random variables are infinitely exchangeable.
The advantage of this kernel method over the Bayesian approach is that the kernel method can guarantee the
existence and uniqueness of solutions by RKHS. It is noted that the non IID assumption is half explained
by this preliminary / ongoing study in terms of conditional quantities (other factor is the nonidentical
assumption).
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Hannan Consistency in On-line Learning
in Case of Unbounded Losses under Partial Monitoring

György Ottucsák (Budapest University of Technology and Economics)
(Joint work with László Györfi)

In most of the machine learning literature, one assumes that the losses are bounded, and such a bound
is known in advance, when designing an algorithm. In many applications, including regression problem or
routing in communication networks the bound of the loss function is not known beforehand or the loss
function is unbounded.

In this paper the sequential prediction problem with expert advice is considered when the bound of
the loss function is unknown in advance, or when the loss function is unbounded. We analyze a simple
modification of Allenberg and Auer’s “bandit” algorithm. The modified algorithm is able to handle a wider
class of the partial monitoring problems: the combination of the label efficient and multi-armed bandit
problem, that is, where the algorithm is informed about the performance of the chosen action only with
probability ε < 1.

We prove that Hannan consistency, a fundamental property in game-theoretic prediction models, can
be achieved by the algorithm in full monitoring and label efficient case if the maximum of the normalized
average of the square of the loss to grow infinity slightly slower than linearly in number of prediction rounds.
We also determine the sufficient conditions of Hannan consistency under other partial monitoring cases: in
the multi-armed bandit problem and in the combined version with label efficient setting. In the proof we
avoid using doubling trick (epochs) although we are still able to trace the range of the value of the loss
function and to handle the infinite time-horizon.

Further references:
The extended version of this work is available on http://www.szit.bme.hu/~oti.
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Risk Scores and its Use in Censored Regression
Kristiaan Pelckmans (K.U. Leuven, ESAT/SCD-SISTA, Belgium)

(Joint work with J.A.K. Suykens and B. De Moor)

This work explores the use of risk scores into learning theory and for the design of learning machines in
the context of censored observations. The notion of risk scores relates to the classical notion of likelihood
scores as lying on the basis of maximum likelihood inference [3], but is conceived instead in a context of
empirical risk minimization theory. Given a loss function ℓ : R

d → R belonging to C1(Rd) which measures
the appropriateness of a certain parameter vector θ ∈ R

d (for d ∈ N0) in the context of a fixed but unknown
distribution FZ . The corresponding risk score r : R

d → R in C0(Rd) can be formalized as follows

r(θ0;FZ) = E

[

∂ℓ(θ;FZ)

∂θ

∣

∣

∣

θ=θ0

]

.

Theoretical properties as e.g. existence and continuity are derived, while the finite sample properties of the
empirical counterpart can be quantified exploiting the linearity of the involved operators. Risk minimization
then amounts to finding a parameter vector θ such that r(θ;FZ) = 0. We investigate properties of the
empirical counterpart of the risk score in case of a number of loss functions. In our case the risk score is
the random variable of interest, instead of the risk terms itself.

A first result motivating the use of risk scores in a distribution-free setting is obtained by the construction
of a nontrivial confidence set based on an i.i.d. sample Zi ∼ FZ with i = 1, . . . , n:

Sα,n ⊂ R
d : Pr

(

θ∗ ∈ Sα,n

)

≥ α s.t. r(θ∗, FZ) = 0,

where 0 < α < 1 is a prespecified confidence level and n denotes the sample setting. This derivation is
based on large deviation bounds and application of the union bound technique. For convex loss-functions ℓ,
an analytical expression can be derived for the distribution-free confidence set of a location estimator. This
construction of confidence sets relates closely to the likelihood based counterparts of score tests [3]. The
close links with the Fisher information, recent stability based results [1], perturbation theory and topics in
robust inference [2] are highlighted.

Risk scores prove to be useful in order to develop a theoretical motivated strategy to deal with censored
observations in location estimation or function approximation. Estimation problems involving censored
observations occur often in econometrics or in survival analysis for clinical studies. This problem is classically
approached with a Tobit model based on parametric likelihood, Powell’s LAD estimator, and it is also the
subject of the empirical likelihood approach of the Kaplan-Meier product limit estimator, see e.g. [4].
Empirical risk scores can be used to approach the problem of an appropriate estimation technique in the
context of censoring from a different angle. Herefor, we exploit the property of bounded empirical risk
scores in case a Lipschitz smooth loss function is used. The convexity of the resulting problem is exploited
to construct a corresponding confidence set.

References

[1] O. Bousquet and A. Elisseeff. Stability and generalization. JMLR, 2:499–526, 2002.
[2] A. Christmann and I. Steinwart. On robustness properties of convex risk minimization methods for pattern

recognition. JMLR, 5:1007–1034, 2004.
[3] R.V. Hogg, A.T. Allen. Introduction to Mathematical Statistics. Macmillan, New York, 5th edition, 1995.
[4] J.D. Kalbfleisch, R.L. Prentice. The Statistical Analysis of Failure Time Data. Wiley series in probability and

statistics. Wiley, 2002.
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About Universal Estimators in the Case of Unbounded Responses
Evgeniy Rafikov (Moscow State University)

Learning from examples refers to a process that builds on the base of available data xi and outputs
yi, i = 1, . . . ,m a function that best represents the relation between the inputs x ∈ X and the corresponding
outputs y ∈ Y. Let X ∈ R

d, Y ∈ R be Borel sets and ρ be a Borel probability measure on Z = X × Y .
Consider ρ(y|x) – conditional (with respect to x) probability measure on Y and define the regression
function of ρ as usual

fρ(x) =

∫

Y
ydρ(y|x).

A lot of authors studied the problem of estimating fρ(x), see, e.g., [1, 2, 3, 4]. The typical assumption
for the unknown measure ρ is that fρ(x) ∈ W for some functional class W and |y| < M a.s. for some
constant M . We discuss several aspects of estimating fρ(x) in the case of unbounded outputs, i.e. when
the condition |y| < M is replaced by some rates of convergence of ρ(y|x)-probability tails of y. For example
we study the case of uniform (with respect to x) subgaussianness of y.

References

[1] L. Gyorfi, M. Kohler, A. Krzyzak, and H. Walk. A Distribution-Free Theory of Nonparametric Regression.

Springer Series in Statistics, 2002.
[2] F. Cucker and S. Smale. On the mathematical foundations of learning. Bulletin of AMS, 39:1-49, 2001.
[3] R. DeVore, G. Kerkyacharian, D. Picard, V. Temlyakov. Mathematical methods for supervised learning. IMI

Preprints 22:1-24, 2004.
[4] V. Temlyakov. Approximation in learning theory. IMI Preprints 05:1-49, 2005.
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Noise Variance Estimation, Difficulties and Applications
Nima Reyhani (Helsinki University of Technology)

(Joint work with Amaury Lendasse)

In field of machine learning or signal processing, usually we assume that the data set is contaminated
by some additive noise where the noise is independent to the design points. Let’s consider input variable
x ∈ [0, 1]M , for some fixed M , and the output or response y ∈ R. Suppose the relation between x and y
satisfies yi = g(xi)+ ε, where ε is the noise variable. We also assume |xi −xj| = O( 1

N ),∀i, j = 1, . . . ,N .
The problem is estimation of the Var{ε}.

Referring to the law of large numbers, we can state that, in general, the noisy signal, y, is more
gaussian/less smooth than the original signal g(.). Now, let’s consider the regression function g(.) ∈ A(λ),
where A(λ) is the class of functions having smoothness not less than λ. Also, assume that this class of
functions can be estimated without error by a class of regression functions belonging to G(λ), e.g. the
class of polynomials of some fixed order p. Then, the local residuals between the approximator belonging
to G(λ) show the noise at that point. Thus, a priori on the smoothness of the regression function can be
used to determine the noise signal.

Furthermore, we assume that the underlying function in an open ball B(ε) with ε→ 0 is locally smooth
(the second term in Taylor expansion is negligible). Therefore, again, given that the design points xi and xj

are sufficiently close to each other, we have 1
2 (g(xi) − g(xj))

2 → Var {ε}. The expression converges to the
noise variance under the condition mentioned in the beginning, if a similarity measure for the input space,
like kernels, be involved in the computations as well. Now, let’s turn into applications of such estimates.

In function approximation, the goal is to find the function F (x;w) which can model the data set
{xi, yi}N

i=1 by selecting the proper values of w. The goal is to minimize the functional Mean Square Error

(MSE), i.e. minw

∑N
i=1 (g(xi) − F (xi;w)). The MSE can be decomposed to ε2 + (g(x) − F (x;w))2.

Therefore, the noise variance estimate indicates to the minimum MSE that can be achieved from a given
data set without overfitting. We can apply the noise variance estimate for the purpose of model selection
in such a way that the MSE of trained model with fixed hyper-parameters, e.g. regularization parameter in
support vector regression (SVR) or the number of hidden neurons in Multi Layer Perceptron (MLP), should
not get below the noise variance. Moreover, one can apply the noise variance in order to implement variable
selection or variable scaling. Also, the noise variance provides a measure to define the predictability of a
data set. In other words, the noise variance indicates the possibility of finding an efficient model which best
fits to the given data set. Moreover, it can be applied as indicator for stopping the training/optimization
procedure.

In summary, first of all, based on the smoothness assumptions and independency between the noise
and design distribution, it is possible to derive estimators of the noise variance. Obviously, due to the
assumptions about the smoothness of the regression function, the estimation is biased, e.g. bias of kernel
width or, in general, bias of the set G(λ). Without any assumption about the regression function smoothness
it is impossible to estimate the noise variance. This makes the major difficulty in deriving the noise variance
estimations.

Further references:
The extended version of this work will be on http://wwww.cis.hut.fi/nreyhani/MFLT2.pdf by June
2006.
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Learning Surrogate Models for Optimization and Applications to Structure
Optimization

Manuel Samuelides (SUPAERO and ONERA/DTIM)
(Joint work with Antoine Merval, Transiciel and ONERA/DTIM)

Optimization is a field of great interest in aeronautical world, since a decrease of a plane weight both
allows a decrease in fuel consumption and an increase of fly range. Actually, such an optimization process
is often hard to solve as it possibly handles a very large number of variables. For instance, optimization of
a whole fuselage is an iterative, time consuming process solved as a bilevel optimization: indeed, as a direct
complete optimization process is out of scope as it would handle too many design variables, the structure to
be optimized is divided into elementary parts that are optimized independently under mechanical constraints
considering current internal loads and then put together to compute the load distribution in the new complete
structure. Nowadays, this process is run using analytical dedicated software to compute stability criteria
at local level and finite element analysis to compute load distribution in the structure at global level.
Moreover, as the constraints values are supplied by a black box model, their gradients have to be computed
by finite difference, increasing the number of calls to the software and consequently the time spent in local
optimization processes. The reduction of computational complexity is a key issue of engineering research. A
possible way to achieve this goal is to use surrogate models. Then computation time is significantly reduced
as constraint values are expressed as analytical approximate formulations instead of software computation.
Furthermore, gradients can be easily access by differentiating metamodel formulation.

In that framework, we used non linear response surface methodology (RSP) combined with DACE
(Design of Assisted Computer Experiments) to perform regression of static mechanical criteria that are
constraints of the local optimization problems. We chose Artificial Neural Networks as non linear models
for their universal approximation property. We encountered some difficulties to get a precise approximation
on the whole design space. Then, we show how the use of Mixture of Experts (MoE) methodology, which
is based upon design variable smoothness prior knowledge allows us to cope with this problem. So we
are able to build efficient surrogate models of local optimization constraints on two application cases that
are buckling and collapse of metallic and composite stiffened panels. We then embed successfully these
response surface models in local optimization benchmarks.

The drawbacks of our study is the prior knowledge that was used to divide the space into regions of
interest to perform elementary non linear regression (individual expert). For more complex optimization
problems with poor prior knowledge about constraints switching boundaries, an automatic method is ex-
pected to achieve the localization of experts. Several algorithms exist: fuzzy decision trees, local estimation
of approximation error using krieging or bootstrapped regressors. Future work will be dedicated to test these
methods on more complex design state (20 variables and more).

Further references:
The extended version of this work will be published in proceedings of 2nd AIAA Multidisciplinary Design
Optimization Specialist Conference.
This work is done in collaboration with Stéphane Grihon (Airbus, Engineering Structure Analysis). It is
supported by Vivace Project of European community.
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Geometry of Excursion Sets of the Non-stationary Elliptic Gaussian Parabolic Bending
Non-isotropic Scale Space Random Fields

Dina Anna Sudarsky-Guez (Universités Paris 13 et Paris 7)

I am interested in the geometric properties of real-valued nonstationary and nonisotropic (N, d) random
fields X = {X(t,Υ): t ∈ Sloc ⊂ ℜD,Υ ∈ SP ⊂ ℜN−D} defined on a parameter space Sp: a subset of
D-dimensional Euclidean space, for e.g.; D ≥ 2, d = 1. My first interest in these fields focuses on their
excursion sets: The set of points of the field with a value which exceeds a fixed threshold T ∈ ℜ,
AT = AT (X(t,Υ), Sloc × Sp) = {(t,Υ) ∈ Sloc × Sp ⊂ ℜN : X(t,Υ) ≥ T } = X−1[T ,∞)
and their geometric characteristics which are amenable to statistical analysis [4]. In particular the Differential
Topology (DT) or absolute Euler characteristics: Ψ = Ψ(AT (X(t,Υ), Sloc × Sp)) = ΣN

i=0(−1)iµi with
µi(X,AT ) = #Ci((X,AT )) and Ci = the critical points of X of index i;
as well as the relative Euler characteristics, Ψ = ΣN

k=0ΣJ∈Jk
Σk

i=0(−1)iµi(J) with Jk = ∂kSp, µi(J) =
#{t ∈ J,∇X(t) = 0}. The DT characteristics cannot see boundary events and are identical to the EC if
AT ∩ ∂Sp = ∅. The field X(t,Υ) is taken as a real-valued function of class c2, admissible relative to a
regular compact c2 domain with c2 boundary also called Morse function. The geometry of the stationary
and isotropic Gaussian random fields on Euclidean space and on manifolds has been well developed by Adler
[1, 2], and Adler and Taylor [3, 4] trough the relation P{supt∈Sloc

X(t) ≥ T } ≈ E{Ψ[X−1(t)[T ,∞)]} also
valid for nonstationary and nonisotropic NSNI random fields and for particular situations by Worsley [5].

The aim of the present work is to extend these rsesults to the statistical analysis of Ψ for a NSNI
smooth Gaussian and related random field excursion set on Sloc × Sp and especially to develop an explicit

expression for the expected Euler characteristic, E{ψ(AT (X(t,Υ), Sloc×Sp))}, to approximate the number
of local maxima of the NSNI random field with ψ(AT (X(t,Υ), Sloc × Sp)), and the distribution of the
global maximum of X(t,Υ), P{sup(t,Υ)∈Sloc×Sp

X(t,Υ) ≥ T } with E{ψ(AT (X(t,Υ), Sloc ×Sp))} above
high threshold T .

Part of the motivations for this comes fundamentally from applications to geo-statistics, astrophysics
(Guttorp and Sampson, 1992), statistics of medical images (Cao and Worsley, 1997–1999), to image
processing and analysis; as signal detection and extraction (Siegmund and Worsley, 1995; Shafie and
Worsley, 2003) which is in fact a well known statistical problem.

The purposes of this and pursuing researches are to establish the relation between the expected Euler
characteristic of the NSNI elliptic-Gaussian parabolic-bending non-isotropic scale space (D

2 (D + 5) − 1, d)
random field excursion sets above high T and P{sup(t,Υ)∈Sloc×Sp

X(t,Υ) ≥ T } and to a non lesser extent
to apply the method to the problem of searching for multiple sclerosis lesion (MS), evolution and structural
changes in brain white matter image sequences obtained by magnetic resonance imaging (MRI).
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Learning Near-optimal Policies with Bellman-Residual Minimization Based Fitted
Policy Iteration and a Single Sample Path

Csaba Szepesvári (MTA SZTAKI, Hungary)
(Joint work with András Antos, MTA SZTAKI, and Remi Munos, Ecole Polytechnique)

Consider the problem of optimizing a controller for an industrial environment. In many cases the data
is collected on the field by running a fixed controller and then taken to the laboratory for optimization. The
goal is to derive an optimized controller that improves upon the performance of the controller generating
the data.

Here we are interested in the performance improvement that can be guaranteed given a finite amount
of data. In particular, we are interested in how performance scales as a function of the amount of data
available. We study Bellman-residual minimization based policy iteration assuming that the environment
is stochastic and the state is observable and continuous valued. The algorithm considered is an iterative
procedure where each iteration involves solving a least-squares problem, similar to the Least-Squares Policy
Iteration algorithm of Lagoudakis and Parr [1]. However, whilst Lagoudakis and Parr considered the so-
called least-squares fixed-point approximation to avoid problems with Bellman-residual minimization in the
case of correlated samples, we modify the original Bellman-residual objective.

The main conditions of our results can be grouped into three parts: Conditions on the system, conditions
on the trajectory (and the behaviour policy used to generate the trajectory) and conditions on the algorithm.
The most important conditions on the system are that the state space should be compact, the action
space should be finite and the dynamics should be smooth in a sense to be defined later. The major
condition on the trajectory is that it should be rapidly mixing. This mixing property plays a crucial role
in deriving a PAC-bound on the probability of obtaining suboptimal solutions in the proposed Bellman-
residual minimization subroutine. The major conditions on the algorithm are that an appropriate number of
iterations should be used and the function space used should have a finite capacity and be sufficiently rich at
the same time. It follows that these conditions, as usual, require a good balance between the power of the
approximation architecture (we want large power to get good approximation of the action-value functions of
the policies encountered during the algorithm) and the number of samples: If the power of the approximation
architecture is increased the algorithm will suffer from overfitting, as it also happens in supervised learning.
Although the presence of the tradeoff between generalization error and model complexity should be of no
surprise, this tradeoff is somewhat underrepresented in the reinforcement literature, presumably because
most results where function approximators are involved are asymptotic.

Further references:
The extended version of this work is available on
http://www.sztaki.hu/~szcsaba/research/onlinepubs.htm.
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Online Gradient Descent Learning Algorithms
Yiming Ying (University College London)

(Joint work with Massimiliano Pontil)

Let X be a set in R
d, Y ⊆ R, NT := {1, . . . , T} and z := {zt = (xt, yt) : t ∈ NT } be a set of

random samples independently distributed according to an unknown probability ρ on X × Y . We consider
the least-square online gradient descent algorithm in a real reproducing kernel Hilbert space HK without
regularization, that is,

ft+1 = ft − ηt(ft(xt) − yt)Kxt , for t ∈ NT

where f1 ∈ HK is a given function (typically f1 = 0). Our primary goal is to understand the statistical
behavior of the last output fT+1. In particular, we show how the choice of the step sizes in the algorithm
affects the error rates.

We present a novel capacity independent approach which allows us to derive error bounds and conver-
gence results for the above algorithm. Explicit error rates are given in terms of the choice of the step sizes
which turn out to be competitive with the state-of-art rates for both offline and online regularized learning
algorithms.

Further references:
The extended version of this work is available on
http://www.cs.ucl.ac.uk/staff/Y.Ying/publication.html.
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Complexity of Tetris-Packing Problem
Gilbert Young (California State Polytechnic University)

(Joint work with P. To)

Tetris is a classic video game invented by Alexey Pazhitnov, a Russian mathematician, two decades ago.
A player starts out with an empty vertical game board divided into unit squares. The game pieces consist
of an endless random sequence of tetrominoes, or shapes made up of four unit squares arranged in various
ways. As each piece falls, players must slide them left or right or rotate them, in order to form complete
rows of unit blocks. Completed rows of unit grid squares are eliminated from the stack and a new empty
row is created on top. The game ends when the height of the block stack prevents placing new pieces.
Scoring is based on the number of rows eliminated. Breukelaar et al. recently formalized the game into
the Tetris Problem, which they proved NP-hard. Their version allowed for game boards of arbitrary initial
configuration, width, and height.

We present a new class of packing problems called the Tetris-Packing Problem (TPP). A problem in-
stance is a 5-tuple G = (β, (w, h), (P1 , P2, · · · , Pp), (S1, S2, · · · , Ss), u), where β is the initial configuration
of the game board (empty or arbitrary), (w, h) specifies the dimensions of the game board, (P1, P2, · · · , Pp)
is a sequence of p game pieces each belonging to the shape set S1, S2, · · · , Ss, and u specifies if the top of
the board is open or closed (whether pieces can be extended partially beyond its top). Unlike the game of
Tetris, TPP has no line elimination. We prove that TPP is generally NP-hard with the objective function
of number of filled grid squares.

Further references:
The extended version of this work is available on the following URL:
http://www.csupomona.edu/~gsyoung/MFLT06.htm.
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List of restaurants (lunch breaks from 12:30 to 14:30)

We list here some restaurants around Ecole normale supérieure. There are plenty of others! But first, let’s
talk about serious issues: drinking venues. Gilles’ favorite places are place de la contrescarpe, two blocks
away from Ecole normale. They have happy hours from 6 to 8pm.

Ice-creams, now. Since we will have a sunny and warm weather, Alberto’s ice creams (located in the orange
area on the map) are highly recommended.

You might want to taste some French food, too. Then, take the restaurants classified in “good (French)
food” and “fine French food”. For tighter budgets, in principle, you could eat at Mc Donald’s (crossroad of
rue Soufflot and boulevard Saint-Michel) – but consider rather the first two series of restaurants below.

There are two main areas (green and orange streets on the map), where you can find all types of food.
Some other more isolated locations are indicated by numbers.

The codes on the map are the following: one or several letters R, S, B, are followed by a number. The
letters indicate the type of places considered (brasseries, restaurants, sandwiches). The number is used for
the correspondance between the map and the list below. A * symbol indicates that there are several places
around the blue circle.
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Name Map Street Type of food

Fast and unexpensive food (5 euros)

Le boulanger de Monge S12 rue Monge sandwiches, breads, and cakes

La boulangerie moderne Green rue des fossés saint-Jacques sandwiches, breads, and cakes

Les Panetons Orange
rue Mouffetard, crossroads rue de
l’arbalète

sandwiches and cakes

Libanais Green rue saint-Jacques
Lebanese sandwiches and
other specialties

La muraille du Phenix Green rue saint-Jacques Chinese food

Au petit Grec Orange
rue Mouffetard, between rue du
pot de fer and rue Calvin

sandwiches and crepes
(pancakes)

Crêpes à Gogo BRS13* rue Soufflot
sandwiches and crepes
(pancakes)

Medium prices & French food (7–13 euros)

La maison de Verlaine Orange rue Descartes complete menu for 10 euros

Cave Bourgogne Orange
rue Mouffetard, between rue
Calvin and rue Censier

brasserie, big salades, wine
tasting

Pain quotidien Orange
rue Mouffetard, between rue
Calvin and rue Censier

brasserie

L’Aster Café B2 rue Claude Bernard brasserie

La fontaine de la mouffe Orange rue du pot de fer complete menu for 10 euros

Le comptoir du Panthéon BRS13* rue Soufflot brasserie

L’orée du parc B6* rue de l’abbé de l’épée brasserie

Au bon coin B17 rue de la collégiale brasserie

Le pot de terre Orange rue du pot de fer salades, casual menus

Le Vauquelin R3 rue Vauquelin restaurant

Le Waikiki Green rue d’Ulm brasserie

L’écurie R14
rue de la montagne
sainte-Geneviève

complete menu for less than
12 euros, credit cards not
accepted

Medium prices & international food (7–13 euros)

Les 5 saveurs d’Anada R10 rue du Cardinal Lemoine vegetarian food only

Thai Green rue des fossés saint-Jacques Thai food

Japanese Green rue des fossés saint-Jacques Japanese food

Sree Krishna Orange rue Descartes Indian food

Pasta e fagioli R1 rue Claude Bernard Italian food

La Comedia R8 rue Monge Italian food
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Good (French) food (13–20 euros)

L’esperluette B5 rue Gay-Lussac brasserie, French food

Le vin sobre R4 rue des feuillantines French food, wine tasting

La fourmi ailée R23 rue du fouarre
French food, some vegetarian
plates, cakes, and pastries

Le Mauzac B6* rue de l’abbé de l’épée French food, wine tasting

Les bugnes Orange rue du pot de fer French food

La papillotte Orange rue du pot de fer French food

La brouette Orange rue Descartes French food

Le porte-pot R22 rue Boutebrie French food, good wines

L’huître et demie Orange
rue Mouffetard, between rue
Calvin and rue du pot de fer

fish, seafood

Polidor B21 rue Monsieur-le-Prince one of Paris’ oldest bistros

Au p’tit Cahoua R16 boulevard Saint-Marcel
Morrocan food (Patricia’s best
choice!)

Le Perraudin Green rue saint-Jacques French food

Terranova, Terra nera Green rue des fossés saint-Jacques
two separate restaurants with
approximatively the same
menu, nice Italian food

L’auberge du vigneron Orange rue du pot de fer French food

Fine French food (>20 euros)

Le petit Prince R19 rue Lanneau

Les papilles R9 rue Gay-Lussac French food, good wines

La truffière Orange
rue Blainville, close to place de la
Contrescarpe

Au refuge du passé R11 rue du fer à moulin

Les bouchons du 5ème R24 rue de l’hôtel Colbert vegetarian meals available

Chez Alexis et Daniel R15 rue d’Arras

Les ronchons R20 Quai de la tournelle

La table corse R7 rue Tournefort Corsican food

Les fontaines BRS13 rue Soufflot

Au petit Marguery R18 boulevard Port-Royal
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Practical information & computer rooms

Phone numbers +33 and without the first 0 if you call from abroad

Lodge (entrance) 01 44 32 30 00

Lara Morise (office) 01 44 32 31 12

Gilles Stoltz (cell phone – office) 06 62 13 55 37 – 01 44 32 32 77

Patricia Reynaud-Bouret (cell phone – office) 06 73 85 97 56 – 01 44 32 20 67

We enclose a simplified map of Ecole normale supérieure (last page of the booklet), which shows

– the conference room (direct entrance may be closed at some times, then, simply use the lodge
entrance),

– the places where the poster session will take place: inner courtyard in case of fine weather, rotonde
and salle club in case of rain,

– the location of the buffets, in the patio,

– the three different computer rooms (more on them below).

Computer rooms

#0 Dussane room wifi equipment, no login, no password,

IP address must be automatically allocated (dhcp mode)

#1 older building, salles S et T login is mflt2, password is mflt3105

Quite a way to go there, but you will find a quiet (though somewhat dark) place – nice for

writing long emails! Level -1, in the “passage saumon” – students also use these computer facilities

#2 main building, ground floor login is mflt2, password is mflt3105

For quick email checking only, do not stay too long a time, this computer room is the main students’ one

#3 29, rue d’Ulm login is formxy where xy is the number of the machine, password is formatio

Available after Thursday June 1, at 14:00, and only from 9:00 to 18:30 (not at nights)

Miscellaneous

International phone cards may be bought at the post office (crossroads of rue d’Ulm and rue Claude Bernard)
and in tobacconist’s shops.

Taxis may be called at 01 41 27 66 99 (English spoken) or ordered online at http://www.taxis-g7.com.
There is also a cab stand in rue Soufflot.
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