MotivationModelingLinUCBOur algorithm000000000000

AMIES o

Pilotage de la consommation électrique par envoi d'incitations tarifaires

Target Tracking for Contextual Bandits: Application to Demand Side Management

Gilles Stoltz

(Membre du bureau de l'Agence maths-entreprises, pour les Pays de la Loire)

ICML 2019 paper with: Margaux Brégère (PhD student), Pierre Gaillard (Inria Paris), Yannig Goude (EDF R&D)

Motivation	Modeling	LinUCB	Our algorithm	Realistic simulations	AMIES
●○	000000	00	00		o
Motiv	ation				

Motivation

Aim: maintain balance between production and consumption

Current solution: forecast consumption and adapt production

Prospective solution: encourage/discourage consumption by dynamically setting prices

Bandit monitoring: trade-off between Learning behaviors of customers (= exploration) Optimizing incentives sent (= exploitation)

 \longrightarrow Stochastic bandit theory should be applicable...

Motivation	Modeling	LinUCB	Our algorithm	Realistic simulations	AMIES
00	000000	00	00	00000	0

Motivation: data set

"SmartMeter Energy Consumption Data in London Households" Public dataset – by UK Power Networks

Individual consumptions at half-hourly frequency in year 2013 About 1,000 customers with tariff incentives

K=3 tariffs: Low (L), Normal (N), High (H)

Motivation	Modeling	LinUCB	Our algorithm	Realistic simulations	AMIES
	00000				

Modeling (1/3): consumption \rightarrow known and effective methodology

Population assumed to be homogeneous (as a first approach) (Mean) consumption Y depends on context $x_t \in \mathbb{R}^d$: temperature, season, day of the week, hour of the day, etc.

Also depends on tariff $k \in \{1, \ldots, K\}$

 Motivation
 Modeling
 LinUCB
 Our algorithm
 Realistic simulations
 AMIE:

 00
 00000
 00
 00
 00
 00
 0

Modeling (1/3): consumption \rightarrow known and effective methodology

Context $x_t \in \mathbb{R}^d$ and tariff k:

$$Y_{t,k} = \gamma_k + \sum_{i=1}^d f_i(x_{t,i}) + \text{noise}$$

Generalized additive model

 \rightarrow effective modeling

(Wood, 2006; Goude et al., 2014; Gaillard et al., 2016)

- The f_i are cubic splines
- We fix the number q_i of knots and their location
- There exists a basis $b_1^{(i)},\ldots,b_{q_i}^{(i)}$

– We write
$$f_i = \sum_{1\leqslant j\leqslant q_i} eta_j^{(i)} b_j^{(i)}$$
 for each i

Summary: For x_t and k,

$$Y_{t,k} = \beta^{\mathsf{T}} \varphi(x_t) + \gamma_k + \varepsilon_{t,k}$$

where β and γ_k are unknown, but $\varphi(x_t)$ is known

Motivation	Modeling	LinUCB	Our algorithm	Realistic simulations	AMIES
	00000				

Modeling (1/3): consumption \rightarrow extension to various tariffs

If tariffs $\{1, \ldots, K\}$ are distributed in shares $p = (p_1, \ldots, p_K)$ Then (cf. homogeneous population), mean consumption:

$$Y_{t,p} = \sum_{k=1}^{K} p_k Y_{t,k} = \sum_{k=1}^{K} p_k (\beta^{\mathsf{T}} \varphi(x_t) + \gamma_k + \varepsilon_{t,k})$$
$$= \theta^{\mathsf{T}} \phi(x_t, p) + p^{\mathsf{T}} \varepsilon_t$$

with θ unknown, but $\phi(x_t, p)$ is known (and linear in p)

Noise: ε_t iid, $\mathbb{E}[\varepsilon_t] = 0$, sub-Gaussian, $\Gamma = Var(\varepsilon_t)$

We use this model as a data generator to test our bandit strategies (cf. impossible on historical data!)

Motivation	Modeling	LinUCB	Our algorithm	Realistic simulations	AMIES
	000000				

Modeling (2/3): target tracking for contextual bandits

Known parameters

- K tariffs
- Context set \mathcal{X}
- Transfer function $\phi : \mathcal{X} \times \mathcal{P} \rightarrow \mathbb{R}^m$
- Bound C on consumptions Y

For each round $t = 1, 2, \ldots$

- **Observe a context** $x_t \in \mathcal{X}$ and a target $c_t \in [0, C]$
- 2 Choose an allocation of tariffs $p_t \in \mathcal{P}$
- **3** Observe a mean consumption $Y_{t,p_t} = \theta^{\mathsf{T}} \phi(x_t, p_t) + p_t^{\mathsf{T}} \varepsilon_t$
- Encounter an error $(Y_{t,p_t} c_t)^2$

Unknown parameters

- Coefficients $\theta \in \mathbb{R}^m$
- Covariance matrix $\Gamma = Var(\varepsilon_t)$

Motivation	Modeling	LinUCB	Our algorithm	Realistic simulations	AMIES
	000000				

Modeling (2-3/3): target tracking – evaluation

Context x_t and target c_t : allocation p_t and consumption $Y_{t,p_t} = \theta^T \phi(x_t, p_t) + p_t^T \varepsilon_t$

Not maximizing some sum of rewards (as in classical contextual bandits) but minimizing some sum of errors

Cumulative error:
$$\sum_{t=1}^{T} (Y_{t,p_t} - c_t)^2$$

By concentration:
$$\approx \sum_{t=1}^{T} \mathbb{E} [(Y_{t,p_t} - c_t)^2 | \mathcal{F}_{t-1}]$$

where \mathcal{F}_{t-1} : information available at the beginning of round t

Motivation	Modeling	LinUCB	Our algorithm	Realistic simulations	AMIES
	00000				

Modeling (3/3): evaluation

Cumulative error:
$$\approx \sum_{t=1}^{T} \mathbb{E} \left[(Y_{t,p_t} - c_t)^2 \, \big| \, \mathcal{F}_{t-1} \right]$$

 p_t is \mathcal{F}_{t-1} -measurable, $\mathbb{E}[\varepsilon_t \,|\, \mathcal{F}_{t-1}] = 0$ and $\mathsf{Var}(\varepsilon_t \,|\, \mathcal{F}_{t-1}) = \Gamma$

thus
$$\mathbb{E}[(Y_{t,p_t} - c_t)^2] = \mathbb{E}\Big[\left(\theta^{\mathsf{T}}\phi(x_t, p_t) + p_t^{\mathsf{T}}\varepsilon_t - c_t\right)^2\Big]$$

= ... = $\underbrace{\left(\theta^{\mathsf{T}}\phi(x_t, p_t) - c_t\right)^2}_{\text{bias}} + \underbrace{p_t^{\mathsf{T}}\Gamma p_t}_{\text{variance}}$

Hence the (conditional) regret:

$$\overline{R}_{T} = \sum_{t=1}^{T} \left(\theta^{\mathsf{T}} \phi(x_{t}, p_{t}) - c_{t} \right)^{2} + p_{t}^{\mathsf{T}} \Gamma p_{t} \\ - \sum_{t=1}^{T} \min_{p \in \mathcal{P}} \left\{ \left(\theta^{\mathsf{T}} \phi(x_{t}, p) - c_{t} \right)^{2} + p^{\mathsf{T}} \Gamma p \right\}$$

Minimize cumulative error \longleftrightarrow Minimize regret

Motivation	Modeling	LinUCB	Our algorithm	Realistic simulations	AMIES
		•0			

Classical approach in contextual bandits

Aim: maximize

$$\sum_{t=1}^{T} Y_{t,p_t} = \sum_{t=1}^{T} \theta^{\mathsf{T}} \phi(x_t, p_t) + p_t^{\mathsf{T}} \varepsilon_t \approx \sum_{t=1}^{T} \theta^{\mathsf{T}} \phi(x_t, p_t)$$

that is, maximize $\sum_{t=1}^{T} \theta^{\mathsf{T}} \phi(x_t, p_t) - \min_{p \in \mathcal{P}} \sum_{t=1}^{I} \theta^{\mathsf{T}} \phi(x_t, p)$

Algorithm LinUCB \rightarrow optimistic algorithm

(Li et al., 2010; Chu et al., 2011; Abbasi-Yadkori et al., 2011)

- Estimates θ by a confidence region centered at $\hat{\theta}_{t-1}$ while picking the p_t

- Gets confidence intervals $\hat{\theta}_{t-1}^{\mathsf{T}}\phi(x_t,p) \pm a_{t,p}$ on the $\theta^{\mathsf{T}}\phi(x_t,p)$

- Picks
$$\arg\max_{p\in\mathcal{P}}\left\{\widehat{\theta}_{t-1}^{\mathsf{T}}\phi(x_t,p)+a_{t,p}\right\}$$

Guarantees a $\widetilde{\mathcal{O}}(\sqrt{T})$ regret bound

Motivation	Modeling	LinUCB	Our algorithm	Realistic simulations	AMIES
		00			

Classical approach in contextual bandits

We will re-use the estimation of θ , performed while picking the p_t

For some $\lambda > 0$: at the beginning of round $t \ge 2$,

$$\widehat{\theta}_{t-1} \in \operatorname*{arg\,min}_{\widetilde{\theta} \in \mathbb{R}^m} \left\{ \lambda \left\| \widetilde{\theta} \right\| + \sum_{s=1}^{t-1} (Y_{s,p_s} - \widetilde{\theta}^{\mathsf{T}} \phi(x_s,p_s))^2 \right\}$$

(there exists a closed-form expression, cf. regularized OLS)

Under some natural normalization assumptions namely, $\|\phi\|_{\infty} \leq 1$ as well as $\|\theta\|_{\infty} \leq C$ so that $\phi^{\mathsf{T}}\theta \in [0, C]$

w.p.
$$1 - \delta$$
, $\|V_{t-1}^{1/2}(\widehat{\theta}_{t-1} - \theta)\| \leq \sqrt{\lambda m} C + \rho \sqrt{2 \ln \frac{1}{\delta} + m \ln \left(1 + \frac{t-1}{\lambda}\right)}$

where the Gram matrix $V_t = \lambda I_d + \sum_{s=1}^{t-1} \phi(x_s, p_s) \phi(x_s, p_s)^{\mathsf{T}}$ and where ρ is the sub-Gaussian parameter of the $\varepsilon_1, \varepsilon_2, \ldots$

Motivation	Modeling	LinUCB	Our algorithm	Realistic simulations	AMIES
00	000000	00	•0	00000	0

Our algorithm for tracking with contextual bandits

- Performs initial estimation of $\Gamma = Var(\epsilon)$ for $\sim T^{2/3}$ rounds getting a confidence region centered at $\widehat{\Gamma}$
- Estimates θ with confidence regions while picking the p_t (exactly like LinUCB proceeds)
- Gets confidence intervals $\left(\left[\widehat{\theta}_{t-1}^{\mathsf{T}}\phi(x_t,p)\right]_C c_t\right)^2 + p^{\mathsf{T}}\widehat{\Gamma}p \pm \alpha_{t,p}$ on the conditional errors $\left(\theta^{\mathsf{T}}\phi(x_t,p) - c_t\right)^2 + p^{\mathsf{T}}\Gamma p$
- Picks $\underset{p \in \mathcal{P}}{\operatorname{arg min}} \left\{ \left(\widehat{\theta}_{t-1}^{\mathsf{T}} \phi(x_t, p) c_t \right)^2 + p^{\mathsf{T}} \widehat{\Gamma} p \alpha_{t,p} \right\}$ i.e., plays optimistically

Not satisfactory yet: wish to estimate Γ while picking the p_t Issue: argmin over a non-convex function of p \rightarrow restrict \mathcal{P} to a grid in the simulations

Steps 2–4 are straightforward adaptations, but Step 1 was a bit more challenging

Motivation	Modeling	LinUCB	Our algorithm	Realistic simulations	AMIES
00	000000	00	○●	00000	o
Analy	rcic				

Analysis

Mimics the one of LinUCB for steps 2–4 (Li et al., 2010; Chu et al., 2011; Abbasi-Yadkori et al., 2011; Lattimore and Szepesvari, 2019 + blog)

Salient and challenging part: estimation of Γ (step 1) Iterate for $n \sim T^{2/3}$ rounds over p_t of the form "same tariff for all" or 50%–50% allocation of two tariffs

$$\hat{\Gamma}_n \in \underset{\hat{\Gamma} \in \mathcal{M}_{\mathcal{K}}(\mathbb{R})}{\operatorname{arg\,min}} \quad \sum_{s=1}^n \left(\left(Y_{s,p_s} - \left[\hat{\theta}_n^{\mathsf{T}} \phi(x_s, p_s) \right]_C \right)^2 - p_s^{\mathsf{T}} \hat{\Gamma} p_s \right)^2$$

We obtain: w.p. $1 - \delta$

$$\overline{R}_{T} = \sum_{t=1}^{T} \left(\theta^{\mathsf{T}} \phi(x_{t}, p_{t}) - c_{t} \right)^{2} + p_{t}^{\mathsf{T}} \Gamma p_{t} \\ - \sum_{t=1}^{T} \min_{\rho \in \mathcal{P}} \left\{ \left(\theta^{\mathsf{T}} \phi(x_{t}, p) - c_{t} \right)^{2} + p^{\mathsf{T}} \Gamma p \right\} \quad \leqslant \widetilde{\mathcal{O}}(T^{2/3})$$

Motivation	Modeling	LinUCB	Our algorithm	Realistic simulations	AMIES
				00000	

Realistic simulations

Reminder: we have a historical data set with K = 3 tariffs and p_t chosen as Dirac masses

K=3 tariffs: Low (L), Normal (N), High (H)

We are bound to generate new data

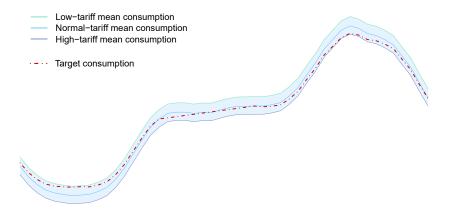
We estimate our GAM model with 1 year of such data

We then generate new consumption data based on this model + historical weather variables

And also, we create attainable targets: $\theta^{\mathsf{T}}\phi(x_t, 1) \leqslant c_t \leqslant \theta^{\mathsf{T}}\phi(x_t, 3)$

Motivation	Modeling	LinUCB	Our algorithm	Realistic simulations	AMIES
				0000	

Realistic simulations

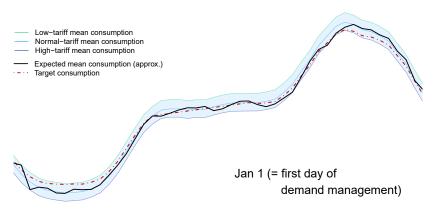


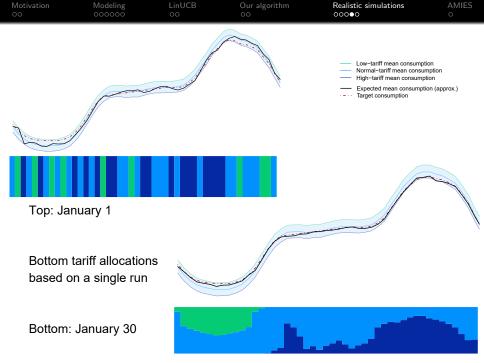
Aim: smooth out consumption

Motivation	Modeling	LinUCB	Our algorithm	Realistic simulations	AMIES	
00	000000	00	00	00●00	o	
Experiment design			\rightarrow provider changing its policy			

- Pick the "normal" tariff for 1 year, i.e., $p_t = (0, 1, 0)$
- Then start picking different allocations with at most 2 tariffs (either 1+2 or 2+3)

Repeat this 200 times





Motivation	Modeling	LinUCB	Our algorithm	Realistic simulations	AMIES
				00000	

What's next?

The case of inhomogeneous consumers

- Create clusters of clients according to their profiles
- Tailor allocations picked to each cluster

Motivation	Modeling	LinUCB	Our algorithm	Realistic simulations	AMIES
					•

Agence maths-entreprises

Soutient les collaborations recherche entre un laboratoire et une entreprise (en général, TPE-PME-ETI)

Offre phare #1: abondement au contrat de collaboration

Offre phare #2: organisation de semaines d'études pour doctorant.e.s