Simulations

Algorithm 00

Managing electricity consumption by providing dynamic tariff incentives

To make a better use of renewable energy

Gilles Stoltz

ICML 2019 paper with: Margaux Brégère (PhD student), Pierre Gaillard (Inria Paris), Yannig Goude (EDF R&D)

Motivation	Experimental setting	Simulations	Algorithm	Support for startups
•00				

Context / Motivation

Aim: maintain balance between production and consumption Current solution: forecast consumption and adapt production Prospective solution: encourage/discourage consumption by dynamically setting prices

Advantage: better use of renewable energy

Motivation 0●0	Experimental setting	Simulations 0000	Algorithm 00	Support for startups O
Data set				
"SmartM	eter Energy Consi	Imption Data ii	n London Hou	seholds"

https://data.london.gov.uk/dataset/smartmeter-energy-use-data-in-london-households

Public dataset - by UK Power Networks (subbranch of EDF)

Individual consumptions at half-hourly frequency in year 2013 About 1,000 customers with tariff incentives

K=3 tariffs: Low (L), Normal (N), High (H)

Tariff incentives indeed have an impact on consumption!

Motivation	Experimental setting	Simulations	Algorithm	Support for startups
00●		0000	00	O
Quant	itative approach	\rightarrow Desig	n a specific pri	cing policy

Exploration-exploitation dilemma: Need to simultaneously

Discover the behaviors of customers (= exploration)

Optimize incentives sent (= exploitation)

Of course behaviors may change over time!

Bandit monitoring

We only observe the outcome of the tariff(s) picked Not of what would have happened with different choices

Aim: Design pricing strategies (with theoretical guarantees) Test them on data

Issue: Historical data obtained for a given sequence of choices Solution: Construct first a realistic data generator

Motivation	Experimental setting	Simulations	Algorithm	Support for startups
	00000			

Methodology

- 1. Estimate a model / Build a data generator based on 2013 data (consumption + context)
- 2. Get historical contexts for 2014 + January 2015 Generate realistic consumptions
 - 2.1. Use normal tariff only in 2014
 - 2.2. Then use a machine learning algorithm for January 2015 and pick among all *K* tariff levels

Motivation 000	Experimental setting 00000	Simulations 0000	Algorithm 00	Support for startup O
Mode	ling of the consumpti	ion o known a	and effective m	nethodology
		designed	bv EDF	

Population assumed to be homogeneous (as a first approach) (Mean) consumption Y depends on context $x_t \in \mathbb{R}^d$ Context = temperature, season, day of the week, hour of the day, etc.

Also depends on tariff $k \in \{1, \ldots, K\}$

Motivation	Experimental setting	Simulations	Algorithm	Support for startups
	00000			

First model/generator: With a single tariff at any given time

Parametric model for
$$Y_{t,k} = \gamma_k + \sum_{i=1}^d f_i(x_{t,i}) + ext{noise}$$

given by a

Generalized additive model (Wood, 2006) based on so-called cubic splines

$$Y_{t,k} = \gamma_k + \beta^{\mathsf{T}} \varphi(x_t) + \varepsilon_{t,k}$$

where β and γ_k are unknown, but $\varphi(x_t)$ is known

 \longrightarrow Need to extend this modeling to K tariffs

Motivation	Experimental setting	Simulations	Algorithm	Support for startups
	000000			

Final model/generator: With various tariffs at the same time

If tariffs $\{1, \ldots, K\}$ are distributed in shares $p = (p_1, \ldots, p_K)$ Then (cf. homogeneous population), mean consumption:

$$Y_{t,p} = \sum_{k=1}^{K} p_k Y_{t,k} = \sum_{k=1}^{K} p_k (\beta^{\mathsf{T}} \varphi(x_t) + \gamma_k + \varepsilon_{t,k})$$
$$= \theta^{\mathsf{T}} \phi(x_t, p) + p^{\mathsf{T}} \varepsilon_t$$

with θ unknown, but $\phi(x_t, p)$ is known (and linear in p)

Noise:
$$\varepsilon_t$$
 iid vectors, $\mathbb{E}[\varepsilon_t] = 0$, sub-Gaussian
 $\Gamma = Var(\varepsilon_t)$ estimated on data

In-sample performance: good, $r^2 = 92\%$ and MAPE = 8.82%

Motivation	Experimental setting	Simulations	Algorithm	Support for startups
	000000			

Methodology (reminder)

- 1. Estimate a model / Build a data generator based on 2013 data (consumption + context)
- 2. Get historical contexts for 2014 + January 2015 Generate realistic consumptions
 - 2.1. Use normal tariff only in 2014
 - 2.2. Then use a machine learning algorithm for January 2015 and pick among all *K* tariff levels

000	experimental setting 00000●	0000	00	O
New r Targe	machine-learning prob t tracking for context	lem defined: ual bandits		
Knov - <i>K</i>	vn parameters tariffs	Unkn (The – Co	own parameters y model the beha pefficients $ heta \in \mathbb{R}^n$	aviors)
– Co – Tr	ontext set ${\mathcal X}$ ansfer function $\phi: {\mathcal X} imes {\mathcal P}$ -	$\rightarrow \mathbb{R}^m$ – Co	ovariance matrix	$\Gamma = Var(arepsilon_t)$

- Bound C on consumptions Y

For each round $t = 1, 2, \ldots$

- Observe a context $x_t \in \mathcal{X}$ and a target $c_t \in [0, C]$
- 2 Choose an allocation of tariffs $p_t = (p_{t,1}, \ldots, p_{t,K})$
- **3** Observe a mean consumption $Y_{t,p_t} = \theta^{\mathsf{T}} \phi(x_t, p_t) + p_t^{\mathsf{T}} \varepsilon_t$
- Encounter an error $(Y_{t,p_t} c_t)^2$

\longrightarrow Algorithm constructed: based on a LinUCB-approach

Aim: smooth out consumption

Motivation	Experimental setting	Simulations	Algorithm	Support for startups
		0000		

Reminder of the experiment design \rightarrow provider changing its policy

- Pick the "normal" tariff for 1 year, i.e., $p_t = (0, 1, 0)$
- Then start picking different allocations with at most 2 tariffs (either 1+2 or 2+3)

Repeat this 200 times

Motivation	Experimental setting	Simulations	Algorithm	Support for startups
		0000		

What's next? [Work in progress]

- The case of inhomogeneous consumers
 Create clusters of clients according to their profiles
 Tailor allocations picked to each cluster
- Rebound effect

And now, some dirty details about the algorithm...

Motivation	Experimental setting	Simulations	Algorithm	Support for startups
			••	

Estimation of $\boldsymbol{\theta}$ as for the LinUCB algorithm

(Li et al., 2010; Chu et al., 2011; Abbasi-Yadkori et al., 2011)

For some $\lambda > 0$: at the beginning of round $t \ge 2$,

$$\widehat{\theta}_{t-1} \in \operatorname*{arg\,min}_{\widetilde{\theta} \in \mathbb{R}^m} \left\{ \lambda \left\| \widetilde{\theta} \right\| + \sum_{s=1}^{t-1} (Y_{s,p_s} - \widetilde{\theta}^{\mathsf{T}} \phi(x_s, p_s))^2 \right\}$$

 $\widehat{ heta}_{t-1}$ is essentially $1/\sqrt{T}$ –close to the real parameter heta

Variance Γ also needs to be estimated online

Thus, conditional error

$$\mathbb{E}\left[\left(Y_{t,p_t}-c_t\right)^2 \mid \mathcal{F}_{t-1}\right] = \left(\theta^{\mathsf{T}}\phi(x_t,p_t)-c_t\right)^2 + p_t^{\mathsf{T}} \Gamma p_t$$

estimated by the confidence interval

$$\left(\left[\widehat{\theta}_{t-1}^{\mathsf{T}}\phi(x_t,p)\right]_{C}-c_t\right)^2+p^{\mathsf{T}}\widehat{\Gamma}p\pm\alpha_{t,p}$$

0

Confidence intervals
$$\left(\left[\widehat{ heta}_{t-1}^{\mathsf{T}}\phi(x_t, p)\right]_{\mathcal{C}} - c_t\right)^2 + p^{\mathsf{T}}\widehat{\mathsf{\Gamma}}p \pm \alpha_{t,p}$$

Play optimistically

(it is a trade-off between exploitation and exploration):

Pick
$$\arg\min_{\boldsymbol{p}\in\mathcal{P}}\left\{\left(\widehat{\theta}_{t-1}^{\mathsf{T}}\phi(\boldsymbol{x}_{t},\boldsymbol{p})-\boldsymbol{c}_{t}\right)^{2}+\boldsymbol{p}^{\mathsf{T}}\widehat{\Gamma}\boldsymbol{p}-\boldsymbol{\alpha}_{t,\boldsymbol{p}}\right\}$$

Theoretical guarantee:

$$\sum_{t=1}^{T} (Y_{t,p_t} - c_t)^2 \lesssim \mathcal{O}(T^{2/3}) + \sum_{t=1}^{T} \min_{\rho \in \mathcal{P}} \Big\{ \left(\theta^{\mathsf{T}} \phi(x_t, \rho) - c_t\right)^2 + \rho^{\mathsf{T}} \Gamma \rho \Big\}$$

Cumulative error $\lesssim {\sf Regret} + {\sf Performance}$ of the best constant p

Motivation	Experimental setting	Simulations	Algorithm	Support for startups
	000000	0000	00	•
Technological support for star		startups		MATHS
By Agence maths–entreprises		ses		TEUR DINNOVATION

Helps connecting with academic researchers in machine learning and funding projects (50%–50%, even more) to develop/improve your core technology

Up to 30 kE (e.g., for 1-year shared postdoc)

Recent example: UncharTech (Sébastien Toth, H16)

Contact: I'm a board member, come and talk to me!