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K–armed stochastic bandits

Framework and statement of regret bounds
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K probability distributions ν1, . . . , νK
with expectations µ1, . . . , µK −→ µ? = max

a∈[K ]
µa

At each round t = 1, 2, . . .,
1. Statistician picks arm At ∈ [K ]
2. She gets a reward Yt drawn according to νAt

3. This is the only feedback she receives

−→ Exploration–exploitation dilemma
estimate the νa vs. get high rewards Yt

Pseudo-regret:

RT =
T∑
t=1

(
µ? − E[Yt ]

)
=

T∑
t=1

(
µ? − E[µAt ]

)
=
∑
a∈[K ]

((
µ? − µa

)
E

[
T∑
t=1

I{At=a}

])
=
∑
a∈[K ]

(
µ? − µa

)
E
[
Na(T )

]
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Model: ν1, . . . , νK are distributions over [0, 1]

A classical strategy: UCB [upper confidence bound]
Auer, Cesa-Bianchi and Fisher [2002]

For t > K , pick At+1 ∈ arg max
a∈[K ]

{
µ̂a(t) +

√
2 ln t

Na(t)

}
Exploitation: cf. empirical mean µ̂a(t)

Exploration: cf.
√

2 ln t/Na(t) favors arms a not pulled often

Two types of regret bounds

– Distribution-dependent bound: RT .
∑

a:µa<µ?

8 lnT

µ? − µa

– Distribution-free bound: sup
ν1,...,νK

RT .
√

8KT lnT
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Model: ν1, . . . , νK are distributions over [0, 1]

Optimal bounds read as follows:

Distribution-free bound: sup
ν1,...,νK

RT at best Θ
(√

KT
)

Upper bound K + 45
√
KT for the MOSS strategy by Audibert and Bubeck [2009]

Lower bound (1/20)
√
KT by Auer, Cesa-Bianchi, Freund and Schapire [2002]

Distribution-dependent bound:
∑

a:µa<µ?

µ? − µa
Kinf(νa, µ?)

lnT −Θ(ln lnT )

where Kinf (νa, µ
?) = inf

{
KL(νa, ν′a) : E(ν′a) > µ?

}
References: Lai and Robbins [1985], Burnetas and Katehakis [1996], Honda and

Takemura [2015], Garivier, Ménard and Stoltz [2019], among others

Both bounds can be achieved simultaneously!
By combining the MOSS strategy and the KL-UCB strategy by Cappé et al. [2013];

see the KL-UCB-switch strategy by Garivier, Hadiji, Ménard, Stoltz [submitted]
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Proofs of the regret lower bounds on [0, 1]

(At least, high-level ideas...)
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Proof ideas for the lower bounds

Strategy ψ: maps Ht = (Y1, . . . ,Yt) 7→ At+1 = ψt(Ht)

Change of measure: compare distributions of HT

under ν = (ν1, . . . , νK ) vs. ν ′ = (ν ′1, . . . , ν
′
K )

Fundamental inequality: performs an implicit change of measure
Reference: Lai and Robbins [1985], Auer et al. [2002], Garivier et al. [2019]

For all Z taking values in [0, 1] and σ(HT )–measurable,∑
a∈[K ]

Eν
[
Na(T )

]
KL(νa, ν

′
a) = KL

(
PHT
ν , PHT

ν′
)

> kl
(
Eν [Z ], Eν′ [Z ]

)
where kl(p, q) = KL

(
Ber(p),Ber(q)

)
Later use: ν ′ only differs from ν at some a, with Z = Na(T )/T
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Distribution-free lower bound, for distributions over [0, 1]

Problem ν0 =
(
Ber(1/2)

)
a∈[K ]

vs. νk =
(

Ber
(
1/2 + ε I{a=k})

)
a∈[K ]

RT
def
=
∑
a 6=k

εEνk
[
Na(T )

]
= Tε

(
1− Eνk

[
Nk(T )/T

])
Thus, sup

ν
RT > sup

ε∈(0,1)
max
k∈[K ]

Tε
(

1− Eνk
[
Nk(T )/T

])

Fundamental inequality, with k ∈ [K ] such that Eν0

[
Nk(T )/T

]
6 1/K

+ Pinsker’s inequality with Z = Nk(T )/T

2
(
Eνk
[
Nk(T )/T

]
− Eν0

[
Nk(T )/T

])2
6 kl

(
Eν0

[Z ], Eνk [Z ]
)

6 Eν0

[
Nk(T )

]︸ ︷︷ ︸
6T/K

KL
(
Ber(1/2), Ber(1/2 + ε)

)︸ ︷︷ ︸
=− ln(1−4ε2)/2 6 2.5ε2

Thus, sup
ν

RT > sup
ε∈(0,1/4)

Tε
(
1− 1/K − ε

√
1.25T/K

)
> Θ

(√
KT
)
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Distribution-dependent bound: RT =
∑
a∈[K ]

(
µ? − µa

)
Eν
[
Na(T )

]
We lower bound each Eν

[
Na(T )

]
for a fixed a with µa < µ?; let ν′a with µa > µ?

Problems ν = (νa)a∈[K ] vs. ν ′ = (ν1, . . . , νa−1, ν
′
a, νa+1, . . . , νK )

Fundamental inequality
on “good” strategies ∀α ∈ (0, 1], E[Nk (T )] = o(Tα) for subopt. k

& lower bound on kl kl(p, q) > (1− p) ln
(
1/(1− q)

)
− ln 2

Eν
[
Na(T )

]
KL(νa, ν

′
a) > kl

( =o(1)︷ ︸︸ ︷
Eν
[
Na(T )/T

]
, Eν′

[
Na(T )/T

])
& ln

(
1/
(
1− Eν′

[
Na(T )/T

]))
Since Eν′

[
Na(T )/T

]
= 1−

∑
k 6=a

Eν′
[
Nk (T )/T

]
& 1− Tα−1, we get:

Eν
[
Na(T )

]
KL(νa, ν

′
a) & lnT 1−α
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Distribution-dependent bound: RT =
∑
a∈[K ]

(
µ? − µa

)
Eν
[
Na(T )

]
We lower bound each Eν

[
Na(T )

]
for a fixed a with µa < µ?; let ν′a with µa > µ?

Eν
[
Na(T )

]
KL(νa, ν

′
a) & lnT 1−α, that is,

Eν
[
Na(T )

]
KL(νa, ν′a)

lnT
& 1− α→ 1

Therefore, “good” strategies can ensure, at best:

lim inf
T→∞

Eν
[
Na(T )

]
lnT

> sup
ν′a:µ′a>µ

?

1

KL(νa, ν ′a)
def
=

1

Kinf(νa, µ?)

By summing over suboptimal arms:

lim inf
T→∞

RT

lnT
>
∑
a∈[K ]

µ? − µa
Kinf(νa, µ?)
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How do we prove the fundamental inequality?

For all Z taking values in [0, 1] and σ(HT )–measurable,∑
a∈[K ]

Eν
[
Na(T )

]
KL(νa, ν

′
a) = KL

(
PHT
ν , PHT

ν′
)
> kl

(
Eν [Z ], Eν′ [Z ]

)

Equality: chain rule for KL Ht = (Y1, . . . ,Yt) 7→ At+1 = ψt(Ht)

and Yt+1 |Ht ∼ νAt+1

KL
(
PHt+1
ν , PHt+1

ν′
)

= KL
(
PHt
ν , P

Ht
ν′
)

+ Eν
[
KL(νAt+1 , ν

′
At+1

)
]

= KL
(
PHt
ν , P

Ht
ν′
)

+ Eν

∑
a∈[K ]

KL(νa, ν
′
a) I{At+1=a}


Conclude by induction
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How do we prove the fundamental inequality?

For all Z taking values in [0, 1] and σ(HT )–measurable,∑
a∈[K ]

Eν
[
Na(T )

]
KL(νa, ν

′
a) = KL

(
PHT
ν , PHT

ν′
)
> kl

(
Eν [Z ], Eν′ [Z ]

)

Inequality: data-processing inequality KL(PX ,QX ) 6 KL(P,Q)

First: KL
(
PHT
ν , PHT

ν′
)
> KL

(
PZ
ν , PZ

ν′
)

= KL
(
PZ
ν ⊗m, PZ

ν′ ⊗m
)

with m the Lebesgue measure on [0, 1]

Second: KL
(
PZ
ν ⊗m, PZ

ν′ ⊗m
)
> KL

((
PZ
ν ⊗m

)IE︸ ︷︷ ︸
=Ber(Eν [Z ])

,
(
PZ
ν′ ⊗m

)IE)
with E =

{
(z, x) : z 6 x

}
, yielding

PZ
ν ⊗ m(E) =

∫
I{z6x} dm(x) dPZ

ν (z) =

∫
z dPZ

ν (z) = Eν [Z ]

I call the second application “Ménard’s lemma” (see Garivier, Ménard and Stoltz, 2019)
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Adaptation to the range
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Bounded but unknown range
Reference for the final part of this talk: Hadiji and Stoltz [2020]

That is, model: D =
⋃

m,M:m<M

Dm,M

where Dm,M set of distributions ν over a given interval [m,M]

What changes?

Same distribution-free lower bound:

Θ
(
(M −m)

√
KT
)

by rescaling

Any worsening due to ignorance of the range? No! (or almost)

Different distribution-dependent lower bound:

RT/ lnT → +∞ as Kinf(νa, µ
?,D) = 0

But any rate � lnT may be achieved
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Focus on the UCB strategy

With a known range [m,M], reads (knowledge of the range is key!)

At+1 ∈ arg max
a∈[K ]

{
µ̂a(t) + (M −m)

√
2 ln t

Na(t)

}

Extension to an unknown range:

At+1 ∈ arg max
a∈[K ]

{
µ̂a(t) +

√
ϕ(t)

Na(t)

}
where ln t � ϕ(t)� t

Guarantee: for all bandit problems ν1, . . . , νK in D,

lim sup
RT

ϕ(T )
< +∞

Φdep = ϕ is the corresponding distribution-dependent rate for adaptation to the range
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Distribution-free rate for adaptation to the range

Φfree : N→ (0,+∞) such that

∀m < M,
∀ν1, . . . , νK in Dm,M ,
∀T > 1, RT 6 (M −m)Φfree(T )

By the lower bound proved for [m,M] = [0, 1]:

Φfree(T ) > Θ
(√

KT
)

AdaHedge on estimated payoffs + mixing achieves

Φfree(T ) ≈ 7(M −m)
√
TK lnK

Reference for AdaHedge: Cesa-Bianchi, Mansour, Stoltz [2005, 2007] and De Rooij,

van Erven, Grünwald, Koolen [2014]

Note:
√

lnK shaved off (with different strategy) when M is known
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What about simultaneous bounds?
Reminder for known range: lnT and

√
T rates for regret upper bounds

Theorem: If Φfree(T )� T then Φdep(T )× Φfree(T ) > Θ(T )

Example: Φfree(T ) = Θ
(√

T
)

now forces Φdep(T ) > Θ
(√

T
)

→ We finally exhibit some price for adaptation!

AdaHedge on estimated payoffs + mixing simultaneously achieves

Φfree(T ) = Θ
(√

T
)

and Φdep(T ) = Θ
(√

T
)

Analysis heavily based on Seldin and Lugosi [2017]

Actually, all pairs Φfree(T ) = Θ(Tα) and Φdep(T ) = Θ(T 1−α)

with α ∈ [1/2, 1) may be achieved, by setting the mixing factor properly

Next page: proof of the theorem above, consisting in showing(
Φfree(T )/T

)
Eν
[
Na(T )

]
& cst
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We lower bound each Eν
[
Na(T )

]
for a fixed a with µa < µ?

Problems ν, ν ′ only differing at ν ′a = (1− ε)νa + ε δµa+c/ε

such that νa ⊥ δµa+c/ε and µ′a > µ?

f =
dνa

dν′a
=

1

1− ε
so that KL(νa, ν′a) = Eνa [ln f ] ≈ ε

Fundamental inequality and kl(p, q) & (1− p) ln
(
1/(1− q)

)

Eν
[
Na(T )

] ≈ε︷ ︸︸ ︷
KL(νa, ν

′
a) > kl

( =o(1)︷ ︸︸ ︷
Eν
[
Na(T )/T

]
, Eν′

[
Na(T )/T

])
& ln

(
1/
(
1− Eν′

[
Na(T )/T

]))
Indeed: (µ? − µa)Eν

[
Na(T )

]
6 RT (ν) 6 (M −m) Φfree(T )� T

Similarly: ln
(

1/
(
1− Eν′

[
Na(T )/T

]))
& ln

(
c ′Φfree(T ) /(Tε)

)
As: (µ′a − µ?)

(
T − Eν′

[
Na(T )

])
6 RT (ν′) 6 (M + c/ε−m) Φfree(T )

Picking ε ∼ Φfree(T )/T :
(
Φfree(T )/T

)
Eν
[
Na(T )

]
& cst
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This (technical) proof shows that the main issue is the lack of an
upper end M on the range; the lower end m did not change

When M is known, adaptation to m is not so difficult

The DMED strategy by Honda and Takemura [2015] gets the
optimal lnT/Kinf < +∞ distribution-dependent bound

A variation on the INF strategy by Audibert and Bubeck [2009]
gets Φfree(T ) = Θ

(√
KT
)

On the contrary, the knowledge of m comes with no advantage:

All impossibility results of this section still hold!
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