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Motivation

Aim: maintain balance between production and consumption
Current solution: forecast consumption and adapt production

Prospective solution: encourage/discourage consumption
by dynamically setting prices
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Bandit monitoring: trade-off between
Learning behaviors of customers (= exploration)

Optimizing incentives sent (= exploitation)

— Stochastic bandit theory should be applicable...
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Motivation: data set

“SmartMeter Energy Consumption Data in London Households”
Public dataset — by UK Power Networks

Individual consumptions at half-hourly frequency in year 2013

About 1,000 customers with tariff incentives
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K=3 tariffs: , Normal (N), High (H)
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Modeling (1/3): consumption — known and effective methodology

Population assumed to be homogeneous (as a first approach)

(Mean) consumption Y depends on context x; € RY: temperature,
season, day of the week, hour of the day, etc.

Also depends on tariff k € {1,..., K}

Y, = f; (temperature) + f,(position in the year) + f;(hour) + f,(tariff) + ...+ noise

+ + + ..
Temperature Position in the year
d
If single tariff k picked: Yek =+ D fi(xe) + noise

i=1
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Modeling (1/3): consumption — known and effective methodology

d
Context x; € RY and tariff k: Yik =Yk + Z fi(x¢,i) + noise
i=1

Generalized additive model — effective modeling
(Wood, 2006; Goude et al., 2014; Gaillard et al., 2016)

— The f; are cubic splines

We fix the number g; of knots and their location

There exists a basis bgi), . bg’;.)

We write f; = Z B ) for each i

1<j<q;

Summary: For x; and k,

Yek = BTo(xe) + vk + €tk

where 8 and ~y, are unknown, but ¢(x;) is known



Modeling (1/3): consumption — extension to various tariffs

If tariffs {1,..., K} are distributed in shares p = (p1,. .., pk)

Then (cf. homogeneous population), mean consumption:

K K
Yip = Z Pk Yik = Z Pk (5T(P(Xt) + vk + €t,k)
k=1 k=1
=0"¢(xt,p) + p'er

with € unknown, but ¢(x¢, p) is known (and linear in p)

Noise: ¢; iid, E[e¢] = 0, sub-Gaussian, I' = Var(e¢)

We use this model as a data generator to test our bandit strategies

(cf. impossible on historical data!)
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Modeling (2/3): target tracking for contextual bandits

Known parameters Unknown parameters
- K tariffs — Coefficients 8§ € R™
— Context set X — Covariance matrix [ = Var(e¢)

— Transfer function ¢ : X x P — R™

— Bound C on consumptions Y

For each round t =1,2,...
@ Observe a context x; € X’ and a target ¢; € [0, C]
@ Choose an allocation of tariffs p, € P
© Observe a mean consumption Y: 5, = 07 (x¢, pt) + piee

@ Encounter an error (Yyp, — ¢t)?
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Modeling (2-3/3): target tracking — evaluation
Context x; and target c;: allocation p; and consumption Y p = 9T¢(Xt,pt) + p;rst

Not maximizing some sum of rewards (as in classical contextual bandits)
but minimizing some sum of errors

-
Cumulative error: E (Yepe — ct)?

t=1

By concentration: A ZE[( Yip — Ct)? | Fe1]

t=1

where F;_1: information available at the beginning of round t
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Modeling (3/3): evaluation

Cumulative error: E[( Yepe — Ct)2 ‘ ]:t—l]

%
1M+

pt is Fr_1—measurable, E[e: | Fr—1] = 0 and Var(e¢ | Fr—1) =T
thus ]E[( Yt,pt — Ct)2} = E{(GT(f)(Xt, pt) + pIEt — Ct)z]

= ... = (0" ¢(xt, pt) — Ct)2 +p{ Tpt
—_—— >
bias variance

Hence the (conditional) regret:

Z To(xe, pe) — &)’ + PiTpe

- ; Ironei;;{ (07¢(xe. p) — )" + pTrp}

Minimize cumulative error <— Minimize regret
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Classical approach in contextual bandits

Aim: maximize

T T T
Z Yip: = Z 0T d(xe, pt) + pier ~ Z 07 p(xe, pt)
t=1 t=1 t=1

T T
that is, maximize Z 0" p(xt, pt) — Fr;neigz 0" p(xt, p)
t=1

t=1

Algorithm LinUCB — optimistic algorithm
(Li et al., 2010; Chu et al., 2011; Abbasi-Yadkori et al., 2011)

— Estimates 0 by a confidence region centered at gt_l
while picking the p;

— Gets confidence intervals gz_lgb(xt, p) & atp on the 8T d(x¢, p)

— Picks arg max{@_;@(xh p)+at7p}
pEP

Guarantees a O(v/T) regret bound
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Classical approach in contextual bandits
We will re-use the estimation of 6, performed while picking the p;

For some A > 0: at the beginning of round t > 2

t—1
at—l € a[gmin {)\ ||9 || + Z(Ys,ps - 9T¢(X5aps))2}

fcR™ s=1

(there exists a closed-form expression, cf. regularized OLS)

Under some natural normalization assumptions
namely, ||¢]|co < 1 as well as ||0]|cc < C so that ¢76 € [0, C]

wp 10, V3G a-0)| w"’CWZ'“i*m'" (1+57)

where the Gram matrix  V; = Alg + Z;;i (s, Ps) O(Xs, Ps)"

and where p is the sub-Gaussian parameter of the 1,5, ...
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Our algorithm for tracking with contextual bandits

— Performs initial estimation of I = Var(e) for ~ T%/3 rounds
getting a confidence region centered at I

— Estimates 6 with confidence regions while picking the p;
(exactly like LinUCB proceeds)

~ 2 ~
— Gets confidence intervals ([0{_1¢>(Xt, p)] ™ Ct) +p Tptat,
on the conditional errors (0T<Z>(xt, p) — ct)2 +p'Tp
— Picks arg min{ (5{,1¢(xt, p) — ct)2 +p'Tp— at,p}
7')

pET
i.e., plays optimistically

Not satisfactory yet: wish to estimate ' while picking the p;

Issue: argmin over a non-convex function of p
— restrict P to a grid in the simulations

Steps 2—4 are straightforward adaptations, but Step 1 was a bit more challenging
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Analysis

Mimics the one of LinUCB for steps 2—4
(Li et al., 2010; Chu et al., 2011; Abbasi-Yadkori et al., 2011;
Lattimore and Szepesvari, 2019 + blog)

Salient and challenging part: estimation of I (step 1)

lterate for n ~ T2/3 rounds over p; of the form “same tariff for all”

or 50%-50% allocation of two tariffs
n

. ~ 2 .\ ?
[, € argmin Z((Ys,ps - [92 ¢(X57p5)]c) - P;rps)

FeMk(R) s—1

We obtain: w.p. 1 -4

-
Ry = 2(9 P(xt, pt) — )2 + pi T p:
t=1

T

_ . T . 2 T A 2/3
t_1lg1€|7g{(9 d(xe,p) —ct) +p rP} <O(T?)
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Realistic simulations

Reminder: we have a historical data set with K = 3 tariffs
and p; chosen as Dirac masses

AR A

K=3 tariffs: , Normal (N), High (H)
We are bound to generate new data

We estimate our GAM model with 1 year of such data

We then generate new consumption data
based on this model + historical weather variables

And also, we create attainable targets: 07¢(x¢, 1) < ¢ < 07p(x¢, 3)
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Realistic simulations

—— Low-tariff mean consumption
—— Normal-tariff mean consumption )
—— High-tariff mean consumption 7 =

- =-- Target consumption 7

Aim: smooth out consumption
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Experiment design — provider changing its policy

— Pick the “normal” tariff for 1 year, i.e., pr = (0, 1,0)

— Then start picking different allocations
with at most 2 tariffs (either 142 or 2+3)

Repeat this 200 times

—— Low-tariff mean consumption
—— Normal-tariff mean consumption
—— High-tariff mean consumption

—— Expected mean consumption (approx.)
-+ Target consumption

. 4 Jan 1 (= first day of
------- demand management)



Realistic simulations
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Low-tariff mean consumption
Normal-tariff mean consumption
High-tariff mean consumption

Expected mean consumption (approx.)
Target consumption

Top: January 1

Bottom tariff allocations
based on a single run

Bottom: January 30
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What's next?

The case of inhomogeneous consumers
— Create clusters of clients according to their profiles

— Tailor allocations picked to each cluster
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