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K—-armed stochastic bandits

Framework and statement of regret bounds



K probability distributions v1, ..., vk

with expectations u1, ..., uk — ¥ = max fis
ae[K]

At each round t =1,2,...,

1. Statistician picks arm A; € [K]

2. She gets a reward Y; drawn according to va,
3. This is the only feedback she receives

— Exploration—exploitation dilemma
estimate the v, vs. get high rewards Y}

Pseudo-regret:

T T
Rr=> (v —E[Vi]) =Y (1 — E[ual)
t=1 t=1
= Z ( :u - Ma Z]I{At a} ) Z (N* - Na) E[Na(T)}
a€[K] a€[K]




Setting
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Model: v, ..., vk are distributions over [0, 1]

A classical strategy: UCB [upper confidence bound]
Auer, Cesa-Bianchi and Fisher [2002]

~ 2Int
For t > K, pick  Agp1 € argmax { 11a(t) + zhnt
ac[K] Na(t)

Exploitation: cf. empirical mean fi,(t)

Exploration: cf. 1/2Int/Na(t) favors arms a not pulled often
Two types of regret bounds

L 8InT
— Distribution-dependent bound: Rt < Z —
i< it A

— Distribution-free bound: sup Rr SVBKTInT

Vls.-sVK
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Model: v1,...,vk are distributions over [0, 1]

Optimal bounds read as follows:

Distribution-free bound: sup Rt at best ©(VKT)

V1 VK
Upper bound K + 45V KT for the MOSS strategy by Audibert and Bubeck [2009]
Lower bound (1/20)v' KT by Auer, Cesa-Bianchi, Freund and Schapire [2002]

* —_
Distribution-dependent bound: Z uiua* INnT—0(nInT)

A pia < Kinf(yaaﬂ )

where Kine(va, p*) = inf{KL(va, v}) : E(v}) > p*}

References: Lai and Robbins [1985], Burnetas and Katehakis [1996], Honda and
Takemura [2015], Garivier, Ménard and Stoltz [2019], among others

Both bounds can be achieved simultaneously!

By combining the MOSS strategy and the KL-UCB strategy by Cappé et al. [2013];
see the KL-UCB-switch strategy by Garivier, Hadiji, Ménard, Stoltz [submitted]



Proofs of the regret lower bounds on [0, 1]

(At least, high-level ideas...)



Regret lower bounds
Proof ideas for the lower bounds

Strategy ¢:  maps Hy = (Y1,..., Y:) = Arp1 = ¥e(Hy)

Change of measure: compare distributions of Ht
under v = (v1,...,vk) vs. V' = (V],..., V)

Fundamental inequality: performs an implicit change of measure
Reference: Lai and Robbins [1985], Auer et al. [2002], Garivier et al. [2019]

For all Z taking values in [0,1] and o(H7)-measurable,

> B Na(T)] KL(va, 1) = KL(BET, PIIT)
ac[K] a

> KI(E,[Z], E,[2])

where kl(p, g) = KL(Ber(p), Ber(q))

Later use: v/ only differs from v at some a, with Z = N,(T)/T



Regret lower bounds
00@0000

Distribution-free lower bound, for distributions over [0, 1]

Problem v, = (Ber(1/2))a€[K] Vs, vy = (Ber(1/2 +€]I{a:k})>

a€[K]
Rr 23" ey, [No(T)] = Te (1 - By, [Ne(T)/T])
aF#k

Thus, suzp R > 52?0?1) kne]?l?] Ts(l — EZk[Nk(T)/TD

Fundamental inequality, with k € [K] such that Ey [N((T)/T] < 1/K

+ Pinsker's inequality with Z = N(T)/T

2
2(By, [NK(T)/T] N(T)/T])" < KI(By, (2], By, [2))

— By, [Nk(T)
< By, [N(T)] KL(Ber(1/2), Ber(1/2 + ¢))

<T/K =—1In(1—4e2)/2 < 2.5¢2

Thus, supRr > sup Te(l—1/K—¢e\/1.25T/K) > O(VKT)

v €€(0,1/4)



000@000
Distribution-dependent bound: R7 = Z (M* — ua) EZ[N‘-,(T)}
a€[K]
We lower bound each IEK[Na(T)} for a fixed a with p, < p*; let v} with p, > p*

/ /
Problems v = (va)ack) Vs v/ = (Y1, Va1,V Vat1, -+, VK)

Fundamental inequality
on “good"” strategies Va € (0,1], E[Nk(T)] = o(T®) for subopt. k
& lower bound on kI Ki(p,q) > (1 —p)In(1/(1 - q)) —In2
=o(1)
—
By [No(T)] KL(va, v5) > KI (B [No(T)/ T], B [No(T)/T])

> In(1/(1 — B [N(T)/ 7))

Since B,/ [Na(T)/T] =1=> E, [Ne(T)/T] 21— T*F, we get:
k#a

Ey [Na(T)| KL(va,vh) 2 In T



Regret lower bounds
[ole)eleY Tole}

Distribution-dependent bound: Rt = Z (u* — ua) EZ[Na(T)}
ac[K]

We lower bound each IEZ[Na(T)} for a fixed a with s < p*; let v} with p, > p*
EZ[NQ(T)] KL(va, V)

Ey [Na(T)] KL(va,v}) 2 In T1™%,  that s, T >l-a—1
n
Therefore, “good” strategies can ensure, at best:
liminf By [No(T)] su 1 « L
Toe T 7 e KL ) King(var 1)

By summing over suboptimal arms:

W — a

.. . Rt
liminf — >
Kinf(va, 11*)

T—oo InT
ac[K]
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How do we prove the fundamental inequality?

For all Z taking values in [0,1] and o(H7)-measurable,

> By [Na(T)] KL(va, ) = KL(BET, PIT) > KI(E,[Z], B, [2])
ac[K]

Equality: chain rule for KL He = (Y1,...,Y:) = Aep1 = ¥e(Hy)

and Yt+1 | Ht ~ VAt+1

KL(PH, IP”;,*“) = KL(PH, PI) + By [KL(va,,y, Va,,,)]

t Ht
KL(PH ]P +E Z Kl— Va> ]I{At+1 a}
ac[K]

Conclude by induction



Regret lower bounds
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How do we prove the fundamental inequality?
For all Z taking values in [0,1] and o(H7)-measurable,

Z Ez[Na(T)] KL(”@”Z;) = KL(]P)gTv PI;/T) > kl(Ez[Zla Ez’[z])
a€[K]

Inequality: data-processing inequality KL(PX,QX) < KL(P,Q)

Firstt  KL(BHT, P/IT) > KL(PZ, PZ) = KL(PZ ® m, PZ ® m)

a with m the Lebesgue measure on [0,1]

Second:  KL(PZ @m, PZ @m) > KL((PZ & m)", (P2 @ m)™)
v v v v

=Ber(E, [Z])
with E = {(z,x) 1z < x}, yielding
]P’Z®m(E):/]I dm(x) dPZ( ):/ dPZ(z) = E,[Z]
v {z<x} x)dy\z zdry\z V|

| call the second application “Ménard’s lemma” (see Garivier, Ménard and Stoltz, 2019)



Adaptation to the range
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Adaptation to the range



Adaptation to the range
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Bounded but unknown range
Reference for the final part of this talk: Hadiji and Stoltz [2020]

That is, model: D = U Dmm
m,M:m<M

where Dy,  set of distributions v over a given interval [m, M|

What changes?

Same distribution-free lower bound:
©((M — m)VKT) by rescaling

Any worsening due to ignorance of the range? No! (or almost)

Different distribution-dependent lower bound:
R7/InT — 400 as Kinf(va, p*, D) =0
But any rate > In T may be achieved



Adaptation to the range
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Focus on the UCB strategy

With a known range [ITI, M], reads (knowledge of the range is key!)

2Int
Aii1 € argmax < fa(t) + (M —m
t+1 ag[K] {Ma( ) ( ) Na(t)}

Extension to an unknown range:

-~ (1)
Aey1 € argmax < fa(t) + 4/ —
o ac[K] { a( ) Na(t)

where Int < ¢(t) < t

Guarantee: for all bandit problems vy, ..., vk in D,

R
lim sup T <4

o(T)

®yep = @ is the corresponding distribution-dependent rate for adaptation to the range



Adaptation to the range
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Distribution-free rate for adaptation to the range

Pfree : N — (0,400) such that
Vm < M,
VVl, o, UK in 'Dmy/\//,
VT > 1, R < (M — m)®free(T)
By the lower bound proved for [m, M] = [0, 1]:
Opree(T) = O(VKT)

AdaHedge on estimated payoffs + mixing achieves
(Dfree(T) ~ 7(M — m)\/ TKIn K

Reference for AdaHedge: Cesa-Bianchi, Mansour, Stoltz [2005, 2007] and De Rooij,
van Erven, Griinwald, Koolen [2014]

Note: VIn K shaved off (with different strategy) when M is known
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What about simultaneous bounds?
Reminder for known range: In T and +/T rates for regret upper bounds
Theorem: If ®gee(T) < T then Dy, (T) X Prree(T) = O(T)
Example: ®fee(T) = @(ﬁ) now forces ®yep(T) > @(ﬁ)

— We finally exhibit some price for adaptation!

AdaHedge on estimated payoffs + mixing simultaneously achieves
(Dfree(T) = e(ﬁ) and cDdep(T) = @(ﬁ)
Analysis heavily based on Seldin and Lugosi [2017]

Actually, all pairs Pgee(T) = O(T*) and Pgep(T) = O(T17%)
with @ € [1/2, 1) may be achieved, by setting the mixing factor properly

Next page: proof of the theorem above, consisting in showing
(Pfree(T)/T) Ey [Na(T)] 2 cst



Adaptation to the range
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We lower bound each IEK[NB(T)} for a fixed a with p, < pu*

Problems v, / only differing at v, = (1 — €)va + €0, 4¢/c
such that v, 1§, 1o/ and pf > p*
Foda_ 1 sothat  KL(va,v)) =E,[Inf]~¢
dvl, 1—¢
Fundamental inequality and ki(p,q) Z (1 —p)In(1/(1 - q))

e =o(1)

—— e N
E, [Na(T)] KL(va, ) > kI(EZ[Na(T)/T], E, [Na(T)/TD

2 In(1/(1-Ey [N,(T)/T]))

Indeed: (w* — pa) Eg[Na(T)] SR S(M—m)®gee(T) K T
Similarly: — In(1/(1 = By [N(T)/T])) 2 In(€' ®ree( T) /(Te))
As: (1, — p*) (T —E, [Na(T)D < Rr(V) < (M + /e — m) pee(T)

Picking & ~ ®gee(T)/T: ((Dfree( T)/ T) Ez[Na( T)] z cst



Adaptation to the range
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This (technical) proof shows that the main issue is the lack of an
upper end M on the range; the lower end m did not change

When M is known, adaptation to m is not so difficult

The DMED strategy by Honda and Takemura [2015] gets the
optimal In T /KCins < +oc distribution-dependent bound

A variation on the INF strategy by Audibert and Bubeck [2009]
gets Oee(T) = O(VKT)

On the contrary, the knowledge of m comes with no advantage:

All impossibility results of this section still hold!
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