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K–armed bandits: framework



K–armed bandits Fundamental inequality Lower bound for large T Lower bound for small T Conclusion

K probability distributions ν1, . . . , νK
with expectations µ1, . . . , µK −→ µ? = max

k=1,...,K
µk

At each round t = 1, 2, . . .,
1. Statistician picks arm It ∈ {1, . . . ,K}, possibly using Ut−1

2. She gets a reward Yt with law νIt given It
3. This is the only feedback she receives

−→ Exploration–exploitation dilemma
estimate the νk vs. get high rewards Yt

Regret:

RT =
T∑
t=1

(
µ? − E[Yt ]

)
=

K∑
k=1

((
µ? − µk

)
E

[
T∑
t=1

I{It=k}

])
Indeed, Yt | It ∼ νIt , thus E

[
Yt | It

]
= µIt
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Summary:

At each round, pick It (based on Ut−1 + past) and get Yt | It ∼ νIt

Control the regret RT =
K∑

k=1

(
µ? − µk

)
E
[
Nk(T )

]
, where Nk (T ) =

T∑
t=1

I{It=k}

Lower bound RT ⇐⇒ Lower bound E
[
Nk(T )

]
for µk < µ?

Randomized strategy ψ = (ψt)t>0: measurable functions

ψt : Ht =
(
U0,Y1,U1, . . . ,Yt ,Ut

)
7−→ ψt(Ht) = It+1

Take U0,U1, . . . iid ∼ U[0,1] and denote by m the Lebesgue measure

Transition kernel (conditional distributions):

P
(
Yt+1 ∈ B, Ut+1 ∈ B ′

∣∣Ht) = νψt(Ht)(B)m(B ′)
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The fundamental inequality

Eν
[
Nk(T )

]
KL(νk , ν

′
k) > kl

(
Eν
[
Nk(T )/T

]
, Eν′

[
Nk(T )/T

])
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Summary: history Ht =
(
U0,Y1,U1, . . . ,Yt ,Ut

)
and It+1 = ψt(Ht)

Lower bound E
[
Nk(T )

]
for µk < µ?, where Nk(T ) =

∑
I{It=k}

Transition kernel: P
(
Yt+1 ∈ B, Ut+1 ∈ B′

∣∣Ht) = νψt (Ht )(B)m(B′)

Change of measure: ν = (ν1, . . . , νK ) vs. ν ′ = (ν ′1, . . . , ν
′
K )

Fundamental inequality: performs an implicit change of measure

For all Z taking values in [0, 1] and σ(HT )–measurable,

K∑
k=1

Eν
[
Nk(T )

]
KL(νk , ν

′
k) = KL

(
PHT
ν , PHT

ν′
)

> kl
(
Eν [Z ], Eν′ [Z ]

)
where kl(p, q) = KL

(
Ber(p),Ber(q)

)
Later use: ν ′ only differ from ν at k and Z = Nk(T )/T
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Proof of the equality: chain rule for KL

Ht+1 =
(
Ht , (Yt+1,Ut+1)

)
and P

(
Yt+1 ∈ B, Ut+1 ∈ B′

∣∣Ht) = νψt (Ht )(B)m(B′)

KL
(
PHt+1
ν , PHt+1

ν′

)
= KL

(
PHt
ν , P

Ht
ν′
)

+ KL
(
P(Yt+1,Ut+1) |Ht
ν , P(Yt+1,Ut+1) |Ht

ν′

)
= KL

(
PHt
ν , P

Ht
ν′
)

+ Eν
[
Eν
[
KL
(
νψt(Ht) ⊗m, ν ′ψt(Ht)

⊗m
) ∣∣∣Ht

]]
= KL

(
PHt
ν , P

Ht
ν′
)

+ Eν
[
Eν
[
KL
(
νψt(Ht), ν

′
ψt(Ht)

) ∣∣∣Ht

]]
= KL

(
PHt
ν , P

Ht
ν′
)

+ Eν

[
K∑

k=1

KL(νk , ν
′
k) I{It+1=k}

]

By induction: KL
(
PHT
ν , PHT

ν′
)

=
K∑

k=1

Eν
[
Nk(T )

]
KL(νk , ν

′
k )

References: already present in Auer, Cesa-Bianchi, Freund and Schapire [2002]
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Proof of the inequality KL
(
PHT
ν , PHT

ν′
)
> kl

(
Eν [Z ], Eν′ [Z ]

)
where kl(p, q) = KL

(
Ber(p),Ber(q)

)
and Z ∈ [0, 1] is σ(HT )–measurable

Lemma (Data-processing inequality)

For all random variables X : (Ω,F)→ (Ω′,F ′),

KL
(
PX ,QX

)
6 KL(P,Q)

Lemma (Data-processing inequality with expectations)

For all random variables X : (Ω,F)→
(
[0, 1],B),

KL
(
Ber
(
EP[X ]

)
, Ber

(
EQ[X ]

))
6 KL(P,Q)
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Proof of KL
(
PX ,QX

)
6 KL(P,Q) — part 1/2
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Proof of KL
(
PX ,QX

)
6 KL(P,Q) — part 2/2

Reference: Ali and Silvey [1966]; implies joint convexity of KL
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Proof of KL
(
Ber
(
EP[X ]

)
, Ber

(
EQ[X ]

))
6 KL(P,Q)
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Fundamental inequality: For all Z ∈ [0, 1] and σ(HT )–measurable,

K∑
k=1

Eν
[
Nk(T )

]
KL(νk , ν

′
k) > kl

(
Eν [Z ], Eν′ [Z ]

)

How to use it?

Bandit problem ν = (ν1, . . . , νK ) where k is suboptimal: µk < µ?

Pick Z = Nk(T )/T

Pick ν ′ that only differs from ν at k:

ν ′ = (ν1, . . . , νk−1, ν
′
k , νk+1, . . . , νK )

Then Eν
[
Nk(T )

]
KL(νk , ν

′
k) > kl

(
Eν
[
Nk(T )/T

]
, Eν′

[
Nk(T )/T

])
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Distribution-dependent lower bound for large T

lim inf
T→∞

Eν
[
Nk(T )

]
lnT

> 1

Kinf(νk , µ?,D)
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To lower bound RT =
K∑

k=1

(
µ? − µk

)
E
[
Nk (T )

]
, lower bound E

[
Nk (T )

]
for µk < µ?

Bandit model D: where the ν1, . . . , νK may lie in

Assumption (UFC – uniform fast convergence on D)

The strategy ψ is such that:
For all bandit problems ν = (ν1, . . . , νK ) in D, for all µk < µ?,

∀α ∈ (0, 1], Eν
[
Nk(T )

]
= o(Tα)

Bandit problem ν = (ν1, . . . , νK ) where k is suboptimal: µk < µ?

Pick ν ′k ∈ D with expectation µ′k > µ?

Form ν ′ that only differs from ν at k:

ν ′ = (ν1, . . . , νk−1, ν
′
k , νk+1, . . . , νK )

Then Eν
[
Nk(T )

]
= o(T ) and T − Eν′

[
Nk(T )

]
= o(Tα)
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Eν
[
Nk (T )

]
= o(T ) and T − Eν′

[
Nk (T )

]
= o(Tα) for a strategy ψ UFC on D

Also, kl(p, q) > (1− p) ln
1

1− q
− ln 2

Fundamental inequality + lower bound on kl:

Eν
[
Nk(T )

]
> 1

KL(νk , ν ′k)
kl
(
Eν
[
Nk(T )/T

]
, Eν′

[
Nk(T )/T

])
> 1

KL(νk , ν ′k)

(
− ln 2 +

(
1− Eν

[
Nk(T )/T

])
ln

1

1− Eν′
[
Nk(T )/T

])

> 1

KL(νk , ν ′k)

(
− ln 2 +

(
1− o(1)

)
ln

1

Tα−1

)

Thus, ∀α ∈ (0, 1], lim inf
T→∞

Eν
[
Nk(T )

]
lnT

> 1

KL(νk , ν ′k)

lnT 1−α

lnT
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That is, for all models D (for the first time, no assumption on D)

for all strategies ψ UFC on D (this is not a real restriction)

for all bandit problems ν = (ν1, . . . , νK ) in D
for µk < µ?

Lemma

for all ν ′k in D with µ′k > µ?,

lim inf
T→∞

Eν
[
Nk(T )

]
lnT

> 1

KL(νk , ν ′k)

Theorem (see Lai and Robbins [1985], Burnetas and Katehakis [1996])

lim inf
T→∞

Eν
[
Nk(T )

]
lnT

> 1

Kinf(νk , µ?,D)

where Kinf(νk , µ
?,D) = inf

{
KL(νk , ν

′
k) : ν ′k ∈ D with µ′k > µ?

}
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This distribution-dependent bound is asymptotically optimal:

lim inf
T→∞

Eν
[
Nk(T )

]
lnT

> 1

Kinf(νk , µ?,D)

I.e., at least for well-behaved models D, we can exhibit a matching upper bound:

lim sup
T→∞

Eν
[
Nk(T )

]
lnT

6 1

Kinf (νk , µ?,D)

See Lai and Robbins [1985], Burnetas and Katehakis [1996], Honda and Takemura

[2010–2015], Cappé, Garivier, Maillard, Munos and Stoltz [2013], etc.

Replacing the o(Tα) in the definition of UFC by a O(lnT ):

Eν
[
Nk(T )

]
> lnT

Kinf(νk , µ?,D)
− O

(
ln(lnT )

)
Cf. the upper bound of Honda and Takemura [2015]:
This second-order term − ln(lnT ) is optimal
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Distribution-dependent lower bound for small T

We expect them to be linear!
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The asymptotic bound is really of an asymptotic nature!
Garivier, Ménard, Stoltz: The True Shape of Regret in Bandit problems
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Figure 1. Expected regret of Thompson [24] Sampling (blue, solid line) on a Bernoulli bandit problem with param-
eters (µa)16a66 = (0.05, 0.04, 0.02, 0.015, 0.01, 0.005); expectations are approximated over 500 runs.

Versus the Lai and Robbins [21] lower bound (red, dotted line) for a Bernoulli model; here kl denotes the Kullback-
Leibler divergence (5) between Bernoulli distributions.

Left : the shape of regret is not logarithmic at first, rather linear.
Right : the asymptotic lower bound is out of reach unless T is extremely large.

problems, with no restriction on the shape or on the expectations of the distributions over the
arms.

Thus we may draw a more precise picture of the behavior of the regret in any bandit problem.
Indeed, our bounds show the existence of three successive phases: an initial linear phase, when
all the arms are essentially drawn uniformly; a transition phase, when the number of observations
becomes sufficient to perceive differences; and the final phase, when the distributions associated
with all the arms are known with high confidence and when the new draws are just confirming the
identity of the best arms with higher and higher degree of confidence (this is the famous logarithmic
phase). This last phase may often be out of reach in applications, especially when the number of
arms is large.

Second contribution: a generic tool for proving distribution-dependent bandit lower
bounds. On the technical side, we provide straightforward proofs, based on the fundamental
information-theoretic inequality (F) stated in Section 2, which generalizes and simplifies previous
approaches based on explicit changes of measures. In particular, we are able to re-derive the asymp-
totic distribution-dependent lower bounds of Lai and Robbins [21], Burnetas and Katehakis [9]
and Cowan and Katehakis [14] in a few lines. This may perhaps be one of the most striking con-
tributions of this paper. As a final set of results, we offer non-asymptotic versions of these lower
bounds for large horizons, and exhibit the optimal order of magnitude of the second-order term in
the regret bound, namely, − ln(lnT ).

The proof techniques come to the essence of the arguments used so far in the literature and they
involve no unnecessary complications; they only rely on well-known properties of Kullback-Leibler
divergences.

1.1. Setting. We consider the simplest case of a stochastic bandit problem, with finitely many
arms indexed by a∈ {1, . . . ,K}. Each of these arms is associated with an unknown probability dis-
tribution νa over R. We assume that each νa has a well-defined expectation and call ν = (νa)a=1,...,K

a bandit problem.

The regret of Thompson Sampling vs. the asymptotic bound
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Theorem

For all models D
for all strategies ψ smarter ∗ than the uniform strategy on D
for all bandit problems ν = (ν1, . . . , νK ) in D
for all arms k, for all T > 1,

Eν
[
Nk(T )

]
> T

K

(
1−

√
2TKinf(νk , µ?,D)

)
.

In particular, for T 6 1/
(
8Kinf(νk , µ

?,D)
)
, Eν

[
Nk(T )

]
> T

2K

∗ A strategy ψ is smarter than the uniform strategy on a model D if
for all bandit problems ν in D, for all optimal arms a?,

∀T > 1, Eν
[
Na? (T )

]
> T

K
.

Mild requirement; but some requirement needed to get such a universal statement

All previous linear lower bounds were for some (well-chosen) bandit problems in D
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Same ν ′ as before: just replace νk by ν ′k with µ′k > µ?

Thus Eν′
[
Nk(T )/T

]
> 1/K and [wnlog] Eν

[
Nk(T )/T

]
6 1/K

Using a local Pinsker’s inequality ∗

T

K
KL(νk , ν

′
k) > Eν

[
Nk(T )

]
KL(νk , ν

′
k)

> kl
(
Eν
[
Nk(T )/T

]
, Eν′

[
Nk(T )/T

])
> kl

(
Eν
[
Nk(T )/T

]
, 1/K

)
> (K/2)

(
Eν
[
Nk(T )/T

]
− 1/K

)2

Hence the bound (to be optimized over all relevant ν ′k)

Eν
[
Nk(T )

]
> T

K

(
1−

√
2T KL(νk , ν ′k)

)
∗ For 0 6 p < q 6 1, we have kl(p, q) > 1

2 max
x∈[p,q]

x(1− x)
(p − q)2 > 1

2q
(p − q)2
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Illustration of our boundGarivier, Ménard, Stoltz: The True Shape of Regret in Bandit problems
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Figure 2. Expected number of pulls of the most suboptimal arm for Thompson [24] Sampling (blue, solid line) on
Bernoulli bandit problems, versus the lower bound (red, dashed line) of Theorem 2 for the model D of all Bernoulli
distributions; expectations are approximated over 1,000 runs.

Left : parameters (µa)16a62 = (0.5, 0.49), with characteristic time 1/
(
8Kinf(ν2, µ

?,D)
)
≈ 625.

Right : parameters (µa)16a67 = (0.05, 0.048, 0.047, 0.046, 0.045, 0.044, 0.043), with 1/
(
8Kinf(ν7, µ

?,D)
)
≈ 231.
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Figure 3. Expected regret of Thompson [24] Sampling (blue, solid line) on Bernoulli bandit problems, versus the
lower bound (red, dashed line) of Theorem 4 using (11) and the lower bound (black, dotted line) of Theorem 2
using (1), for the model D of all Bernoulli distributions; expectations are approximated over 3,000 runs.

Left : parameters (µa)16a610 = (0.05, 0.043, . . . , 0.043), with characteristic time K/
(
8A?ν Kmax

ν

)
≈ 1,250.

Right : parameters (µa)16a67 = (0.05, 0.048, 0.047, 0.046, 0.045, 0.044, 0.043), with K/
(
8A?ν Kmax

ν

)
≈ 1,619.

4. Non-asymptotic bounds for large T. We restrict our attention to well-behaved models
and uniformly super-fast convergent strategies. For a given model D, we denote by E(D) the
interior of the set of all expectations of distributions in D. That a model is well-behaved means
that the function Kinf is locally Lipschitz continuous in its second variable, as is made formal in
the following definition.

Definition 5. A model D is well behaved if there exist two functions εD :E(D)→ (0,+∞) and
ωD :D×E(D)→ (0,+∞) such that for all distributions νa ∈D and all x∈E(D) with x>E(νa),

∀ε < εD(x), Kinf(νa, x+ ε,D)6Kinf(νa, x,D) + εωD(νa, x) .

We could have considered a more general definition, where the upper bound would have been
any vanishing function of ε, not only a linear function of ε. However, all examples considered in

Expected number of times a suboptimal arm is pulled: Thompson Sampling

vs. our linear lower bound (look rather at the T/(2K) and T/K lines)
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Conclusion: many other bounds!
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Many other bandits bounds can be [re-]obtained in a few
elementary lines from

K∑
k=1

Eν
[
Nk(T )

]
KL(νk , ν

′
k) > kl

(
Eν [Z ], Eν′ [Z ]

)

For instance,

The
√
KT distribution-free bound by Auer, Cesa-Bianchi, Freund

and Schapire [2002]

The bounds by Bubeck, Perchet and Rigollet [2013] when µ?

and/or the gaps µ? − µk are known

And many other new bounds

(our fundamental inequality is already a popular tool!)
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