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Motivation

Aim: maintain balance between production and consumption

Current solution: forecast consumption and adapt production

Prospective solution: encourage/discourage consumption
by dynamically setting prices

Bandit monitoring: trade-off between

Learning behaviors of customers (= exploration)

Optimizing incentives sent (= exploitation)

−→ Stochastic bandit theory should be applicable...
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Motivation: data set

“SmartMeter Energy Consumption Data in London Households”
Public dataset – by UK Power Networks

Individual consumptions at half-hourly frequency in year 2013

About 1,000 customers with tariff incentives

K=3	tariffs:	Low	(L),	Normal	(N),	High	(H)
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Modeling (1/3): consumption → known and effective methodology

Population assumed to be homogeneous (as a first approach)

(Mean) consumption Y depends on context xt ∈ Rd : temperature,
season, day of the week, hour of the day, etc.

Also depends on tariff k ∈ {1, . . . ,K}General Additive Model for power consumption

+ + + …

Temperature Position in the year Hour

Y" = f% temperature + f. position	in	the	year + f6 hour + f7 tariff +	…+ 	noise

→  There is a known transfer function ϕ and an unknown parameter θ such that 

𝔼 𝐘 = 𝛟 𝐗 𝐓𝛉
If single tariff k picked: Yt,k = γk +

d∑
i=1

fi (xt,i ) + noise
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Modeling (1/3): consumption → known and effective methodology

Context xt ∈ Rd and tariff k: Yt,k = γk +
d∑

i=1

fi (xt,i ) + noise

Generalized additive model → effective modeling
(Wood, 2006; Goude et al., 2014; Gaillard et al., 2016)

– The fi are cubic splines

– We fix the number qi of knots and their location

– There exists a basis b
(i)
1 , . . . , b

(i)
qi

– We write fi =
∑

16j6qi

β
(i)
j b

(i)
j for each i

Summary: For xt and k,

Yt,k = βTϕ(xt) + γk + εt,k

where β and γk are unknown, but ϕ(xt) is known
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Modeling (1/3): consumption → extension to various tariffs

If tariffs {1, . . . ,K} are distributed in shares p = (p1, . . . , pK )

Then (cf. homogeneous population), mean consumption:

Yt,p =
K∑

k=1

pkYt,k =
K∑

k=1

pk
(
βTϕ(xt) + γk + εt,k

)
= θTφ(xt , p) + pTεt

with θ unknown, but φ(xt , p) is known (and linear in p)

Noise: εt iid, E[εt ] = 0, sub-Gaussian, Γ = Var(εt)

We use this model as a data generator to test our bandit strategies
(cf. impossible on historical data!)
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Modeling (2/3): target tracking for contextual bandits

Known parameters

– K tariffs

– Context set X

– Transfer function φ : X × P → Rm

– Bound C on consumptions Y

Unknown parameters

– Coefficients θ ∈ Rm

– Covariance matrix Γ = Var(εt)

For each round t = 1, 2, . . .

1 Observe a context xt ∈ X and a target ct ∈ [0,C ]

2 Choose an allocation of tariffs pt ∈ P
3 Observe a mean consumption Yt,pt = θTφ(xt , pt) + pT

t εt
4 Encounter an error (Yt,pt − ct)

2
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Modeling (2–3/3): target tracking – evaluation

Context xt and target ct : allocation pt and consumption Yt,pt = θTφ(xt , pt) + pT
t εt

Not maximizing some sum of rewards (as in classical contextual bandits)

but minimizing some sum of errors

Cumulative error:
T∑
t=1

(Yt,pt − ct)
2

By concentration: ≈
T∑
t=1

E
[
(Yt,pt − ct)

2
∣∣Ft−1

]
where Ft−1: information available at the beginning of round t
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Modeling (3/3): evaluation

Cumulative error: ≈
T∑
t=1

E
[
(Yt,pt − ct)

2
∣∣Ft−1

]
pt is Ft−1–measurable, E[εt | Ft−1] = 0 and Var(εt | Ft−1) = Γ

thus E
[
(Yt,pt − ct)

2
]

= E
[(
θTφ(xt , pt) + pT

t εt − ct
)2
]

= ... =
(
θTφ(xt , pt)− ct

)2︸ ︷︷ ︸
bias

+ pT
t Γpt︸ ︷︷ ︸

variance

Hence the (conditional) regret:

RT =
T∑
t=1

(
θTφ(xt , pt)− ct

)2
+ pT

t Γpt

−
T∑
t=1

min
p∈P

{(
θTφ(xt , p)− ct

)2
+ pTΓp

}
Minimize cumulative error ←→ Minimize regret
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Classical approach in contextual bandits

Aim: maximize
T∑
t=1

Yt,pt =
T∑
t=1

θTφ(xt , pt) + pT
t εt ≈

T∑
t=1

θTφ(xt , pt)

that is, maximize
T∑
t=1

θTφ(xt , pt)−min
p∈P

T∑
t=1

θTφ(xt , p)

Algorithm LinUCB → optimistic algorithm
(Li et al., 2010; Chu et al., 2011; Abbasi-Yadkori et al., 2011)

– Estimates θ by a confidence region centered at θ̂t−1

while picking the pt

– Gets confidence intervals θ̂T
t−1φ(xt , p)± at,p on the θTφ(xt , p)

– Picks arg max
p∈P

{
θ̂T
t−1φ(xt , p)+at,p

}
Guarantees a Õ(

√
T ) regret bound
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Classical approach in contextual bandits

We will re-use the estimation of θ, performed while picking the pt

For some λ > 0: at the beginning of round t > 2,

θ̂t−1 ∈ arg min
θ̃∈Rm

{
λ
wwθ̃ww+

t−1∑
s=1

(
Ys,ps − θ̃Tφ(xs , ps)

)2

}
(there exists a closed-form expression, cf. regularized OLS)

Under some natural normalization assumptions
namely, ‖φ‖∞ 6 1 as well as ‖θ‖∞ 6 C so that φTθ ∈ [0,C ]

w.p. 1− δ,
wwV 1/2

t−1

(
θ̂t−1−θ

)ww 6
√
λmC+ρ

√
2 ln

1

δ
+ m ln

(
1 +

t − 1

λ

)
where the Gram matrix Vt = λId +

∑t−1
s=1 φ(xs , ps)φ(xs , ps)T

and where ρ is the sub-Gaussian parameter of the ε1, ε2, . . .
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Our algorithm for tracking with contextual bandits

– Performs initial estimation of Γ = Var(ε) for ∼ T 2/3 rounds
getting a confidence region centered at Γ̂

– Estimates θ with confidence regions while picking the pt
(exactly like LinUCB proceeds)

– Gets confidence intervals
([
θ̂T
t−1φ(xt , p)

]
C
− ct

)2
+ pTΓ̂p±αt,p

on the conditional errors
(
θTφ(xt , p)− ct

)2
+ pTΓp

– Picks arg min
p∈P

{(
θ̂T
t−1φ(xt , p)− ct

)2
+ pTΓ̂p − αt,p

}
i.e., plays optimistically

Not satisfactory yet: wish to estimate Γ while picking the pt

Issue: argmin over a non-convex function of p
→ restrict P to a grid in the simulations

Steps 2–4 are straightforward adaptations, but Step 1 was a bit more challenging
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Analysis

Mimics the one of LinUCB for steps 2–4
(Li et al., 2010; Chu et al., 2011; Abbasi-Yadkori et al., 2011;

Lattimore and Szepesvari, 2019 + blog)

Salient and challenging part: estimation of Γ (step 1)

Iterate for n ∼ T 2/3 rounds over pt of the form “same tariff for all”
or 50%–50% allocation of two tariffs

Γ̂n ∈ arg min
Γ̂∈MK (R)

n∑
s=1

((
Ys,ps −

[
θ̂T
n φ(xs , ps)

]
C

)2
− pT

s Γ̂ps

)2

We obtain: w.p. 1− δ

RT =
T∑
t=1

(
θTφ(xt , pt)− ct

)2
+ pT

t Γpt

−
T∑
t=1

min
p∈P

{(
θTφ(xt , p)− ct

)2
+ pTΓp

}
6 Õ(T 2/3)
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Realistic simulations

Reminder: we have a historical data set with K = 3 tariffs
and pt chosen as Dirac masses

K=3	tariffs:	Low	(L),	Normal	(N),	High	(H)

We are bound to generate new data

We estimate our GAM model with 1 year of such data

We then generate new consumption data
based on this model + historical weather variables

And also, we create attainable targets: θTφ(xt , 1) 6 ct 6 θTφ(xt , 3)
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Realistic simulations

Tue. Jan. 1

Low−tariff mean consumption
Normal−tariff mean consumption
High−tariff mean consumption

Target consumption

Aim: smooth out consumption
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Experiment design → provider changing its policy

– Pick the “normal” tariff for 1 year, i.e., pt = (0, 1, 0)

– Then start picking different allocations
with at most 2 tariffs (either 1+2 or 2+3)

Repeat this 200 times

Tue. Jan. 1

Low−tariff mean consumption
Normal−tariff mean consumption
High−tariff mean consumption

Expected mean consumption (approx.)
Target consumption

Jan 1 (= first day of 
              demand management)
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Low−tariff mean consumption
Normal−tariff mean consumption
High−tariff mean consumption

Expected mean consumption (approx.)
Target consumption

Top: January 1
 
 
Bottom tariff allocations 
based on a single run
  
 
Bottom: January 30 
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What’s next?

The case of inhomogeneous consumers

– Create clusters of clients according to their profiles

– Tailor allocations picked to each cluster
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Agence maths–entreprises

Soutient les collaborations recherche entre un laboratoire
et une entreprise (en général, TPE–PME–ETI)

Offre phare #1: abondement au contrat de collaboration

Offre phare #2: organisation de semaines d’études
pour doctorant.e.s
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