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Problem: production forecasting of oil and gas

Keywords and objectives:

Lightening the computational burden of fluid-flow simulations
by performing history-matching on the outputs of fixed models
rather than updating candidate models with many parameters



The problem at hand

[o] lelelele}

The Brugge field (synthetic but realistic data)

Reference: Peters et al. (2010), SPE 119094
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Can be decomposed into millions of grid blocks, in which
petrophysical properties are unknown (= a model)
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Classical approach:

Fluid-flow equations (and simulators) relate
— the production characteristics of the field (pressure, oil and
water rates, etc.) over time

— to the model (to the petrophysical properties)

One may thus learn the model based on

— estimates of the petrophysical properties (using some past
measurements)

— constraints of closeness of their associated production
characteristics to those actually observed over time

This is computationally heavy:

At each time step, many fluid-flow simulations must be performed
(many models are tested)
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Our approach:

The Brugge data set comes with 104 geological models
(their petrophysical properties were chosen in some way)

We reweigh their production forecasts over time depending on past
performance

That is, we perform history-matching on the outputs of the
models, not on their inputs

Advantages and disadvantages
— Computationally very efficient
— Theoretical guarantees of good accuracy, without any
stochastic assumption on the data

— No construction of an underlying geological model
(= no interpretation)



The problem at hand
0000®0

Examples of model outputs and observations (1/2)
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BHP = pressure at the bottom of the hole; QW = water flow rate; QO = oil flow rate
P = producer well; | = injection well; the numbers index the wells
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Examples of model outputs and observations (2/2)
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BHP = pressure at the bottom of the hole; QW = water flow rate; QO = oil flow rate
P = producer well; | = injection well; the numbers index the wells
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How to combine the outputs

For a given well and a given production characteristic:

We denote by m; s the model forecasts and by ys the observed
measurements, s < t — 1, that occurred prior to a given step t

We pick weights w; ; based on this past and aggregate the forecasts

104
Yt = E Wj tMj ¢
j=1

which we later compare to the observed measurement y;

Algorithmic question: how to pick the weights?

Theoretical question: what guarantees of performance?
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Exponentially weighted averages (EWA): learning parameter n > 0,

exp 772 mjs
K
> e - z e
k=1

Wit =

Ridge regression: regularization factor A > 0,

K K 2

: 2
(wit,...,Wk,) € argmin Z Z Z v m ¢

Vi, v )ERK j=1

Lasso regression: replace the regularization above by )\Z ‘Vj’
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Performance guarantees for EWA and Ridge (not Lasso yet):
— No stochastic modeling, guarantees for all individual sequences

— Mimic the performance of (at least) the best model

For all bounded sequences of forecasts m; ; and observed
production characteristics yt,

RMSE of algorithm < RMSE of best model +

T T
1 . . 1
T Z(Yt - %)2 < i\ T Z(mj,t —yt)? +

t=1 t=1

References: several papers of the 90s and early 2000s;
see the monograph by Cesa-Bianchi and Lugosi, 2006
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Aggregated production forecasts with EWA (1/2)

BHP_P7 BHP_I2

2400 = 2700 =
2200 2600
2000
1800 2500
1600 2400
1400 2300
1200 2200
1000
800 2100
600 1 L L | L L L 2000 | L L L L L L

0 500 1000 1500 2000 2500 3000 3500 4000 500 1000 1500 2000 2500 3000 3500 4000

QW_P14 BHP_P13
1600 = 2400 =
1400} 2300
12000 2200
1000 2100
2000
800 |-
1900

600,- 1800
4001 1700
200} / 1600

[ _____ . | 1 L L 1500 L L 1 1 L 1 L

0 500 1000 1500 2000 2500 3000 3500 4000 500 1000 1500 2000 2500 3000 3500 4000

BHP = pressure at the bottom of the hole; QW = water flow rate; QO = oil flow rate
P = producer well; | = injection well; the numbers index the wells
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Aggregated production forecasts with EWA (2/2)

QO_P15 BHP_I1
2000 = 2700 =
2600
1500/ 2500
24008
1000}
2300
ool S 2200
2100 N
-
Il 1 Il 1 Il Il 1
% 00 2°°° 500 1000 1500 2000 2500 3000 3500 4000
QO_P19 QW_P12
2500 = 2000 =
2000
1500}
1500/
1000}
1000}
500} /
500} /
0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000

BHP = pressure at the bottom of the hole; QW = water flow rate; QO = oil flow rate
P = producer well; | = injection well; the numbers index the wells
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Aggregated production forecasts with EWA (zooming in)
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BHP = pressure at the bottom of the hole; QW = water flow rate; QO = oil flow rate
P = producer well; | = injection well; the numbers index the wells
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Overview of the performance of EWA (in red or blue)
versus the best model for the well-production characteristic pair
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BHP = pressure at the bottom of the hole; QW = water flow rate; QO = oil flow rate
P = producer well; | = injection well; the numbers index the wells
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Can we provide interval forecasts?
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Standard request (and offer) with stochastic modelings.
Not so clear within the theory of individual sequences...
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Our individual-sequences approach for interval forecasts

1. On the first part of the data set, t=1,..., T,
when one-step ahead aggregated forecasts are provided

— use the algorithms as explained above

2. On the second part of the dataset, t=T +1, T +2,...
when interval forecasts are to be provided
— The models still provide forecasts m; 745 for s > 1

— Consider all possible (bounded) continuations y7,1,y7 0, .-
of the observed characteristics

— Deduce a series of aggregated forecasts yT 1,y7 5, -

— Obtain the intervals as the convex hulls of all these possible
aggregated forecasts

— Possibly enlarge them to take into account some noise
(observed characteristics are measured with noise)
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Interval forecasts with Ridge (1/3)
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BHP = pressure at the bottom of the hole; QW = water flow rate; QO = oil flow rate
P = producer well; | = injection well; the numbers index the wells
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Interval forecasts with Ridge (2/3)
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BHP = pressure at the bottom of the hole; QW = water flow rate; QO = oil flow rate
P = producer well; | = injection well; the numbers index the wells



Interval forecasts
ooooe

Interval forecasts with Ridge (3/3)
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BHP = pressure at the bottom of the hole; QW = water flow rate; QO = oil flow rate
P = producer well; | = injection well; the numbers index the wells
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An announcement for those who like real-world machine learning!

PGMO /IRSDI: call for projects in industrial data science

Team = academic members + industrial partner
Funding = 10-15 kE, for one year
Application = only 3-4 pages; deadline at May 14
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