Adaptation to the range in *K*-armed stochastic bandits

Gilles Stoltz

Laboratoire de mathématiques d'Orsay

Joint work with Hédi Hadiji, now at University of Amsterdam

K-armed stochastic bandits

Framework and statement of regret bounds

K probability distributions ν_1, \ldots, ν_K with expectations μ_1, \ldots, μ_K

$$\longrightarrow \mu^* = \max_{\mathbf{a} \in [K]} \mu_{\mathbf{a}}$$

At each round $t = 1, 2, \ldots$

- 1. Statistician picks arm $A_t \in [K]$
- 2. She gets a reward Y_t drawn according to ν_{A_t}
- 3. This is the only feedback she receives
- \longrightarrow Exploration–exploitation dilemma estimate the ν_a vs. get high rewards Y_t

Pseudo-regret:

$$R_{T} = \sum_{t=1}^{T} (\mu^{\star} - \mathbb{E}[Y_{t}]) = \sum_{t=1}^{T} (\mu^{\star} - \mathbb{E}[\mu_{A_{t}}])$$
$$= \sum_{a \in [K]} \left((\mu^{\star} - \mu_{a}) \, \mathbb{E}\left[\sum_{t=1}^{T} \mathbb{I}_{\{A_{t} = a\}} \right] \right) = \sum_{a \in [K]} (\mu^{\star} - \mu_{a}) \, \mathbb{E}[N_{a}(T)]$$

Model: ν_1, \ldots, ν_K are distributions over [0,1]

A classical strategy: UCB [upper confidence bound]
Auer, Cesa-Bianchi and Fisher [2002]

For
$$t \geqslant K$$
, pick $A_{t+1} \in \operatorname*{arg\,max}_{a \in [K]} \left\{ \widehat{\mu}_{a}(t) + \sqrt{\frac{2 \ln t}{N_{a}(t)}} \right\}$

Exploitation: cf. empirical mean $\widehat{\mu}_a(t)$

Exploration: cf. $\sqrt{2 \ln t / N_a(t)}$ favors arms a not pulled often

Two types of regret bounds

- Distribution-dependent bound: $R_T \lesssim \sum_{a:\mu_a < \mu^*} \frac{8 \ln T}{\mu^* \mu_a}$
- Distribution-free bound: $\sup_{T_0} R_T \lesssim \sqrt{8KT \ln T}$

Model: ν_1, \ldots, ν_K are distributions over [0, 1]

Optimal bounds read as follows:

Distribution-free bound: $\sup_{\nu_1,...,\nu_K} R_T$ at best $\Theta(\sqrt{KT})$

Upper bound $K + 45\sqrt{KT}$ for the MOSS strategy by Audibert and Bubeck [2009] Lower bound $(1/20)\sqrt{KT}$ by Auer, Cesa-Bianchi, Freund and Schapire [2002]

Distribution-dependent bound: $\sum_{a:\mu_a<\mu^\star} \frac{\mu^\star - \mu_a}{\mathcal{K}_{inf}(\nu_a,\mu^\star)} \ln T - \Theta(\ln \ln T)$

where
$$\mathcal{K}_{inf}(\nu_a, \mu^{\star}) = \inf\{KL(\nu_a, \nu_a') : E(\nu_a') > \mu^{\star}\}$$

References: Lai and Robbins [1985], Burnetas and Katehakis [1996], Honda and Takemura [2015], Garivier, Ménard and Stoltz [2019], among others

Both bounds can be achieved simultaneously!

By combining the MOSS strategy and the KL-UCB strategy by Cappé et al. [2013]; see the KL-UCB-switch strategy by Garivier, Hadiji, Ménard, Stoltz [submitted]

Proofs of the regret lower bounds on [0,1]

(At least, high-level ideas...)

Proof ideas for the lower bounds

Strategy
$$\psi$$
: maps $H_t = (Y_1, \dots, Y_t) \mapsto A_{t+1} = \psi_t(H_t)$

Change of measure: compare distributions of H_T under $\underline{\nu} = (\nu_1, \dots, \nu_K)$ vs. $\underline{\nu}' = (\nu_1', \dots, \nu_K')$

Fundamental inequality: performs an implicit change of measure

Reference: Lai and Robbins [1985], Auer et al. [2002], Garivier et al. [2019]

For all Z taking values in [0,1] and $\sigma(H_T)$ -measurable,

$$\begin{split} \sum_{a \in [K]} \mathbb{E}_{\underline{\nu}} [N_a(T)] \ \mathsf{KL}(\nu_a, \nu_a') &= \mathsf{KL} \big(\mathbb{P}^{H_T}_{\underline{\nu}}, \, \mathbb{P}^{H_T}_{\underline{\nu}'} \big) \\ &\geqslant \mathsf{kl} \big(\mathbb{E}_{\underline{\nu}}[Z], \, \mathbb{E}_{\underline{\nu}'}[Z] \big) \end{split}$$

where kl(p, q) = KL(Ber(p), Ber(q))

Later use: $\underline{\nu}'$ only differs from $\underline{\nu}$ at some a, with $Z = N_a(T)/T$

Distribution-free lower bound, for distributions over [0, 1]

Problem
$$\underline{\nu}_0 = \left(\operatorname{Ber}(1/2) \right)_{a \in [K]}$$
 vs. $\underline{\nu}_k = \left(\operatorname{Ber}\left(1/2 + \varepsilon \, \mathbb{I}_{\{a=k\}} \right) \right)_{a \in [K]}$

$$R_T \stackrel{\text{def}}{=} \sum_{a \neq k} \varepsilon \mathbb{E}_{\underline{\nu}_k} [N_a(T)] = T \varepsilon \Big(1 - \mathbb{E}_{\underline{\nu}_k} [N_k(T)/T] \Big)$$

$$\text{Thus,} \qquad \sup_{\underline{\nu}} R_T \geqslant \sup_{\varepsilon \in (0,1)} \max_{k \in [K]} T\varepsilon \Big(1 - \mathbb{E}_{\underline{\nu}_k} \big[N_k(T)/T\big] \Big)$$

Fundamental inequality, + Pinsker's inequality

with
$$k \in [K]$$
 such that $\mathbb{E}_{\underline{\nu}_0}[N_k(T)/T] \leqslant 1/K$
with $Z = N_k(T)/T$

$$2\Big(\mathbb{E}_{\underline{\nu}_{k}}\big[N_{k}(T)/T\big] - \mathbb{E}_{\underline{\nu}_{0}}\big[N_{k}(T)/T\big]\Big)^{2} \leqslant \mathsf{kl}\big(\mathbb{E}_{\underline{\nu}_{0}}[Z], \, \mathbb{E}_{\underline{\nu}_{k}}[Z]\big)$$

$$\leqslant \underbrace{\mathbb{E}_{\underline{\nu}_{0}}\big[N_{k}(T)\big]}_{\leqslant T/K} \underbrace{\mathsf{KL}\big(\mathsf{Ber}(1/2), \, \mathsf{Ber}(1/2+\varepsilon)\big)}_{=-\ln(1-4\varepsilon^{2})/2 \leqslant 2.5\varepsilon^{2}}$$

Thus,
$$\sup_{\underline{\nu}} R_{\mathcal{T}} \geqslant \sup_{\varepsilon \in (0,1/4)} T\varepsilon \big(1 - 1/K - \varepsilon \sqrt{1.25 \ T/K}\big) \geqslant \Theta \big(\sqrt{KT}\big)$$

$$R_T = \sum_{\mathbf{a} \in [K]} (\mu^* - \mu_{\mathbf{a}}) \, \mathbb{E}_{\underline{\nu}} [N_{\mathbf{a}}(T)]$$

We lower bound each $\mathbb{E}_{\nu}[N_a(T)]$ for a fixed a with $\mu_a < \mu^*$; let ν_a' with $\mu_a > \mu^*$

Problems
$$\underline{\nu} = (\nu_a)_{a \in [K]}$$
 vs. $\underline{\nu}' = (\nu_1, \dots, \nu_{a-1}, \nu'_a, \nu_{a+1}, \dots, \nu_K)$

Fundamental inequality on "good" strategies & lower bound on kl

$$\forall \alpha \in (0,1], \quad \mathbb{E}[N_k(T)] = o(T^{\alpha}) \text{ for subopt. } k$$

 $\mathsf{kl}(p,q) \geqslant (1-p) \ln(1/(1-q)) - \ln 2$

$$\begin{split} \mathbb{E}_{\underline{\nu}}\big[N_{a}(T)\big] \operatorname{KL}(\nu_{a},\nu_{a}') \geqslant \operatorname{kl}\big(\underbrace{\mathbb{E}_{\underline{\nu}}\big[N_{a}(T)/T\big]}_{=}, \, \mathbb{E}_{\underline{\nu}'}\big[N_{a}(T)/T\big] \big) \\ \gtrsim \ln\Big(1/\big(1-\mathbb{E}_{\underline{\nu}'}\big[N_{a}(T)/T\big]\big) \Big) \end{split}$$

Since $\mathbb{E}_{\underline{\nu}'}[N_a(T)/T] = 1 - \sum_{k \neq a} \mathbb{E}_{\underline{\nu}'}[N_k(T)/T] \gtrsim 1 - T^{\alpha - 1}$, we get:

$$\mathbb{E}_{\nu}[N_a(T)] \text{ KL}(\nu_a, \nu_a') \gtrsim \ln T^{1-\alpha}$$

Distribution-dependent bound:
$$R_T = \sum_{a \in [K]} (\mu^* - \mu_a) \mathbb{E}_{\underline{\nu}}[N_a(T)]$$

We lower bound each $\mathbb{E}_{\nu}[N_a(T)]$ for a fixed a with $\mu_a < \mu^*$; let ν_a' with $\mu_a > \mu^*$

$$\mathbb{E}_{\underline{\nu}}\big[\mathit{N}_{\mathsf{a}}(\mathit{T})\big]\,\mathsf{KL}(\nu_{\mathsf{a}},\nu_{\mathsf{a}}') \gtrsim \ln\mathit{T}^{1-\alpha}, \qquad \text{that is,} \qquad \frac{\mathbb{E}_{\underline{\nu}}\big[\mathit{N}_{\mathsf{a}}(\mathit{T})\big]\,\mathsf{KL}(\nu_{\mathsf{a}},\nu_{\mathsf{a}}')}{\ln\mathit{T}} \gtrsim 1-\alpha \to 1$$

Therefore, "good" strategies can ensure, at best:

$$\liminf_{T \to \infty} \frac{\mathbb{E}_{\underline{\nu}} \lfloor N_{a}(T) \rfloor}{\ln T} \geqslant \sup_{\nu_{a}': \mu_{a}' > \mu^{\star}} \frac{1}{\mathsf{KL}(\nu_{a}, \nu_{a}')} \stackrel{\text{\tiny def}}{=} \frac{1}{\mathcal{K}_{\mathsf{inf}}(\nu_{a}, \mu^{\star})}$$

By summing over suboptimal arms:

$$\liminf_{T \to \infty} \frac{R_T}{\ln T} \geqslant \sum_{a \in [K]} \frac{\mu^* - \mu_a}{\mathcal{K}_{\inf}(\nu_a, \mu^*)}$$

How do we prove the fundamental inequality?

For all Z taking values in [0,1] and $\sigma(H_T)$ -measurable,

$$\sum_{\mathbf{a}\in [K]}\mathbb{E}_{\underline{\nu}}\big[N_{\mathbf{a}}(T)\big]\,\mathsf{KL}(\nu_{\mathbf{a}},\nu_{\mathbf{a}}')=\mathsf{KL}\big(\mathbb{P}_{\underline{\nu}}^{H_{\mathcal{T}}},\,\mathbb{P}_{\underline{\nu}'}^{H_{\mathcal{T}}}\big)\geqslant \mathsf{kl}\big(\mathbb{E}_{\underline{\nu}}[Z],\,\mathbb{E}_{\underline{\nu}'}[Z]\big)$$

Equality: chain rule for KL

$$H_t = (Y_1, \dots, Y_t) \mapsto A_{t+1} = \psi_t(H_t)$$
 and $Y_{t+1} \mid H_t \sim \nu_{A_{t+1}}$

$$\begin{split} \mathsf{KL}\big(\mathbb{P}^{H_{t+1}}_{\underline{\nu}},\,\mathbb{P}^{H_{t+1}}_{\underline{\nu}'}\big) &= \mathsf{KL}\big(\mathbb{P}^{H_t}_{\underline{\nu}},\,\mathbb{P}^{H_t}_{\underline{\nu}'}\big) + \mathbb{E}_{\underline{\nu}}\big[\mathsf{KL}\big(\nu_{A_{t+1}},\,\nu_{A_{t+1}}'\big)\big] \\ &= \mathsf{KL}\big(\mathbb{P}^{H_t}_{\underline{\nu}},\,\mathbb{P}^{H_t}_{\underline{\nu}'}\big) + \mathbb{E}_{\underline{\nu}}\left[\sum_{a \in [K]} \mathsf{KL}\big(\nu_a,\,\nu_a'\big)\mathbb{I}_{\{A_{t+1}=a\}}\right] \end{split}$$

Conclude by induction

How do we prove the fundamental inequality?

For all Z taking values in [0,1] and $\sigma(H_T)$ -measurable,

$$\sum_{\mathbf{a} \in [K]} \mathbb{E}_{\underline{\nu}} [N_{\mathbf{a}}(T)] \ \mathsf{KL}(\nu_{\mathbf{a}}, \nu_{\mathbf{a}}') = \mathsf{KL} \big(\mathbb{P}_{\underline{\nu}}^{H_{\mathcal{T}}}, \, \mathbb{P}_{\underline{\nu}'}^{H_{\mathcal{T}}} \big) \geqslant \mathsf{kl} \big(\mathbb{E}_{\underline{\nu}}[Z], \, \mathbb{E}_{\underline{\nu}'}[Z] \big)$$

Inequality: data-processing inequality

$$\mathsf{KL}(\mathbb{P}^X,\mathbb{Q}^X)\leqslant \mathsf{KL}(\mathbb{P},\mathbb{Q})$$

First: k

$$\mathsf{KL}(\mathbb{P}^{H_{\mathcal{T}}}_{\underline{\nu}},\,\mathbb{P}^{H_{\mathcal{T}}}_{\underline{\nu}'})\geqslant \mathsf{KL}(\mathbb{P}^{Z}_{\underline{\nu}},\,\mathbb{P}^{Z}_{\underline{\nu}'})=\mathsf{KL}(\mathbb{P}^{Z}_{\underline{\nu}}\otimes\mathfrak{m},\,\mathbb{P}^{Z}_{\underline{\nu}'}\otimes\mathfrak{m})$$

with $\mathfrak m$ the Lebesgue measure on [0,1]

Second:
$$\mathsf{KL}\left(\mathbb{P}^{\mathsf{Z}}_{\underline{\nu}}\otimes\mathfrak{m},\,\mathbb{P}^{\mathsf{Z}}_{\underline{\nu'}}\otimes\mathfrak{m}\right)\geqslant \mathsf{KL}\left(\underbrace{\left(\mathbb{P}^{\mathsf{Z}}_{\underline{\nu}}\otimes\mathfrak{m}\right)^{\mathbb{I}_{\mathsf{E}}}}_{=\mathsf{Ber}\left(\mathbb{E}_{\nu}\left[\mathsf{Z}\right]\right)},\,\left(\mathbb{P}^{\mathsf{Z}}_{\underline{\nu'}}\otimes\mathfrak{m}\right)^{\mathbb{I}_{\mathsf{E}}}\right)$$

with $E = \{(z, x) : z \leq x\}$, yielding

$$\mathbb{P}^{Z}_{\underline{\nu}} \otimes \mathfrak{m}(E) = \int \mathbb{I}_{\{z \leqslant x\}} d\mathfrak{m}(x) d\mathbb{P}^{Z}_{\underline{\nu}}(z) = \int z d\mathbb{P}^{Z}_{\underline{\nu}}(z) = \mathbb{E}_{\underline{\nu}}[Z]$$

I call the second application "Ménard's lemma" (see Garivier, Ménard and Stoltz, 2019)

Adaptation to the range

Bounded but unknown range

Reference for the final part of this talk: Hadiji and Stoltz [2020]

That is, model:
$$\mathcal{D} = \bigcup_{m,M:m < M} \mathcal{D}_{m,M}$$

where $\mathcal{D}_{m,M}$ set of distributions ν over a given interval [m,M]

What changes?

Same distribution-free lower bound:

$$\Theta((M-m)\sqrt{KT})$$
 by rescaling

Any worsening due to ignorance of the range? No! (or almost)

Different distribution-dependent lower bound:

$$R_T/\ln T \to +\infty$$
 as $\mathcal{K}_{inf}(\nu_a, \mu^*, \mathcal{D}) = 0$

But any rate $\gg \ln T$ may be achieved

Focus on the UCB strategy

Setting

With a known range [m, M], reads

(knowledge of the range is key!)

$$A_{t+1} \in rg \max_{a \in [K]} \left\{ \widehat{\mu}_a(t) + (M-m) \sqrt{rac{2 \ln t}{N_a(t)}}
ight\}$$

Extension to an unknown range:

$$A_{t+1} \in rg \max_{a \in [K]} \left\{ \widehat{\mu}_a(t) + \sqrt{rac{arphi(t)}{N_a(t)}}
ight\}$$

where $\ln t \ll \varphi(t) \ll t$

Guarantee: for all bandit problems ν_1, \ldots, ν_K in \mathcal{D} ,

$$\limsup \frac{R_T}{\varphi(T)} < +\infty$$

 $\Phi_{\mathsf{dep}} = \varphi$ is the corresponding distribution-dependent rate for adaptation to the range

Distribution-free rate for adaptation to the range

$$\Phi_{\mathsf{free}}: \mathbb{N} \to (0, +\infty)$$
 such that

$$\forall m < M$$
,

$$\forall \nu_1, \ldots, \nu_K \text{ in } \mathcal{D}_{m,M}$$

$$\forall T \geqslant 1$$
,

$$R_T \leqslant (M-m)\Phi_{\mathsf{free}}(T)$$

By the lower bound proved for [m, M] = [0, 1]:

$$\Phi_{\mathsf{free}}(\mathit{T}) \geqslant \Theta\big(\sqrt{\mathit{KT}}\big)$$

AdaHedge on estimated payoffs + mixing achieves

$$\Phi_{\text{free}}(T) \approx 7(M-m)\sqrt{TK \ln K}$$

Reference for AdaHedge: Cesa-Bianchi, Mansour, Stoltz [2005, 2007] and De Rooij, van Erven, Grünwald, Koolen [2014]

Note: $\sqrt{\ln K}$ shaved off (with different strategy) when M is known

What about simultaneous bounds?

Reminder for known range: In T and \sqrt{T} rates for regret upper bounds

Theorem: If
$$\Phi_{\mathsf{free}}(T) \ll T$$
 then $\Phi_{\mathsf{dep}}(T) \times \Phi_{\mathsf{free}}(T) \geqslant \Theta(T)$

Example:
$$\Phi_{\mathsf{free}}(T) = \Theta(\sqrt{T})$$
 now forces $\Phi_{\mathsf{dep}}(T) \geqslant \Theta(\sqrt{T})$

→ We finally exhibit some price for adaptation!

 $\label{eq:AdaHedge} \mbox{AdaHedge on estimated payoffs} + \mbox{mixing simultaneously achieves}$

$$\Phi_{\mathsf{free}}(\mathit{T}) = \Theta(\sqrt{\mathit{T}}) \quad \mathsf{ and } \quad \Phi_{\mathsf{dep}}(\mathit{T}) = \Theta(\sqrt{\mathit{T}})$$

Analysis heavily based on Seldin and Lugosi [2017]

Actually, all pairs $\Phi_{\text{free}}(T) = \Theta(T^{\alpha})$ and $\Phi_{\text{dep}}(T) = \Theta(T^{1-\alpha})$ with $\alpha \in [1/2,\ 1)$ may be achieved, by setting the mixing factor properly

Next page: proof of the theorem above, consisting in showing $(\Phi_{\text{free}}(T)/T) \mathbb{E}_{\nu}[N_a(T)] \gtrsim \text{cst}$

We lower bound each $\mathbb{E}_{\nu}[N_a(T)]$ for a fixed a with $\mu_a < \mu^*$

Problems
$$\underline{\nu}, \underline{\nu}'$$
 only differing at $\nu_a' = (1 - \varepsilon)\nu_a + \varepsilon \, \delta_{\mu_a + c/\varepsilon}$ such that $\nu_a \perp \delta_{\mu_a + c/\varepsilon}$ and $\mu_a' > \mu^*$

$$f = \frac{d\nu_{\partial}}{d\nu'} = \frac{1}{1 - \varepsilon} \qquad \text{so that} \qquad \mathsf{KL}(\nu_{\partial}, \nu'_{\partial}) = \mathbb{E}_{\nu_{\partial}}[\ln f] \approx \varepsilon$$

Fundamental inequality and $kl(p,q) \ge (1-p) \ln(1/(1-q))$

$$\begin{split} \mathbb{E}_{\underline{\nu}} \big[N_{a}(T) \big] & \xrightarrow{\approx \varepsilon} \underbrace{\mathbb{E}_{\underline{\nu}} \big[N_{a}(T) / T \big]}_{\approx \mathbb{E}_{\underline{\nu}'} \big[N_{a}(T) / T \big]}, \, \mathbb{E}_{\underline{\nu}'} \big[N_{a}(T) / T \big] \Big) \\ & \gtrsim \ln \Big(1 / \big(1 - \mathbb{E}_{\underline{\nu}'} \big[N_{a}(T) / T \big] \big) \Big) \end{split}$$

Indeed: $(\mu^{\star} - \mu_a) \mathbb{E}_{\nu} [N_a(T)] \leqslant R_T(\nu) \leqslant (M-m) \Phi_{\text{free}}(T) \ll T$

Similarly:
$$\ln \left(1/ \left(1 - \mathbb{E}_{\underline{\nu}'} [N_{\mathsf{a}}(T)/T] \right) \right) \gtrsim \ln \left(c' \, \Phi_{\mathsf{free}}(T) / (T\varepsilon) \right)$$

As:
$$(\mu_a' - \mu^*) \left(T - \mathbb{E}_{\underline{\nu}'} [N_a(T)] \right) \leqslant R_T(\underline{\nu}') \leqslant (M + c/\varepsilon - m) \Phi_{\mathsf{free}}(T)$$

Picking
$$\varepsilon \sim \Phi_{\mathsf{free}}(T)/T$$
: $\left(\Phi_{\mathsf{free}}(T)/T\right) \mathbb{E}_{\underline{\nu}} \left[\mathsf{N_a}(T) \right] \gtrsim \mathsf{cst}$

This (technical) proof shows that the main issue is the lack of an upper end M on the range; the lower end m did not change

When M is known, adaptation to m is not so difficult

The DMED strategy by Honda and Takemura [2015] gets the optimal In $T/\mathcal{K}_{inf} < +\infty$ distribution-dependent bound

A variation on the INF strategy by Audibert and Bubeck [2009] gets $\Phi_{\text{free}}(T) = \Theta(\sqrt{KT})$

On the contrary, the knowledge of m comes with no advantage: All impossibility results of this section still hold!