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Statement of the problem

Regret can be minimized whether the game is known or not.

Can also approachability theory be extended to unknown games?
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Classical approachability theory (Blackwell, 1956)

Finite sets of actions X and Y, actions taken xt ∈ X and yt ∈ Y
Payoff function r : X × Y → Rd

Aim: closed convex set C, with first player to ensure

1

T

T∑
t=1

r(xt , yt) −→ C

and second player to prevent this convergence

Characterization: ∀y ∈ ∆(Y), ∃ x ∈ ∆(X ) : r(x, y) ∈ C

If this condition fails, the smallest approachable blow-up of C is

Cαunif =
{
c ′ ∈ Rd : d2(c ′, C) 6 αunif

}
where αunif = max

y∈∆(Y)
min

x∈∆(X )
d2

(
r(x, y), C

)
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Classical approachability theory (Blackwell, 1956)

Closed convex set C and ∀y ∈ ∆(Y), ∃ x ∈ ∆(X ) : r(x, y) ∈ C

Associated strategy

– Compute ct = ΠC
(
r t
)
, the projection onto C of

r t =
1

t

t∑
s=1

r(xs , ys)

– Draw xt+1 ∼ xt+1 such that

∀y ∈ ∆(Y),
〈
r t − ct , r(xt+1, y)− ct

〉
6 0

What does the player need to know/observe?

– Bandit monitoring enough: observe r(xt , yt), not necessarily yt

– Game r needs to be known in general
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Can the game be unknown?

Hope arises from the special case of regret minimization

Action sets X and [0, 1]X

At each round and simultaneously,

– player 1 chooses xt ∈ X ,

– player 2 picks (gx ′,t)x ′∈X

Player 1 gets gxt ,t and ensures

1

T

T∑
t=1

gxt ,t − max
x ′∈X

1

T

T∑
t=1

gx ′,t −→ R−

No underlying game g : X × Y → [0, 1] needs to exist!
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Can the game be unknown?

Hope arises from the special case of regret minimization

Player 1 ensures

1

T

T∑
t=1

gxt ,t − max
x ′∈X

1

T

T∑
t=1

gx ′,t −→ R−

Proof (full monitoring, known game)

Consider the vector payoff function

r(xt , yt) =
(
g(xt , yt)− g(x ′, yt)

)
x′∈X

Convex set to approach C =
(
R−
)X

Solution: choose xt+1 proportional to
(
r t
)

+
, then

∀ y ∈ ∆(Y),
〈
r t−c t , r(x, y)−c t

〉
=
〈(

r t
)

+
, r(xt+1, y)+

(
r t
)
−

〉
= 0

because of the definition of r as a vector of differences

Remark: Structure of the game not used, the game could be unknown
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Can the game be unknown?

Hope arises from the special case of regret minimization

Player 1 ensures

1

T

T∑
t=1

gxt ,t − max
x ′∈X

1

T

T∑
t=1

gx ′,t −→ R−

Proof (bandit monitoring, unknown game)

Consider the unbiased estimates

g̃x′,t =
gx′,t

xt(x ′)
I{xt=x′}

and the associated vector payoff

r̃t =
(
g̃xt ,t − g̃x′,t

)
x′∈X

Convex set to approach C =
(
R−
)X

: again, doable even without knowing
the structure
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Approachability theory for unknown games

Statement of the problem

At each round and simultaneously,

– player 1 draws xt ∈ X according to xt ∈ ∆(X )

– player 2 picks mt = (mx ′,t)x ′∈X ∈ K ,

where K ⊂
(
Rd
)X

is compact

Aim: force (player 1) or prevent (player 2) convergence of

rT =
1

T

T∑
t=1

mxt ,t

to some neighborhood of C

To do:

– Indicate the targeted neighborhood

– Provide a strategy for player 1
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Approachability theory for unknown games

First answers: probably not the end of the story...
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Our COLT’14 paper — one solution to the problem

Recall that rT =
1

T

T∑
t=1

mxt ,t

Target sets of the form Cϕ(mT ) where mT =
1

T

T∑
t=1

mt

Ensure d2

(
rT , Cϕ(mT )

)
−→ 0

Why a function of the mean mT and not of the entire path?

Maybe too restrictive; and we will see that we anyway need to
decompose mT
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What do we get by calibration?

On “average” good predictions m̂t of the mt

(up to some grouping rounds according to the values of the m̂t)

Randomized strategy given by Ψ : K → ∆(X )

Average payoff close to

1

T

T∑
t=1

Ψ
(
m̂t

)
�mt

where x�m = E
[
mX

]
when X ∼ x

But

– some grouping is needed (because of calibration)

– the guarantee needs to hold along the whole path (for all T )
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What do we get by calibration?

Final guarantee in terms of convex decompositions:

ϕ(mT ) = sup

{
d2

(∑
i

λiΨ
(
m(i)

)
�m(i), C

)
:
∑
i

λim
(i) = mT

}

Still a big problem to solve:

Which Ψ should be chosen?

There can be “compensations” and there are sometimes better
choices than

Ψ(m) ∈ arg min
x∈∆(X )

d2

(
x�m, C

)
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An efficient strategy

We tackled the efficiency issue and offer a strategy that

– minimizes some regret in rounds of lengths 1, 2, 3, ...;

– only calls Ψ once in a round;

– performs no projection;

– ensures d2

(
rT , Cϕ(mT )

)
= O

(
T−1/4

)

This strategy has consequences in classical approachability as well!
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1. Classical approachability without projecting onto C

I.e., with ϕ ≡ 0 as a target

Only by exploiting the dual condition

Ψ(m)�m ∈ C where Ψ(m) ∈ arg min
x∈∆(X )

d2

(
x�m, C

)
Note: By a clever trick using that C is approachable, Bernstein and

Shimkin (2014) recover the classical O
(
T−1/2

)
rate

2. Convergence to the smallest approachable expansion Cαunif

of a known game

Without even knowing it! Same principle

Does not solve the NP-hard optimization problem of determining

αunif = max
y∈∆(Y)

min
x∈∆(X )

d2

(
r(x, y), C

)
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