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K—armed bandits: framework
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K probability distributions v1, ..., vk

with expectations p1, ..., ik —  ur= . "faXKMk

At each round t =1,2,...,

1. Statistician picks arm Iy € {1,..., K}, possibly using U;_1
2. She gets a reward Y; with law v, given I,

3. This is the only feedback she receives

— Exploration—exploitation dilemma
estimate the vy vs. get high rewards Y;

Regret:
T K T

Rr=> (W —E[vi]) =) ((u* — ) E Zﬂ{lt—k}D
t=1 k=1 t=1

Indeed, Yt |l ~ vy, thus E[Y: | le] = p,
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Lower bound R <= Lower bound E[Ny(T)] for pu < p*

Randomized strategy ¥ = (tt)t>0: measurable functions
"lpt . Ht = (UO, Y]_, U]_, ey Yt7 Ut) — wt(Ht) = It+1

Take Up, Uy, ... iid ~ Up 1) and denote by m the Lebesgue measure

Transition kernel (conditional distributions):

P(Yer1 € B, Upp1 € B' | He) = vy, 1) (B) m(B')



Fundamental inequality
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The fundamental inequality

E,[Ni(T)] KL(v, ) > Kl (EZ[N,((T)/T] E, [Nk(T)/TD

)



Fundamental inequality
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Change of measure: v = (v1,...,vk) vs. vV = (v],...,Vk)

Fundamental inequality: performs an implicit change of measure

For all Z taking values in [0,1] and o(H7)-measurable,

K
> B [Ni(T)] KL(vi, v) = KL(BLT, PIIT)
k=1
> KI(E,[Z], Ey[2])
where kl(p, g) = KL(Ber(p), Ber(q))

Later use: v/ only differ from v at k and Z = Ni(T)/T



Proof of the equality: chain rule for KL

Hiy1 = (Ht, (Yt+1, Ut+1)) and ]P’(Ypr], € B, U1 € B’ | Ht) = th(Ht)(B) m(B’)
KL (Pgm : ]P’Ifft“)
 KE(B2, B2 4 KL (B0, i 1)

= KL(2l!, Plf) +E,|E KL (v, @0, V1) © ) ‘Ht]]

— KL(PH:, PH) +EZE KL (Vbas Voo ‘HtH

[ K
= KL(Py*, Pyy) +Ey| > KL(v, vi) H{/t+1—k}]
Lk=1

K
By induction: KL(PYT, PIT) = S By [Ni(T)] KL(vk, vj)
N k=1
References: already present in Auer, Cesa-Bianchi, Freund and Schapire [2002]



Fundamental inequality
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Proof of the inequality KL (BH7, P/I) > KI(E,[Z], E,[2])

where kl(p, q) = KL(Ber(p), Ber(q)) and Z € [0,1] is o(H7)-measurable

Lemma (Data-processing inequality)

For all random variables X : (Q, F) — (', F'),

KL(PX,Q%) < KL(P,Q)

Lemma (Data-processing inequality with expectations)

For all random variables X : (2, F) — ([0, 1], B),

KL (Ber(Ep[X]), Ber(EQ[X])> < KL(P,Q)




Proof of KL(PX,QX) < KL(P,Q) — part 1/2
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Proof of KL(PX,QX) < KL(P,Q) — part 2/2
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Reference: Ali and Silvey [1966]; implies joint convexity of KL



Proof of KL (Ber (Ez[X]), Ber (IE@[X])> < KL(P,Q)
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Fundamental inequality: For all Z € [0,1] and o(H7)-measurable,

K
> EJNk(T)] KL(wk, ) > KI(E,[Z]. Ev[2])
k=1

How to use it?

Bandit problem v = (v1,...,vk) where k is suboptimal: px < p*
Pick Z = N(T)/T

Pick v/ that only differs from v at k:

/ /
vV = (V]_,...,Vk_l,Vk,Vk+1,...,l/K)

Then B [Ne(T)] KL(vk, v}) > kl(EK[Nk(T)/T}, E, [Nk(T)/T]>



Lower bound for large T
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Distribution-dependent lower bound for large T

E, | N.(T
lim inf — [ al )] > !
T—00 InT Kinf(vi, p*, D)



Lower bound for large T
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Bandit model D: where the v1,..., vk may lie in

Assumption (UFC — uniform fast convergence on D)

The strategy 1 is such that:
For all bandit problems v = (v1,...,vk) in D, for all py < p*,

Vae (0,1,  Eu[Nk(T)] =o(T%)

Bandit problem v = (v, ...,vk) where k is suboptimal: px < p*

Pick v € D with expectation pj > p*
Form v/ that only differs from v at k:

/ /
vV = (Vlv' oy Vk—1, Ve, Vk41, - - 'ayK)

Then  E[Ne(T)] =o(T) and T —E,[Nk(T)] = o(T*)



Lower bound for large T
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Fundamental inequality + lower bound on kl:

Ez[Nk(T)]

> KL(ylk,y;() k1<Ez[Nk(T)/T]7 E, [Nk(T)/T])
1 1

= m ( In2+ (1 —EZ[Nk(T)/T]) In —&, [Nk(T)/T])
1 1

> R o)) <— In2 + (1 - o(1)) In Ta_1>

Thus, Va € (0,1], liminf EZ[N"(T)] S 1 In T1-«

Tsoo InT 7 KL(vk,v,) InT



Lower bound for large T
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That is, for all models D (for the first time, no assumption on D)
for all strategies 1 UFC on D (this is not a real restriction)
for all bandit problems v = (v1,...,vk) in D

for px < p*

Lemma

for all v}, in D with ), > p*,

E N (T 1
liminf H[ k( )] >
T—o0 InT KL(vk, v)

Theorem (see Lai and Robbins [1985], Burnetas and Katehakis [1996])
E | Nk (T 1
liminf *[ k( )] >
T—00 InT Kint(vk, 1*, D)

where  Kinf (v, 1, D) = inf{ KL(vk, v}) : v € D with pj > p*}



Lower bound for large T
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This distribution-dependent bound is asymptotically optimal:

E N (T 1
liminf *[ al )} >
T—o0 InT ’Cinf(l/k,,u*,p)

l.e., at least for well-behaved models D, we can exhibit a matching upper bound:

. Ey [Ny (T)] 1
lim sup <
Tooo InT Kint(vk, 1%, D)

See Lai and Robbins [1985], Burnetas and Katehakis [1996], Honda and Takemura
[2010-2015], Cappé, Garivier, Maillard, Munos and Stoltz [2013], etc.

Replacing the o(T®) in the definition of UFC by a O(In T):

InT

BNK(T)] > 30—y

—O(In(In T))

Cf. the upper bound of Honda and Takemura [2015]:
This second-order term — In(In T) is optimal



Lower bound for small T
®0000

Distribution-dependent lower bound for small T

We expect them to be linear!



Lower bound for small T
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The asymptotic bound is really of an asymptotic nature!
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The regret of Thompson Sampling vs. the asymptotic bound



Lower bound for small T
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Theorem

For all models D

for all strategies 1) smarter * than the uniform strategy on D
for all bandit problems v = (v1,...,vk) in D

for all arms k, forall T > 1,

E, [Ne(T)] > %(1 . \/2T/cinf(uk,u*,p)) :

T
In particular, for T < 1/(8/Cinf(uk,,u*,D)), EK[Nk(T)] > 5K

* A strategy v is smarter than the uniform strategy on a model D if
for all bandit problems v in D, for all optimal arms a*,

VT >1, Ey [N (T)] >

x|+

Mild requirement; but some requirement needed to get such a universal statement

All previous linear lower bounds were for some (well-chosen) bandit problems in D



Lower bound for small T
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Same 1/ as before: just replace vy by v} with pj > p*
Thus Ey/ [Nk(T)/T]| > 1/K and [wnlog] E, [N«(T)/T] < 1/K
Using a local Pinsker's inequality *
%KL(W, Vi) = E[Ni(T)] KL (v, v)
> KI(B, [Ne(T)/ T], By [Ne(T)/T])
> kl(]EZ[Nk(T)/T], l/K)

> (K/2) (B, [N(T)/T] ~1/K)

Hence the bound (to be optimized over all relevant v} )
T
B, [Ne(T)] > (1= /2T KL(. 1))

1
*For0<p<g<1l wehave Kkl(p,q)>-—""——(p—q)°>>-—(p—q)?
2 max x(1 — x) 2q

x€[p,q]



Lower bound for small T
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lllustration of our bound
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Expected number of times a suboptimal arm is pulled: Thompson Sampling

vs. our linear lower bound (look rather at the T/(2K) and T /K lines)
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Conclusion: many other bounds!



Conclusion
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Many other bandits bounds can be [re-|obtained in a few
elementary lines from

K
> B [Ni(T)] KL(vk, 1) > KI(Ey[Z], Ey[2])
k=1

For instance,

The VKT distribution-free bound by Auer, Cesa-Bianchi, Freund
and Schapire [2002]

The bounds by Bubeck, Perchet and Rigollet [2013] when p*
and/or the gaps u* — px are known

And many other new bounds

(our fundamental inequality is already a popular tool!)
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