Aggregation of stochastic models
for the prediction of time series

Gilles Stoltz

CNRS — HEC Paris
1. Framework
 Theoretical framework
 First study: Prediction of air quality
 Disclaimer
2. Convex weights
 Exponential weights
 First study (continued): Prediction of air quality
3. Linear weights
 Ridge regression
 First study (continued): Prediction of air quality
4. Summary / Second study
 Methodological summary
 Second study: Exchange rates
5. Breaks / specialized experts
 Breaks
 Specialized experts
 Third study: Forecasting of electricity consumption
6. Conclusion
 Fourth study: Production of oil reservoirs
 Recommendations
 References
The framework of this talk

Meta-predictions of time series
based on predictions issued by stochastic models
(aggregating these models rather than selecting one of them)
A statistician has to predict a time series $y_1, y_2, \ldots \in C$, where C is a convex subset of \mathbb{R}^d.

Finitely many expert forecasts are available, e.g., given by some of the stochastic models discussed before.

At each instance t, expert $j \in \{1, \ldots, N\}$ outputs a forecast

$$f_{j,t} = f_{j,t}(y_1^{t-1}) \in C$$

Observations and predictions are made in a sequential fashion:

The prediction \hat{y}_t of y_t is determined based

- on the past observations $y_1^{t-1} = (y_1, \ldots, y_{t-1})$,
- and the current and past expert forecasts $f_{j,s}$, where $s \in \{1, \ldots, t\}$ and $j \in \{1, \ldots, N\}$,
A typical solution of the problem is to form convex (or linear) combinations of the expert forecasts, with weights \(p_t = (p_{1,t}, \ldots, p_{N,t}) \) or \(v_t = (v_{1,t}, \ldots, v_{N,t}) \) adjusted over time.

The statistician then outputs the forecasts
\[
\hat{y}_t = \sum_{j=1}^{N} p_{j,t} f_{j,t}
\]

The observations \(y_t \) will not be considered stochastic anymore at this stage; thus the performance criterion will be a relative one.

We consider a convex loss function \(\ell : \mathcal{C} \times \mathcal{C} \rightarrow \mathbb{R}_+ \), e.g., the square loss \(\ell(x, y) = (x - y)^2 \) when \(\mathcal{C} \subseteq \mathbb{R} \).

The cumulative losses of the statistician and of the constant convex combinations \(q = (q_1, \ldots, q_N) \) of the expert forecasts equal
\[
\hat{L}_T = \sum_{t=1}^{T} \ell \left(\sum_{j=1}^{N} p_{j,t} f_{j,t}, y_t \right) \quad \text{and} \quad L_T(q) = \sum_{t=1}^{T} \ell \left(\sum_{j=1}^{N} q_{j} f_{j,t}, y_t \right)
\]
First study: Forecasting of air quality

Starting date: September 2005

Academic partner: Vivien Mallet, INRIA, project-team CLIME

Industrial partner: Edouard Debry, INERIS (Institut National de l’EnviRonnement Industriel et des RisqueS)

M.Sc. students involved over time:
- Boris Mauricette (6 months in 2007; from M2 Pro Paris-Diderot and ENS de Lyon)
- Sébastien Gerchinovitz (5 months in 2008; from M2 Maths Paris-Sud)
- Karim Drifi (4 months in 2009; from M2 MVA ENS Cachan)
- Paul Baudin (4 months in 2012; from M2 MVA ENS Cachan)

Associated publication: in the Journal of Geophysical Research
Some characteristics of one among the studied data sets:

- 126 days during summer ’01; one-day ahead prediction
- 241 stations in France and Germany
- Typical ozone concentrations between $40 \mu g \text{ m}^{-3}$ and $150 \mu g \text{ m}^{-3}$; sometimes above the values $180 \mu g \text{ m}^{-3}$ or $240 \mu g \text{ m}^{-3}$
- 48 experts, built in Mallet et Sportisse ’06 by choosing a physical and chemical formulation, a numerical approximation scheme to solve the involved PDEs, and a set of input data (among many)

→ Instead of trusting only one model/expert (“selection”), we proceed in a more greedy way and consider many models/experts, which we combine sequentially (“aggregation”).

This leads to more accurate and more stable (meta-)predictions.
The stations of the network are indexed by S.

Each model $j = 1, \ldots, 48$ outputs a prediction $f^s_{j,t}$ for the ozone peak at station s and day t, which is then compared to the measured peak y_t^s. (We discard measurement errors.)

The statistician chooses at each round a single convex weight vector p_t or linear weight vector v_t to be used at all stations; this leads to prediction fields.

The strategies are assessed based on their RMSEs, which amounts to considering the convex losses

$$\ell_t(p_t) \overset{\text{def}}{=} \sum_{s \in S_t} \left(\sum_{j=1}^{48} p_{j,t} f^s_{j,t} - y_t^s \right)^2$$

where S_t is the subset of active stations at day t.

The RMSE equals

$$\sqrt{\frac{\sum_{t=t_0}^{T} \ell_t(p_t)}{\sum_{t=t_0}^{T} |S_t|}} \text{ for } t_0 = 31 \text{ (short training)}.$$
Left: There are several good and useful experts.

Right: Their forecasting profiles are quite different (the experts are not clones of the others!).

Left: Coloring of Europe according to the index of the locally best expert

Right: Average forecasting profiles during a day (averages over time and space)
The framework of this talk
(continued)
The regret R_T is defined as the difference

$$
\hat{L}_T - \min_q L_T(q) = \sum_{t=1}^T \ell \left(\sum_{j=1}^N p_{j,t} f_{j,t}, y_t \right) - \min_q \sum_{t=1}^T \ell \left(\sum_{j=1}^N q_j f_{j,t}, y_t \right)
$$

We are interested in aggregation rules with (uniformly) vanishing per-round regret,

$$
\limsup_{T \to \infty} \frac{1}{T} \sup \left\{ \hat{L}_T - \min_q L_T(q) \right\} \leq 0
$$

where the supremum is over all possible sequences of observations and of expert forecasts. (Not just over most of these sequences!)

Remarks:

- Hence the name “prediction of individual sequences” (or robust aggregation of expert forecasts).
- The best convex combination q^* is known in hindsight whereas the statistician has to predict in a sequential fashion.
This framework leads to a meta-statistical interpretation:

- each series of expert forecasts is given by a statistical forecasting method, possibly tuned with some given set of parameters;
- these base forecasts relying on some stochastic model are then combined in a robust and deterministic manner.

The cumulative loss of the statistician can be decomposed as

\[\hat{L}_T = \min_{\mathbf{q}} L_T(\mathbf{q}) + R_T \]

This leads to the following interpretations:

- the term indicating the performance of the best convex combination of the expert forecasts is an approximation error;
- the regret term measures a sequential estimation error.
We will often consider the square loss \(\ell(x, y) = (x - y)^2 \).

In this case the natural accuracy measure is given by the root mean-squared errors (RMSE); for the statistician,

\[
\hat{L}_T = \sum_{t=1}^{T} \left(\sum_{j=1}^{N} p_{j,t} f_{j,t} - y_t \right)^2
\]
and

\[
\text{RMSE}_T = \sqrt{\frac{\hat{L}_T}{T}}
\]

while for a convex weight vector \(\mathbf{q} = (q_1, \ldots, q_N) \)

\[
L_T(\mathbf{q}) = \sum_{t=1}^{T} \left(\sum_{j=1}^{N} q_j f_{j,t} - y_t \right)^2
\]
and

\[
\text{RMSE}_T(\mathbf{q}) = \sqrt{\frac{L_T(\mathbf{q})}{T}}
\]

The decomposition \(\hat{L}_T = \min_{\mathbf{q}} L_T(\mathbf{q}) + R_T \) yields, via the inequality \(\sqrt{a + b} \leq \sqrt{a} + \sqrt{b} \),

\[
\text{RMSE}_T \leq \min_{\mathbf{q}} \text{RMSE}_T(\mathbf{q}) + \sqrt{\frac{\max\{0, R_T\}}{T}}
\]

aim: \(\rightarrow 0 \)
First study, continued

Forecasting of the air quality
How good are our experts? See the “oracles” below.

Do we expect the aggregation methods to provide significant improvements? Yes, whenever the best convex and/or linear combinations significantly outperform the best expert.

<table>
<thead>
<tr>
<th>Uniform mean</th>
<th>Best expert</th>
<th>Best p</th>
<th>Best u</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.41</td>
<td>22.43</td>
<td>21.45</td>
<td>19.24</td>
</tr>
</tbody>
</table>

Performance, in terms of RMSE, of (some combinations of) the experts
Disclaimer

We could also consider **batch learning** methods to aggregate models/experts, like

– BMA (Bayesian model averaging),
– CART (classification and regression trees),
– random forests, etc.,

or even **selection** methods, and apply them online, by running a batch analysis at each step.

We instead resort to “**real**” online techniques that, in addition, come up with theoretical guarantees even in non-stochastic scenarios.

We will also see that calibrating their parameters can be done in a more satisfactory way, using the sequential character of the prediction.
A strategy to pick convex weights

Simple enough for us to prove that it works!
Reminder of the aim and setting:

Given a loss function \(\ell : C \times C \to \mathbb{R} \), where \(C \subseteq \mathbb{R}^d \) is convex.

Choose sequentially the convex weights \(p_{j, t} \).

To uniformly bound the regret with respect to all sequences of observations \(y_t \) and expert predictions \(f_{j, t} \):

\[
\sum_{t=1}^{T} \ell \left(\sum_{j=1}^{N} p_{j, t} f_{j, t}, y_t \right) - \min_{q} \sum_{t=1}^{T} \ell \left(\sum_{j=1}^{N} q_j f_{j, t}, y_t \right)
\]

When \(\ell \) is convex in its first argument, sub-gradients exist, i.e.:

For all \(x, y \in C \), there exists \(\nabla \ell(x, y) \) such that

\[
\forall x' \in C, \quad \ell(x, y) - \ell(x', y) \leq \nabla \ell(x, y) \cdot (x - x')
\]
To uniformly bound the regret with respect to all convex weight vectors \(\mathbf{q} \), we write

\[
\max_{\mathbf{q}} \sum_{t=1}^{T} \ell \left(\sum_{j=1}^{N} p_{j,t} f_{j,t}, y_t \right) - \sum_{t=1}^{T} \ell \left(\sum_{j=1}^{N} q_{j} f_{j,t}, y_t \right)
\]

\[
\leq \max_{\mathbf{q}} \sum_{t=1}^{T} \nabla \ell \left(\sum_{k=1}^{N} p_{k,t} f_{k,t}, y_t \right) \cdot \left(\sum_{j=1}^{N} p_{j,t} f_{j,t} - \sum_{j=1}^{N} q_{j} f_{j,t} \right)
\]

\[
= \max_{\mathbf{q}} \sum_{t=1}^{T} \left(\sum_{j=1}^{N} p_{j,t} \tilde{\ell}_{j,t} - \sum_{j=1}^{N} q_{j} \tilde{\ell}_{j,t} \right)
\]

\[
= \sum_{t=1}^{T} \sum_{j=1}^{N} p_{j,t} \tilde{\ell}_{j,t} - \min_{\tilde{\ell}_{i,t}} \sum_{t=1}^{T} \tilde{\ell}_{i,t}
\]

where we denoted

\[
\tilde{\ell}_{j,t} = \nabla \ell \left(\sum_{k=1}^{N} p_{k,t} f_{k,t}, y_t \right) \cdot f_{j,t}
\]
Via the (signed) pseudo-losses

\[\tilde{\ell}_{j,t} = \nabla \ell \left(\sum_{k=1}^{N} p_{k,t} f_{k,t}, y_t \right) \cdot f_{j,t} \]

it suffices to consider the following simplified framework.

At each round \(t = 1, 2, \ldots \),
- the experts provide forecasts \(f_{1,t}, \ldots, f_{N,t} \);
- the statistician picks convex weights \(p_t = (p_{1,t}, \ldots, p_{N,t}) \);
- the environment then determines, possibly with the knowledge of \(p_t \), a loss vector \((\tilde{\ell}_{1,t}, \ldots, \tilde{\ell}_{N,t}) \)

The aim is to bound uniformly the regret

\[R_T = \sum_{t=1}^{T} \sum_{j=1}^{N} p_{j,t} \tilde{\ell}_{j,t} - \min_{i=1,\ldots,N} \sum_{t=1}^{T} \tilde{\ell}_{i,t} \]
For all $j \in \{1, \ldots, N\}$, we pick $p_{j,1} = 1/N$ and for all $t \geq 2$,

$$p_{j,t} = \frac{\exp\left(-\eta \sum_{s=1}^{t-1} \tilde{\ell}_{j,s}\right)}{\sum_{k=1}^{N} \exp\left(-\eta \sum_{s=1}^{t-1} \tilde{\ell}_{k,s}\right)}$$

This strategy is known as performing exponentially weighted averages of the past cumulative losses of the experts (with fixed learning rate $\eta > 0$).

Lemma. Consider two real numbers $m \leq M$.

For all $\eta > 0$ and for all individual sequences $\tilde{\ell}_{j,t} \in [m, M]$,

$$R_T = \sum_{t=1}^{T} \sum_{j=1}^{N} p_{j,t} \tilde{\ell}_{j,t} - \min_{i=1, \ldots, N} \sum_{t=1}^{T} \tilde{\ell}_{i,t} \leq \frac{\ln N}{\eta} + \eta \frac{(M - m)^2}{8} T$$

References: Vovk '90; Littlestone and Warmuth '94
Proof of the regret bound

It relies on Hoeffding’s lemma: for all random variables X with range $[m, M]$, for all $s \in \mathbb{R}$,

$$\ln \mathbb{E}[e^{sX}] \leq s \mathbb{E}[X] + \frac{s^2}{8}(M - m)^2$$

For all $t = 1, 2, \ldots$,

$$-\eta \sum_{j=1}^{N} p_{j,t} \tilde{\ell}_{j,t} = -\eta \sum_{j=1}^{N} \frac{\exp \left(-\eta \sum_{s=1}^{t-1} \tilde{\ell}_{j,s} \right)}{\sum_{k=1}^{N} \exp \left(-\eta \sum_{s=1}^{t-1} \tilde{\ell}_{k,s} \right)} \tilde{\ell}_{j,t}$$

$$\geq \ln \frac{\sum_{j=1}^{N} \exp \left(-\eta \sum_{s=1}^{t} \tilde{\ell}_{j,s} \right)}{\sum_{k=1}^{N} \exp \left(-\eta \sum_{s=1}^{t-1} \tilde{\ell}_{k,s} \right)} - \frac{\eta^2}{8}(M - m)^2$$

A telescoping sum appears and leads to

$$\sum_{t=1}^{T} \sum_{j=1}^{N} p_{j,t} \tilde{\ell}_{j,t} \leq -\frac{1}{\eta} \ln \frac{\sum_{j=1}^{N} \exp \left(-\eta \sum_{s=1}^{T} \tilde{\ell}_{j,s} \right)}{N} + \eta \frac{(M - m)^2}{8} T.$$

$$\leq \min_{i=1, \ldots, N} \sum_{t=1}^{T} \tilde{\ell}_{i,t} + \frac{\ln N}{\eta}$$
We now discuss the obtained bound.

Recall that \([m, M]\) is the loss range.

The stated bound can be optimized in \(\eta\):

\[
R_T \leq \min_{\eta > 0} \left\{ \frac{\ln N}{\eta} + \eta \frac{(M - m)^2}{8} T \right\} = (M - m) \sqrt{\frac{T}{2}} \ln N
\]

for the (theoretical) optimal choice

\[
\eta^* = \frac{1}{M - m} \sqrt{\frac{8 \ln N}{T}}
\]

This choice depends on \(M\) and \(m\), which are sometimes not known beforehand, as well as on \(T\), which may not be bounded (if the prediction game goes forever).

Since no fixed value of \(\eta > 0\) ensures that \(R_T = o(T)\), we still have no fully sequential strategy... but this can be taken care of.
The possible patches are, first, to resort to the “doubling trick.”

Alternatively, the learning rates of the exponentially weighted average strategy may vary over time, depending on the past: for $t \geq 2$,

$$p_{j,t} = \frac{\exp \left(-\eta_t \sum_{s=1}^{t-1} \tilde{\ell}_{j,s} \right)}{\sum_{k=1}^{N} \exp \left(-\eta_t \sum_{s=1}^{t-1} \tilde{\ell}_{k,s} \right)}$$

By a careful such adaptive choice of the η_t, the following regret bound can be obtained:

$$R_T \leq \Box (M - m) \sqrt{T \ln N} + \Box (M - m) \ln N$$

where the \Box denote some universal constants.

We thus recover the same orders of magnitude for the regret bound.

References: Auer, Cesa-Bianchi and Gentile '02; Cesa-Bianchi, Mansour and Stoltz '07
Examples of such careful choices

\[\eta_t = \frac{2}{M - m} \sqrt{\ln N \frac{t}{t}} \quad \rightarrow \quad R_T \leq (M - m) \sqrt{(T + 1) \ln N} \]

The price of not knowing \(T \) in advance is essentially a multiplicative factor of \(\sqrt{2} \).

\[\eta_t = \frac{\Box}{\max_{s \leq t-1} \max_{i \neq j} |\tilde{\ell}_{i,s} - \tilde{\ell}_{j,s}|} \sqrt{\ln N \frac{t}{t}} \quad \rightarrow \quad R_T \leq \Box (M - m) \sqrt{T \ln N} + \Box (M - m) \ln N \]

The constants \(\Box \) and the analysis get a bit messy.

Many other variants, with different merits but a common point...

References: Auer, Cesa-Bianchi and Gentile '02; Cesa-Bianchi, Mansour and Stoltz '07
However, these theoretically satisfactory solutions do not work well in practice.

This is what we do instead (we exploit the sequential fashion and do not resort to tricks designed for batch learning like cross-validation).

The exponentially weighted average strategy \mathcal{E}_η with fixed learning rate η picks the convex combination $p_{t}(\eta)$, where

$$p_{j,t}(\eta) = \frac{\exp \left(-\eta \sum_{s=1}^{t-1} \tilde{\ell}_{j,s} \right)}{\sum_{k=1}^{N} \exp \left(-\eta \sum_{s=1}^{t-1} \tilde{\ell}_{k,s} \right)}$$

We denote its cumulative loss $\hat{L}_t(\eta) = \sum_{s=1}^{t} \ell \left(\sum_{j=1}^{N} p_{j,s}(\eta)f_{j,s}, y_s \right)$
We consider the exponentially weighted average strategies E_{η} with fixed learning rate η, with cumulative losses

$$\hat{L}_t(\eta) = \sum_{s=1}^{t} \ell \left(\sum_{j=1}^{N} p_{j,s}(\eta) f_{j,s}, y_s \right)$$

Based on the family of the E_{η}, we build a data-driven meta-strategy which at each instance $t \geq 2$ resorts to

$$p_{t+1}(\eta_t) \quad \text{where} \quad \eta_t \in \arg \min_{\eta > 0} \hat{L}_t(\eta)$$

Of course, when coding the method, we restrict our attention to a grid of all possible $\eta > 0$, possibly extended over time (to be thinner and/or larger).

Reference: An idea of Vivien Mallet
Other natural variants: Focus on the most recent losses

Moving sums (with window of size H):

$$ p_{j,t} = \frac{\exp \left(-\eta \sum_{s=\max\{1,t-H\}}^{t-1} \tilde{\ell}_{j,s} \right)}{\sum_{k=1}^{N} \exp \left(-\eta \sum_{s=\max\{1,t-H\}}^{t-1} \tilde{\ell}_{k,s} \right)} $$

One can prove that the regret is $\geq \square T$ in the worst case.

Discounted losses (with discounts given by a sequence $\beta_t \searrow 0$):

$$ p_{j,t} = \frac{\exp \left(-\eta_t \sum_{s=1}^{t-1} (1 + \beta_{t-s})\tilde{\ell}_{j,s} \right)}{\sum_{k=1}^{N} \exp \left(-\eta_t \sum_{s=1}^{t-1} (1 + \beta_{t-s})\tilde{\ell}_{k,s} \right)} $$

Sublinear regret bounds hold for suitable sequences (β_t) and (η_t):

$$ t\eta_t \to 0 \quad \text{and} \quad \eta_t \sum_{s\leq t} \beta_s \to 0 $$

(We often take $\beta_s = \square/s^2$ in the experimental studies.)
First study, continued

Forecasting of the air quality
Oracles
(RMSE of the experts and of fixed combinations thereof)

<table>
<thead>
<tr>
<th>Uniform mean</th>
<th>Best expert</th>
<th>Best p</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.41</td>
<td>22.43</td>
<td>21.45</td>
</tr>
</tbody>
</table>

Semi-sequential strategies
(RMSE of the strategies tuned with best parameters in hindsight)

<table>
<thead>
<tr>
<th>Original version</th>
<th>Moving sums ($H = 83$)</th>
<th>Discounts ($\beta_s = 1/s^2$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.47</td>
<td>21.37</td>
<td>21.31</td>
</tr>
</tbody>
</table>

Fully sequential strategies
(RMSE of the original version of the strategy)

<table>
<thead>
<tr>
<th>Best parameter</th>
<th>Data-driven η_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.47</td>
<td>21.77</td>
</tr>
</tbody>
</table>
Our strategies do not focus on a single expert. We knew it from the numerical performance.

But actually, the weights associated with the experts change quickly and significantly over time and do not converge (which illustrates in passing that the performance of the considered experts varies over time).

Convex weights output by the (original) strategy with best parameter η in hindsight
A strategy to pick linear weights
It will ring a bell!
Linear combinations: Ridge regression

The ridge regression was introduced in the 70s by Hoerl and Kennard; it was intensively studied since then in a stochastic setting.

We consider the case where $\mathcal{C} \subseteq \mathbb{R}$ and $\ell(x, y) = (x - y)^2$.

The ridge regression resorts to linear combinations of the experts:

$$
\mathbf{v}_t \in \arg\min_{\mathbf{u} \in \mathbb{R}^N} \left\{ \lambda \left\| \mathbf{u} \right\|_2^2 + \sum_{s=1}^{t-1} \left(y_s - \sum_{j=1}^{N} u_j f_{j,s} \right)^2 \right\}
$$

for some regularization parameter $\lambda > 0$.

It also exhibits a sublinear regret against individual sequences.
Theorem. Consider a bound $B > 0$.

For all $\lambda > 0$, for all individual sequences of observations $y_t \in [-B, B]$ and of expert predictions $f_{j, t} \in [-B, B]$, for all $u \in \mathbb{R}^N$,

$$
\sum_{t=1}^{T} \ell \left(\sum_{j=1}^{N} v_{j, t} f_{j, t}, y_t \right) - \sum_{t=1}^{T} \ell \left(\sum_{j=1}^{N} u_j f_{j, t}, y_t \right) \\
\leq \lambda \|u\|_2^2 + 2NB^2 \left(1 + \frac{NTB^2}{\lambda} \right) \ln \left(1 + \frac{TB^2}{N\lambda} \right)
$$

λ of the order of $1/\sqrt{T}$ is thus a good theoretical choice and leads to $O(\sqrt{T} \ln T)$ regret bounds.

Time-varying or data-driven parameters λ_t can be considered (both for theoretical bounds or for the sake of practical performance).

References: Vovk '01; Azoury and Warmuth '01; Gerchinovitz '11
The interest of this method is that it can compensate for biases (in either direction) as the weights do not need to sum up to 1.

Even better, we can/should use it as a pre-treatment on each single expert and

- turn it into a modified expert with predictions $\gamma_t f_{j,t}$,
- performing on average almost as well as the best expert of the form $\gamma f_{j,t}$ for some constant $\gamma \in \mathbb{R}$.

This would improve greatly the predictions if there existed, for instance, an almost constant multiplicative bias of $1/\gamma$.
First study, continued

Forecasting of the air quality
In our application to the prediction of air quality, we have extra sums over the stations of the network.

E.g., the ridge regression is defined as

\[
\mathbf{v}_t \in \arg \min_{\mathbf{u} \in \mathbb{R}^N} \left\{ \lambda \| \mathbf{u} \|^2_2 + \sum_{\tau=1}^{t-1} \sum_{s \in S_{\tau}} \left(y^s_{\tau} - \sum_{j=1}^{N} u^j f^s_{j,\tau} \right)^2 \right\}
\]

One can show that \(O(\sqrt{T} \ln T) \) regret bounds are still preserved.

The experts are indeed improved via the ridge pre-treatment. We illustrate this on the worst and best experts.

<table>
<thead>
<tr>
<th></th>
<th>Original</th>
<th>Pre-treated</th>
<th>Original</th>
<th>Pre-treated</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>35.79</td>
<td>24.78</td>
<td>22.43</td>
<td>21.66</td>
</tr>
</tbody>
</table>
Oracles
(RMSE of the experts and of fixed combinations thereof)

<table>
<thead>
<tr>
<th>Uniform mean</th>
<th>Best expert</th>
<th>Best p</th>
<th>Best u</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.41</td>
<td>22.43</td>
<td>21.45</td>
<td>19.24</td>
</tr>
</tbody>
</table>

Semi-sequential ridge regression
(RMSE of the strategies tuned with best parameters in hindsight)

<table>
<thead>
<tr>
<th>Original version</th>
<th>Moving sums ($H = 45$)</th>
<th>Discounts ($\beta_s = 100/s^2$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.77</td>
<td>20.03</td>
<td>19.45</td>
</tr>
</tbody>
</table>

Fully sequential ridge regression
(RMSE of the original version of the strategy)

<table>
<thead>
<tr>
<th>Best parameter</th>
<th>Data-driven η_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.77</td>
<td>20.81</td>
</tr>
</tbody>
</table>
Our strategies do not focus on a single expert and the weights associated with the experts do not converge. [...]
To use only a smaller fraction $n \ll N$ of the experts, one can

- for convex weights, **threshold** the weights issued by the exponentially weighted average strategy;
- for linear weights, replace the ridge regression by the **LASSO** (Tibshirani '96).

The LASSO resorts to an \mathbb{L}_1–norm regularization and outputs sparse linear weights u_t:

$$u_t \in \arg \min_{u \in \mathbb{R}^N} \left\{ \lambda \| u \|_1 + \sum_{\tau=1}^{t-1} \left(y_\tau - \sum_{j=1}^N u_j f_{j,\tau} \right)^2 \right\}$$

No regret bound against individual sequences is known (yet).
A discounted version of the LASSO eliminated about 20 models (out of the 48) and showed an improved performance.

<table>
<thead>
<tr>
<th>Ridge disc.</th>
<th>LASSO disc.</th>
<th>Best u</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.45</td>
<td>19.31</td>
<td>19.24</td>
</tr>
</tbody>
</table>

Results for best parameters in hindsight
Methodological summary
Methodological summary

1. Build the N experts (possibly on a training data set) and pick another data set for the evaluation of our methods, with T instances;

2. Compute some benchmarks and some reference oracles;

3. Evaluate our strategies when run with fixed parameters (i.e., with the best parameters in hindsight);

4. The performance of interest is actually the one of the data-driven meta-strategies.

We typically expect $T \geq 5N$ (or even $T \geq 10N$).

Hope arises when the oracles are 10% or 20% better than the methods used so far (e.g., the best expert when the latter is known in advance).

This usually requires the experts to be as different as possible.
On some data sets, the convex oracle does not improve much upon the best expert,

$$\min_{i=1,\ldots,N} \sum_{t=1}^{T} \ell(f_i,t, y_t) = \min \sum_{t=1}^{T} \ell \left(\sum_{j=1}^{N} q_j f_{j,t}, y_t \right)$$

In this case, one does not need to resort to the gradient trick.

It suffices to bound the regret with respect to the best expert,

$$\sum_{t=1}^{T} \ell \left(\sum_{j=1}^{N} p_{j,t} f_{j,t}, y_t \right) - \min_{i=1,\ldots,N} \sum_{t=1}^{T} \ell(f_i,t, y_t) \leq \sum_{t=1}^{T} \sum_{j=1}^{N} p_{j,t} \tilde{\ell}_{j,t} - \min_{i=1,\ldots,N} \sum_{t=1}^{T} \tilde{\ell}_{i,t}$$

where the inequality follows by convexity and $\tilde{\ell}_{j,t} = \ell(f_{j,t}, y_t)$.

Exponentially weighted averages (EWA) over the $\tilde{\ell}_{j,t}$ can be applied.
Second study: Forecasting of exchange rates

Starting date: March 2012

Academic partner: Tomasz Michalski, HEC Paris

M.Sc. student involved over time:
- Christophe Amat (5 months in 2013; from Ecole Polytechnique)

Associated publication: In preparation
The goal is to predict monthly averages r_{t+1} of exchange rates based on few macro-economic indicators $x_{j,t}$ describing the state of the world:

- consumer price indexes (CPI);
- industrial production (Prod);
- monetary mass (Mon);
- required rates of return ("interest rates", 3R).

They will give rise to four experts.

The prediction horizon is 1-month ahead.

A classical stochastic modeling is

$$\ln r_{t+1} = \ln r_t + \sigma (W_{t+1} - W_t)$$

for some Brownian motion W.

It is considered difficult to improve on it (Meese and Rogoff ’83). It will give rise to the final expert ("random walk, RW").
We denote by r_t the averaged exchange rate of currency A with respect to currency B.

We focus on the log–variation $y_{t+1} = \Delta_{t+1} = \ln r_{t+1} - \ln r_t$.

The stochastic modeling suggested the prediction $f_{0,t+1} = 0$.

The economic theory indicates that a given macro-economic indicator $j \in \{1, 2, 3, 4\}$ can be used to forecast the exchange rate according to

$$\hat{\Delta}_{j,t+1} = \ln x_{j,t}^B - \ln x_{j,t}^A \overset{\text{def}}{=} f_{j,t+1}$$

Using our methods we propose convex or linear combinations of the log–variations:

$$\hat{\Delta}_{t+1} = \sum_{j=0}^{4} u_{j,t+1} f_{j,t+1} = \sum_{j=1}^{4} u_{j,t+1} f_{j,t+1}$$

Note: The fact that an expert suggests $f_{0,t+1}$ does matter!
The predicted log–variations $\hat{\Delta}_t$ and exchange rates $\hat{\Delta}_t + \ln r_{t-1}$ are evaluated via their common RMSE:

$$\widehat{\text{RMSE}}_T = \sqrt{\frac{1}{T - t_0 + 1} \sum_{t=t_0}^{T} (\hat{\Delta}_t - \Delta_t)^2}$$

$$= \sqrt{\frac{1}{T - t_0 + 1} \sum_{t=t_0}^{T} ((\hat{\Delta}_t + \ln r_{t-1}) - \ln r_t)^2}$$

where $t_0 = 30$ allows a short training period.

We apply two (families of) strategies:

- **EWA** (without a gradient trick), as it leads to interpretable weights;
- the **ridge regression**, as the regularization term should push in favor of expert 0 (the RW expert).
Some **orders of magnitude** for the prediction problems at hand are indicated below.

<table>
<thead>
<tr>
<th>Time intervals</th>
<th>Every month</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period</td>
<td>April 1973 – May 2013</td>
</tr>
<tr>
<td>Time instances T</td>
<td>about 480</td>
</tr>
<tr>
<td>Number of experts N</td>
<td>5 ($= 1 + 4$)</td>
</tr>
</tbody>
</table>

GBP / USD
- Median of the Δ_t 1.48×10^{-2}
- Maximum of the $|\Delta_t|$ 11.08×10^{-2}

JPY / USD
- Median of the Δ_t 1.57×10^{-2}
- Maximum of the $|\Delta_t|$ 10.52×10^{-2}
Results for GBP / USD

<table>
<thead>
<tr>
<th>Experts</th>
<th>RMSE</th>
<th>Oracle</th>
<th>RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>RW</td>
<td>(2.47 \times 10^{-2})</td>
<td>Best expert</td>
<td>(2.47 \times 10^{-2})</td>
</tr>
<tr>
<td>CPI</td>
<td>(2.68 \times 10^{-2})</td>
<td>Best (p)</td>
<td>(2.47 \times 10^{-2})</td>
</tr>
<tr>
<td>3R</td>
<td>(2.78 \times 10^{-2})</td>
<td>Best (u)</td>
<td>(2.46 \times 10^{-2})</td>
</tr>
<tr>
<td>Prod</td>
<td>(2.66 \times 10^{-2})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mon</td>
<td>(2.75 \times 10^{-2})</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

vs.

<table>
<thead>
<tr>
<th>Method</th>
<th>Semi-seq.</th>
<th>Fully seq.</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>EWA disc.</td>
<td>(2.42 \times 10^{-2})</td>
<td>(2.47 \times 10^{-2})</td>
<td>((-0.2%))</td>
</tr>
<tr>
<td>Ridge disc.</td>
<td>(2.34 \times 10^{-2})</td>
<td>(2.37 \times 10^{-2})</td>
<td>((-4.0%))</td>
</tr>
</tbody>
</table>
Results for JPY / USD

<table>
<thead>
<tr>
<th>Experts</th>
<th>RMSE</th>
<th>Oracle</th>
<th>RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>RW</td>
<td>2.76×10^{-2}</td>
<td>Best expert</td>
<td>2.76×10^{-2}</td>
</tr>
<tr>
<td>CPI</td>
<td>2.89×10^{-2}</td>
<td>Best p</td>
<td>2.75×10^{-2}</td>
</tr>
<tr>
<td>3R</td>
<td>2.96×10^{-2}</td>
<td>Best u</td>
<td>2.74×10^{-2}</td>
</tr>
<tr>
<td>Prod</td>
<td>2.91×10^{-2}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mon</td>
<td>3.24×10^{-2}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

vs.

<table>
<thead>
<tr>
<th>Experts</th>
<th>RMSE</th>
<th>(vs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EWA disc. Semi- seq.</td>
<td>2.73×10^{-2}</td>
<td>$-0.3%$</td>
</tr>
<tr>
<td>Fully seq.</td>
<td>2.75×10^{-2}</td>
<td></td>
</tr>
<tr>
<td>Ridge disc. Semi- seq.</td>
<td>2.67×10^{-2}</td>
<td>$-2.2%$</td>
</tr>
<tr>
<td>Fully seq.</td>
<td>2.70×10^{-2}</td>
<td></td>
</tr>
</tbody>
</table>
Twists needed for the forecasting of electricity consumption

1. Deal with non-stationary environments (with breaks)
2. Benefit from specialized experts

Note: Both extensions only work for convex weights
In **changing environments** the performance of a given fixed convex combination \mathbf{p} can be poor.

A more ambitious goal is to mimic the performance of sequences of convex weights of the form

$$(p^1, \ldots, p^1, p^2, \ldots, p^2, \ldots, p^{m+1}, \ldots, p^{m+1}),$$

where among the T rounds up to m shifts can occur.

The cumulative loss L^*_T,m of the best such sequence with m shifts is usually much smaller than the cumulative loss of the best fixed convex combination in hindsight, $\min_q L_T(q)$.

The **cumulative loss** can be decomposed as

$$\hat{L}_T = L^*_T,m + R_T,m,$$

where R_T,m is the corresponding **regret**. And the question is:

How much larger does the regret bound get?
The fixed-share algorithm is a generalization of the exponentially weighted average algorithm, where at the end of each round the weights are redistributed, via an α–mixing with the uniform distribution:

$$p_{j,t+1} = \frac{\alpha}{N} + (1 - \alpha) \frac{p_{j,t} \exp(-\eta \tilde{\ell}_{j,t})}{\sum_{k=1}^{N} p_{k,t} \exp(-\eta \tilde{\ell}_{k,t})}$$

where the $\tilde{\ell}_{k,t}$ denote the gradients of the losses.

Fixed-share thus relies on two parameters $\alpha \geq 0$ and $\eta > 0$. When these are optimally tuned, the regret bound is

$$R_{T,m} \leq \square \sqrt{Tm \ln N} + \square \sqrt{T \ln(3T/m)}$$

where \square is some constant depending on the scale of the problem.

We will see that in practice –when indeed breaks occur– this worsening of the regret (by a factor of \sqrt{m}) is more than compensated by the better approximation error $L_{T,m}^*$.
The fixed-share algorithm also enjoys other regret guarantees, for properly set parameters α and η.

Adaptive regret bounds (on sub-intervals of time):

$$\max_{t_0, t_1 : t_1 - t_0 \leq \tau} \sum_{t = t_0}^{t_1} \ell \left(\sum_{j=1}^{N} p_j f_{j,t}, y_t \right) - \min_{q} \sum_{t = t_0}^{t_1} \ell \left(\sum_{j=1}^{N} q_j f_{j,t}, y_t \right) \leq \Box \sqrt{\tau \ln(N\tau)}$$

Discounted regret bounds (when more recent losses matter more, i.e., $\beta_{t-1,T} \leq \beta_{t,T}$):

$$\max_{q} \sum_{t=1}^{T} \beta_{t,T} \left(\ell \left(\sum_{j=1}^{N} p_j f_{j,t}, y_t \right) - \ell \left(\sum_{j=1}^{N} q_j f_{j,t}, y_t \right) \right) \leq \Box \sqrt{U_T \ln(NU_T)}$$

where $U_T = \beta_{1,T} + \beta_{2,T} + \ldots + \beta_{T,T}$ should be increasing.
On some data sets, **specialized experts** are available: they do not output forecasts at each round.

We denote by E_t the set of active experts at round t.

The RMSE of an expert i equals

$$\sqrt{\frac{\sum_{t=1}^{T} \ell(f_{i,t}, y_t) \mathbb{I}_{\{i \in E_t\}}}{\sum_{t=1}^{T} \mathbb{I}_{\{i \in E_t\}}}}$$

while the regret it is defined as

$$\sum_{t=1}^{T} \mathbb{I}_{\{i \in E_t\}} \left(\ell \left(\sum_{j=1}^{N} p_{j,t} f_{j,t}, y_t \right) - \ell(f_{i,t}, y_t) \right)$$

These definitions can be generalized to **convex combinations** (but not to linear combinations).
There exists a generic adaptation of strategies outputting convex weights to handle specialized experts, preserving regret bounds.

It leads to convex weights \mathbf{p}_t putting all the mass on E_t.

Consider the gradient of the past losses

$$\tilde{\ell}_{j,s} = \nabla \ell \left(\sum_{k \in E_s} p_{k,s} f_{k,s}, y_s \right) \cdot f_{j,s}$$

for $j \in E_s$ and all $s \leq t - 1$.

Define modified past losses as follows:

$$\check{\ell}_{j,s} = \begin{cases} \tilde{\ell}_{j,s} & \text{if } j \in E_s \\ \sum_{k \in E_s} p_{k,s} \tilde{\ell}_{k,s} & \text{if } j \notin E_s \end{cases}$$

Denote by $\check{\mathbf{p}}_t$ the weight vector issued by the algorithm based on the $\check{\ell}_{j,s}$ and finally pick \mathbf{p}_t defined as

$$p_{j,t} = \frac{\check{p}_{j,t} \mathbb{1}_{\{j \in E_t\}}}{\sum_{k \in E_t} \check{p}_{k,t}}$$
Third study: Forecasting of the electricity consumption

Starting date: March 2009

Industrial partner: Yannig Goude, EDF R&D

M.Sc. students involved over time:
 – Marie Devaine (5 months in 2009; from M2 Maths Paris-Sud)
 – Pierre Gaillard (5 months in 2011; from M2 MVA ENS Cachan)

Associated publication: in Machine Learning Journal
Electricity consumption of EDF clients in France

- Year 2007–08 (left)
- Typical summer week (right)
Specialized experts are available: each of them only outputs a forecast when specific conditions are met (working day vs. weekend, winter, outside temperature, etc.).

We have 3 families of experts, 24 experts in total:

- Eventail experts (15, including 3 which are active all the time and 12 inactive during the summer);
- GAM experts (8, mostly active, inactive only close to public holidays);
- one non-parametric expert (1, active all the time).

There exists some operational constraint: one-day ahead prediction at a half-hour step, i.e., the next 48 half-hour instances are to be predicted every day at noon.

The strategies simply base the predictions on the same convex weight vector for the next 48 rounds, only taking into account the activations/de-activations of the experts.
Graphical representations of the performance of the experts:

- sorted RMSE (left)
- RMSE–frequency of activity pairs (right)

Eventail experts are depicted by the symbols ●, GAM experts are represented by △, while ★ stands for the non-parametric expert.
Some **orders of magnitude** for the prediction problem at hand are indicated below.

<table>
<thead>
<tr>
<th>Time intervals</th>
<th>Every 30 minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of days D</td>
<td>320</td>
</tr>
<tr>
<td>Time instances T</td>
<td>$15360 \ (= 320 \times 48)$</td>
</tr>
<tr>
<td>Number of experts N</td>
<td>$24 \ (= 15 + 8 + 1)$</td>
</tr>
<tr>
<td>Median of the y_t</td>
<td>$56330 \ \text{MW}$</td>
</tr>
<tr>
<td>Bound B on the y_t</td>
<td>$92760 \ \text{MW}$</td>
</tr>
</tbody>
</table>
We mention that several convex loss functions would be of interest here:

- the square loss $\ell(x, y) = (x - y)^2$
- the absolute loss $\ell(x, y) = |x - y|$
- the absolute percentage of error $\ell(x, y) = |x - y|/|y|$

We obtained good results for all of them.

We report in the next slides the results in terms of the square loss.
Numerical performance (RMSE)

<table>
<thead>
<tr>
<th></th>
<th>Best expert</th>
<th>Uniform mean</th>
<th>Best q</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>782</td>
<td>748</td>
<td>683</td>
</tr>
<tr>
<td>Best convex sequence</td>
<td>$m = 50$</td>
<td>$m = 100$</td>
<td></td>
</tr>
<tr>
<td>with m shifts</td>
<td>534</td>
<td>474</td>
<td></td>
</tr>
</tbody>
</table>

vs.

<table>
<thead>
<tr>
<th></th>
<th>Semi-seq.</th>
<th>Fully seq.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exp. weights (with gradients)</td>
<td>629</td>
<td>640</td>
</tr>
<tr>
<td>Fixed-share (with gradients)</td>
<td>598</td>
<td>623</td>
</tr>
</tbody>
</table>
Average RMSEs (in GW / not in MW) according to the half hours

A picture is worth thousand tables, right?

The average RMSE were similar but the behaviors seem different by the half-hours.
Quantiles (50%, 75%, 90%) of the absolute values $|\hat{y}_t - y_t|$ of the residuals
Third study: Forecasting of the production data of oil reservoirs

Starting date: April 2012

Industrial partner: Sébastien Da Veiga, IFP Energies nouvelles

M.Sc. student involved over time:
- Charles-Pierre Astolfi (5 months in 2012; from M2 MVA ENS Cachan)

Associated publication: Technical report only
This data set is made of *synthetical but realistic* data.

We study 18 time series in parallel: 6 wells are considered on a field and 3 properties are studied,
- the cumulated quantity of oil [CO] produced;
- the water cut [WCUT; ratio of water compared to total liquids produced];
- the gas-oil ratio [GOR].

The difficulty is that the *orders of magnitude* of the 3 properties are extremely different and no beforehand standardization is available.

The about 100 experts are based on geological parameters only (so-called “simulatable experts” in the literature).

Observations are *noisy*.
GOR4

- EWA
- Lasso
- Expert uniforme
- Meilleure combinaison convexe
- Observations non bruitées
Recommendations
We discussed three families of algorithms (1. **exponential weights**, 2. **ridge regression** and LASSO, 3. **fixed share**) and some variants and twists around them (gradient trick, discounted losses, data-driven tuning of the parameters).

There exist plenty of others (and we tried them); but these three families are simple and work well.

Here are some **practical guidelines**.

I recommend that $T \geq 5N$ or even $T \geq 10N$.

That the aggregation stage will improve the results is seen on the **oracles**:

Whenever the oracles (best expert if not known in advance, best convex combination, best linear combination) have a significantly better performance (10%–20% improvement) than the methods used so far in the field.
The use of discounts (for exponentials weights and ridge regression) and the consideration of the gradients of the losses (with exponential weights or fixed share) usually improve significantly the performance.

Exponential weights are to be used when interpretability of the weights and safety are key.

Fixed share is expected to be the best method in the presence of breaks.

Ridge regression is to perform well when there is some bias to be corrected. It cannot accommodate specialized experts.
References

In case you’re not bored to death (yet) by this topic!
The so-called “red bible!”

Prediction, Learning, and Games
Nicolò Cesa-Bianchi et Gábor Lugosi
I published a survey paper (containing this talk!) one year ago in the *Journal de la Société Française de Statistique*.