# Lower bounds on the regret for stochastic bandits A general inequality to generate them

Gilles Stoltz

CNRS — HEC Paris



Joint work with Aurélien Garivier and Pierre Ménard (UPS Toulouse)

•00

K-armed bandits: framework

$$\longrightarrow \mu^* = \max_{k=1,\dots,K} \mu_k$$

At each round  $t = 1, 2, \ldots$ 

with expectations  $\mu_1, \ldots, \mu_K$ 

- 1. Statistician picks arm  $I_t \in \{1, \dots, K\}$ , possibly using  $U_{t-1}$
- 2. She gets a reward  $Y_t$  with law  $\nu_{I_t}$  given  $I_t$
- 3. This is the only feedback she receives
- $\longrightarrow$  Exploration–exploitation dilemma estimate the  $\nu_k$  vs. get high rewards  $Y_t$

## Regret:

K-armed bandits

$$R_T = \sum_{t=1}^T \left( \mu^* - \mathbb{E}[Y_t] \right) = \sum_{k=1}^K \left( \left( \mu^* - \mu_k \right) \mathbb{E} \left[ \sum_{t=1}^T \mathbb{I}_{\{I_t = k\}} \right] \right)$$

Indeed,  $Y_t \mid I_t \sim \nu_{I_t}$ , thus  $\mathbb{E}[Y_t \mid I_t] = \mu_{I_t}$ 

000

At each round, pick  $I_t$  (based on  $U_{t-1}$  + past) and get  $Y_t \mid I_t \sim 
u_{I_t}$ 

Control the regret 
$$R_T = \sum_{k=1}^K (\mu^* - \mu_k) \mathbb{E}[N_k(T)], \quad \text{where} \quad N_k(T) = \sum_{t=1}^T \mathbb{I}_{\{l_t = k\}}$$

Lower bound  $R_T \iff \text{Lower bound } \mathbb{E} \big[ N_k(T) \big] \text{ for } \mu_k < \mu^\star$ 

Randomized strategy  $\psi = (\psi_t)_{t \geqslant 0}$ : measurable functions

$$\psi_t: H_t = (U_0, Y_1, U_1, \dots, Y_t, U_t) \longmapsto \psi_t(H_t) = I_{t+1}$$

Take  $U_0,\,U_1,\ldots$  iid  $\sim \mathcal{U}_{[0,1]}$  and denote by  $\mathfrak{m}$  the Lebesgue measure

Transition kernel (conditional distributions):

$$\mathbb{P}(Y_{t+1} \in B, \ U_{t+1} \in B' \mid H_t) = \nu_{\psi_t(H_t)}(B) \mathfrak{m}(B')$$

# The fundamental inequality

$$\mathbb{E}_{\underline{\nu}}[N_k(T)] \operatorname{KL}(\nu_k, \nu_k') \geqslant \operatorname{kl}\left(\mathbb{E}_{\underline{\nu}}[N_k(T)/T], \mathbb{E}_{\underline{\nu}'}[N_k(T)/T]\right)$$

Summary: history  $H_t = (U_0, Y_1, U_1, \dots, Y_t, U_t)$  and  $I_{t+1} = \psi_t(H_t)$ 

Lower bound  $\mathbb{E}[N_k(T)]$  for  $\mu_k < \mu^*$ , where  $N_k(T) = \sum \mathbb{I}_{\{I_t = k\}}$ 

Transition kernel:  $\mathbb{P}(Y_{t+1} \in B, U_{t+1} \in B' \mid H_t) = \nu_{ab_t(H_t)}(B) \mathfrak{m}(B')$ 

Change of measure:  $\underline{\nu} = (\nu_1, \dots, \nu_K)$  vs.  $\underline{\nu}' = (\nu_1', \dots, \nu_K')$ 

Fundamental inequality: performs an implicit change of measure

For all Z taking values in [0,1] and  $\sigma(H_T)$ -measurable,

$$\sum_{k=1}^{K} \mathbb{E}_{\underline{\nu}}[N_k(T)] \operatorname{KL}(\nu_k, \nu'_k) = \operatorname{KL}(\mathbb{P}^{H_T}_{\underline{\nu}}, \mathbb{P}^{H_T}_{\underline{\nu}'})$$

$$\geqslant \operatorname{kl}(\mathbb{E}_{\underline{\nu}}[Z], \mathbb{E}_{\underline{\nu}'}[Z])$$

where kl(p, q) = KL(Ber(p), Ber(q))

Later use:  $\underline{\nu}'$  only differ from  $\underline{\nu}$  at k and  $Z = N_k(T)/T$ 

### Proof of the equality: chain rule for KL

$$H_{t+1} = \big(H_t, \, (Y_{t+1}, \, U_{t+1})\big) \, \text{ and } \, \mathbb{P}\big(Y_{t+1} \in \mathcal{B}, \, \, U_{t+1} \in \mathcal{B}' \, \big| \, H_t) = \nu_{\psi_t(H_t)}(\mathcal{B}) \, \mathfrak{m}(\mathcal{B}')$$

$$\begin{split} & \operatorname{KL}\left(\mathbb{P}^{H_{t+1}}_{\underline{\nu}},\,\mathbb{P}^{H_{t+1}}_{\underline{\nu}'}\right) \\ & = \operatorname{KL}\left(\mathbb{P}^{H_t}_{\underline{\nu}},\,\mathbb{P}^{H_t}_{\underline{\nu}'}\right) + \operatorname{KL}\left(\mathbb{P}^{(Y_{t+1},U_{t+1})\,|\,H_t}_{\underline{\nu}},\,\mathbb{P}^{(Y_{t+1},U_{t+1})\,|\,H_t}_{\underline{\nu}'}\right) \\ & = \operatorname{KL}\left(\mathbb{P}^{H_t}_{\underline{\nu}},\,\mathbb{P}^{H_t}_{\underline{\nu}'}\right) + \mathbb{E}_{\underline{\nu}}\left[\mathbb{E}_{\underline{\nu}}\left[\operatorname{KL}\left(\nu_{\psi_t(H_t)}\otimes\mathfrak{m},\,\nu'_{\psi_t(H_t)}\otimes\mathfrak{m}\right)\,\Big|\,H_t\right]\right] \\ & = \operatorname{KL}\left(\mathbb{P}^{H_t}_{\underline{\nu}},\,\mathbb{P}^{H_t}_{\underline{\nu}'}\right) + \mathbb{E}_{\underline{\nu}}\left[\mathbb{E}_{\underline{\nu}}\left[\operatorname{KL}\left(\nu_{\psi_t(H_t)},\,\nu'_{\psi_t(H_t)}\right)\,\Big|\,H_t\right]\right] \\ & = \operatorname{KL}\left(\mathbb{P}^{H_t}_{\underline{\nu}},\,\mathbb{P}^{H_t}_{\underline{\nu}'}\right) + \mathbb{E}_{\underline{\nu}}\left[\mathbb{E}_{\underline{\nu}}\left[\operatorname{KL}\left(\nu_{k},\nu'_{k}\right)\mathbb{I}_{\{I_{t+1}=k\}}\right]\right] \end{split}$$

By induction: 
$$\mathrm{KL}(\mathbb{P}^{H_T}_{\underline{\nu}}, \mathbb{P}^{H_T}_{\underline{\nu}'}) = \sum_{k}^{K} \mathbb{E}_{\underline{\nu}}[N_k(T)] \, \mathrm{KL}(\nu_k, \nu_k')$$

References: already present in Auer, Cesa-Bianchi, Freund and Schapire [2002]

Proof of the inequality  $\mathrm{KL}\big(\mathbb{P}^{H_T}_{\underline{\nu}},\,\mathbb{P}^{H_T}_{\underline{\nu}'}\big)\geqslant\mathrm{kl}\big(\mathbb{E}_{\underline{\nu}}[Z],\,\mathbb{E}_{\underline{\nu}'}[Z]\big)$  where  $\mathrm{kl}(p,q)=\mathrm{KL}(\mathrm{Ber}(p),\mathrm{Ber}(q))$  and  $Z\in[0,1]$  is  $\sigma(H_T)$ -measurable

# Lemma (Data-processing inequality)

For all random variables  $X:(\Omega,\mathcal{F}) o (\Omega',\mathcal{F}')$ ,

$$\mathrm{KL}(\mathbb{P}^X,\mathbb{Q}^X)\leqslant\mathrm{KL}(\mathbb{P},\mathbb{Q})$$

# Lemma (Data-processing inequality with expectations)

For all random variables  $X:(\Omega,\mathcal{F}) \to ([0,1],\mathcal{B})$ ,

$$\mathrm{KL}\Big(\mathrm{Ber}\big(\mathbb{E}_{\mathbb{P}}[X]\big),\,\mathrm{Ber}\big(\mathbb{E}_{\mathbb{Q}}[X]\big)\Big)\leqslant \mathrm{KL}(\mathbb{P},\mathbb{Q})$$

# Proof of $\mathrm{KL}(\mathbb{P}^X,\mathbb{Q}^X) \leqslant \mathrm{KL}(\mathbb{P},\mathbb{Q})$ — part 1/2



# Proof of $\mathrm{KL}(\mathbb{P}^X,\mathbb{Q}^X) \leqslant \mathrm{KL}(\mathbb{P},\mathbb{Q})$ — part 2/2

Therefore,
$$KL(P^{\times},Q^{\times}) = \int_{Q}^{\infty} \chi \ln \chi \, dQ^{\times} = \int_{Q}^{\infty} \chi \, dQ^{\times} = \int_{Q}^{$$

Reference: Ali and Silvey [1966]; implies joint convexity of KL

### Fundamental inequality: For all $Z \in [0,1]$ and $\sigma(H_T)$ -measurable,

$$\sum_{k=1}^{K} \mathbb{E}_{\underline{\nu}}[N_k(T)] \operatorname{KL}(\nu_k, \nu_k') \geqslant \operatorname{kl}(\mathbb{E}_{\underline{\nu}}[Z], \mathbb{E}_{\underline{\nu}'}[Z])$$

#### How to use it?

K-armed bandits

Bandit problem  $\underline{\nu} = (\nu_1, \dots, \nu_K)$  where k is suboptimal:  $\mu_k < \mu^*$ 

Pick 
$$Z = N_k(T)/T$$

Pick  $\underline{\nu}'$  that only differs from  $\underline{\nu}$  at k:

$$\underline{\nu}' = (\nu_1, \dots, \nu_{k-1}, \nu_k', \nu_{k+1}, \dots, \nu_K)$$

Then  $\mathbb{E}_{\underline{\nu}}[N_k(T)] \operatorname{KL}(\nu_k, \nu_k') \geqslant \operatorname{kl}(\mathbb{E}_{\underline{\nu}}[N_k(T)/T], \mathbb{E}_{\underline{\nu}'}[N_k(T)/T])$ 

$$\liminf_{T \to \infty} \frac{\mathbb{E}_{\underline{\nu}}[N_k(T)]}{\ln T} \geqslant \frac{1}{\mathcal{K}_{\inf}(\nu_k, \mu^*, \mathcal{D})}$$

To lower bound 
$$R_T = \sum_{k=1}^{N} (\mu^* - \mu_k) \mathbb{E}[N_k(T)]$$
, lower bound  $\mathbb{E}[N_k(T)]$  for  $\mu_k < \mu^*$ 

Bandit model  $\mathcal{D}$ : where the  $\nu_1, \ldots, \nu_K$  may lie in

## Assumption (UFC – uniform fast convergence on $\mathcal{D}$ )

The strategy  $\psi$  is such that:

For all bandit problems  $\underline{\nu} = (\nu_1, \dots, \nu_K)$  in  $\mathcal{D}$ , for all  $\mu_k < \mu^{\star}$ ,

$$\forall \alpha \in (0,1], \qquad \mathbb{E}_{\underline{\nu}}[N_k(T)] = o(T^{\alpha})$$

Bandit problem  $\underline{\nu} = (\nu_1, \dots, \nu_K)$  where k is suboptimal:  $\mu_k < \mu^*$ 

Pick  $\nu'_{\mathbf{k}} \in \mathcal{D}$  with expectation  $\mu'_{\mathbf{k}} > \mu^{\star}$ 

Form  $\underline{\nu}'$  that only differs from  $\underline{\nu}$  at k:

$$\underline{\nu}' = (\nu_1, \dots, \nu_{k-1}, \nu_k', \nu_{k+1}, \dots, \nu_K)$$

Then  $\mathbb{E}_{\nu}[N_k(T)] = o(T)$  and  $T - \mathbb{E}_{\nu'}[N_k(T)] = o(T^{\alpha})$ 

$$\mathbb{E}_{\underline{\nu}}[N_k(T)] = o(T)$$
 and  $T - \mathbb{E}_{\underline{\nu}'}[N_k(T)] = o(T^{\alpha})$  for a strategy  $\psi$  UFC on  $\mathcal{D}$ 

Also, 
$$kl(p,q) \geqslant (1-p) \ln \frac{1}{1-q} - \ln 2$$

## Fundamental inequality + lower bound on kl:

$$\begin{split} & \mathbb{E}_{\underline{\nu}} \big[ N_k(T) \big] \\ & \geqslant \frac{1}{\mathrm{KL}(\nu_k, \nu_k')} \ \mathrm{kl} \Big( \mathbb{E}_{\underline{\nu}} \big[ N_k(T)/T \big], \ \mathbb{E}_{\underline{\nu}'} \big[ N_k(T)/T \big] \Big) \\ & \geqslant \frac{1}{\mathrm{KL}(\nu_k, \nu_k')} \ \left( -\ln 2 + \Big( 1 - \mathbb{E}_{\underline{\nu}} \big[ N_k(T)/T \big] \Big) \ln \frac{1}{1 - \mathbb{E}_{\underline{\nu}'} \big[ N_k(T)/T \big]} \right) \\ & \geqslant \frac{1}{\mathrm{KL}(\nu_k, \nu_k')} \ \left( -\ln 2 + \big( 1 - o(1) \big) \ln \frac{1}{T^{\alpha - 1}} \right) \end{split}$$

Thus, 
$$\forall \alpha \in (0,1]$$
, 
$$\liminf_{T \to \infty} \frac{\mathbb{E}_{\underline{\nu}}[N_k(T)]}{\ln T} \geqslant \frac{1}{\mathrm{KL}(\nu_k, \nu_k')} \frac{\ln T^{1-\alpha}}{\ln T}$$

(for the first time, no assumption on  $\mathcal{D}$ )

for all strategies  $\psi$  UFC on  $\mathcal D$ 

(this is not a real restriction)

for all bandit problems  $\underline{\nu} = (\nu_1, \dots, \nu_K)$  in  $\mathcal D$ 

for  $\mu_k < \mu^*$ 

#### Lemma

K-armed bandits

for all  $\nu'_k$  in  $\mathcal{D}$  with  $\mu'_k > \mu^*$ ,

$$\liminf_{T \to \infty} \frac{\mathbb{E}_{\underline{\nu}}[N_k(T)]}{\ln T} \geqslant \frac{1}{\mathrm{KL}(\nu_k, \nu_k')}$$

# Theorem (see Lai and Robbins [1985], Burnetas and Katehakis [1996])

$$\liminf_{T \to \infty} \frac{\mathbb{E}_{\underline{\nu}} \big[ N_k(T) \big]}{\ln T} \geqslant \frac{1}{\mathcal{K}_{\mathsf{inf}} (\nu_k, \mu^\star, \mathcal{D})}$$

where  $\mathcal{K}_{inf}(\nu_k, \mu^*, \mathcal{D}) = \inf \{ \mathrm{KL}(\nu_k, \nu_k') : \nu_k' \in \mathcal{D} \text{ with } \mu_k' > \mu^* \}$ 

This distribution-dependent bound is asymptotically optimal:

$$\liminf_{T \to \infty} \frac{\mathbb{E}_{\underline{\nu}}[N_k(T)]}{\ln T} \geqslant \frac{1}{\mathcal{K}_{\mathsf{inf}}(\nu_k, \mu^\star, \mathcal{D})}$$

I.e., at least for well-behaved models  $\mathcal{D}$ , we can exhibit a matching upper bound:

$$\limsup_{T \to \infty} \frac{\mathbb{E}_{\underline{\nu}} \big[ N_k(T) \big]}{\ln T} \leqslant \frac{1}{\mathcal{K}_{\mathsf{inf}} \big( \nu_k, \mu^\star, \mathcal{D} \big)}$$

See Lai and Robbins [1985], Burnetas and Katehakis [1996], Honda and Takemura [2010-2015], Cappé, Garivier, Maillard, Munos and Stoltz [2013], etc.

Replacing the  $o(T^{\alpha})$  in the definition of UFC by a  $O(\ln T)$ :

$$\mathbb{E}_{\underline{\nu}}[N_k(T)] \geqslant \frac{\ln T}{\mathcal{K}_{\inf}(\nu_k, \mu^*, \mathcal{D})} - O(\ln(\ln T))$$

Cf. the upper bound of Honda and Takemura [2015]: This second-order term  $-\ln(\ln T)$  is optimal

We expect them to be linear!



The regret of Thompson Sampling vs. the asymptotic bound

### - " ...

For all models  $\mathcal D$  for all strategies  $\psi$  smarter  $^*$  than the uniform strategy on  $\mathcal D$  for all bandit problems  $\underline{\nu}=\left(\nu_1,\ldots,\nu_K\right)$  in  $\mathcal D$  for all arms k, for all  $T\geqslant 1$ ,

$$\mathbb{E}_{\underline{\nu}}\big[\mathsf{N}_k(\mathsf{T})\big]\geqslant \frac{\mathsf{T}}{\mathsf{K}}\Big(1-\sqrt{2\mathsf{T}\mathcal{K}_{\mathsf{inf}}(\nu_k,\mu^\star,\mathcal{D})}\Big)\,.$$

In particular, for 
$$T \leqslant 1/(8\mathcal{K}_{\mathsf{inf}}(\nu_k, \mu^*, \mathcal{D}))$$
,  $\mathbb{E}_{\underline{\nu}}[N_k(T)] \geqslant \frac{T}{2K}$ 

\* A strategy  $\psi$  is smarter than the uniform strategy on a model  $\mathcal D$  if for all bandit problems  $\nu$  in  $\mathcal D$ , for all optimal arms  $a^\star$ ,

$$\forall T \geqslant 1, \qquad \mathbb{E}_{\underline{\nu}}[N_{a^*}(T)] \geqslant \frac{T}{\nu}.$$

Mild requirement; but some requirement needed to get such a universal statement All previous linear lower bounds were for some (well-chosen) bandit problems in  $\mathcal{D}$ 

Same  $\underline{\nu}'$  as before: just replace  $\nu_k$  by  $\nu_k'$  with  $\mu_k' > \mu^*$ 

Thus  $\mathbb{E}_{\nu'}[N_k(T)/T] \geqslant 1/K$  and [wnlog]  $\mathbb{E}_{\underline{\nu}}[N_k(T)/T] \leqslant 1/K$ 

Using a local Pinsker's inequality \*

$$\begin{split} \frac{T}{K} \operatorname{KL}(\nu_{k}, \nu_{k}') &\geqslant \mathbb{E}_{\underline{\nu}} \big[ N_{k}(T) \big] \operatorname{KL}(\nu_{k}, \nu_{k}') \\ &\geqslant \operatorname{kl} \Big( \mathbb{E}_{\underline{\nu}} \big[ N_{k}(T)/T \big], \, \mathbb{E}_{\underline{\nu}'} \big[ N_{k}(T)/T \big] \Big) \\ &\geqslant \operatorname{kl} \Big( \mathbb{E}_{\underline{\nu}} \big[ N_{k}(T)/T \big], \, 1/K \Big) \\ &\geqslant (K/2) \left( \mathbb{E}_{\underline{\nu}} \big[ N_{k}(T)/T \big] - 1/K \right)^{2} \end{split}$$

Hence the bound (to be optimized over all relevant  $\nu'_k$ )

$$\mathbb{E}_{\underline{\nu}}\big[N_k(T)\big]\geqslant \frac{T}{K}\Big(1-\sqrt{2T\mathop{\mathrm{KL}}(\nu_k,\nu_k')}\Big)$$

<sup>\*</sup> For  $0\leqslant p < q\leqslant 1$ , we have  $\mathrm{kl}(p,q)\geqslant \frac{1}{2\max_{} \chi(1-\chi)}(p-q)^2\geqslant \frac{1}{2q}(p-q)^2$ 

#### Illustration of our bound

K-armed bandits





Expected number of times a suboptimal arm is pulled: Thompson Sampling vs. our linear lower bound (look rather at the T/(2K) and T/K lines)

Conclusion: many other bounds!

$$\sum_{k=1}^K \mathbb{E}_{\underline{\nu}}[N_k(T)] \operatorname{KL}(\nu_k, \nu_k') \geqslant \operatorname{kl}(\mathbb{E}_{\underline{\nu}}[Z], \, \mathbb{E}_{\underline{\nu}'}[Z])$$

For instance,

K-armed bandits

The  $\sqrt{KT}$  distribution-free bound by Auer, Cesa-Bianchi, Freund and Schapire [2002]

The bounds by Bubeck, Perchet and Rigollet [2013] when  $\mu^*$  and/or the gaps  $\mu^* - \mu_k$  are known

And many other new bounds

(our fundamental inequality is already a popular tool!)