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The framework of this talk

Sequential and worst-case deterministic prediction of time series
based on expert advice



A statistician has to predict a time series y1, y2,... € C, where C is

a convex subset of R,

Finitely many expert forecasts are available, e.g., given by some
stochastic models.

LESSERPERTS

At each instance t, expert j € {1,..., N} outputs a forecast
-1
fie="fie(n ') €C
Observations and predictions are made in a sequential fashion:
The prediction y; of y; is determined based
— on the past observations yffl =1, Y1)
— and the current and past expert forecasts f; s, where
se{l,...,t}andje{1,...,N},

before getting to know the actual value y;.
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A typical solution of the problem is to form convex (or linear)

combinations of the expert forecasts, with weights
P = (th, e pN’t) or vi = (v17t, cee vN,t) adjusted over time.

N
The statistician then outputs the forecasts y; = Z Pt it
j=1

The observations y; will not be considered stochastic anymore at
this stage; thus the performance criterion will be a relative one.

We consider a convex loss function £ : C x C — R, e.g., the
square loss £(x,y) = (x — y)? when C C R.

The cumulative losses of the statistician and of the constant
convex combinations q = (g1, ..., gn) of the expert forecasts equal

-
Lr=>"1t
t=1 J

N N
Picfeye| and Lr(@) =Y (D qifie, v
! 1

t=1 \j=
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First study: Forecasting of air quality |N E-RIS

. e
Starting date: September 2005 anon Al ppamnss i)

Academic partner: Vivien Mallet, INRIA, project-team CLIME
Industrial partner: Edouard Debry, INERIS (Institut National de

I'EnviRonnement Industriel et des RisqueS)
M.Sc. students involved over time:

Boris Mauricette (6 months in 2007; from M2 Pro
Paris-Diderot and ENS de Lyon)

Sébastien Gerchinovitz (5 months in 2008; from M2 Maths
Paris-Sud)

Karim Drifi (4 months in 2009; from M2 MVA ENS Cachan)
Paul Baudin (4 months in 2012; from M2 MVA ENS Cachan)

Associated publication: in the Journal of Geophysical Research
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Some characteristics of one among the studied data sets:

— 126 days during summer '01; one-day ahead prediction
— 241 stations in France and Germany

— Typical ozone concentrations between 40 pg m~3 and
150 pg m—3; sometimes above the values 180 pugm=3 or 240

pgm~3

— 48 experts, built in Mallet et Sportisse '06 by choosing a
physical and chemical formulation, a numerical approximation
scheme to solve the involved PDEs, and a set of input data
(among many)

— Instead of trusting only one model/expert (“selection”), we
proceed in a more greedy way and consider many models/experts,
which we combine sequentially (“aggregation”).

This leads to more accurate and more stable (meta-)predictions.



The stations of the network are indexed by S.

Each model j =1,...,48 outputs a prediction Ij-st for the ozone
peak at station s and day t, which is then compared to the
measured peak y;. (We discard measurement errors.)

The statistician chooses at each round a single convex weight
vector p, or linear weight vector v; to be used at all stations; this
leads to prediction fields.

The strategies are assessed based on their RMSEs, which amounts
to considering the convex losses

48
le(py) = Z Z Pj,t Cft - Y

SESt J:].
where S; is the subset of active stations at day t.

ZtT:to le(py)

—————— for tg = 31 (short training)
Z;r:to |St‘

2

The RMSE equals
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Left: There are several good and useful experts.

Right: Their forecasting profiles are quite different (the experts are
not clones the ones of the others!).

0 5 10 15 20 25 30 35 40 45 305 5 10 15 20

Left: Coloring of Europe according to the index of the locally best expert

Right: Average forecasting profiles during a day (averages over time and space)
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The framework of this talk

(continued)
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The regret Rt is defined as the difference

T N T N
LT — mqin LT(q) = Z l Zth 6"1', ye | — mqin Z 14 Z qj 6’,t> Yt
t=1 j=1 t=1 J=1

We are interested in aggregation rules with (uniformly) vanishing
per-round regret,

1 .
limsup = sup {LT — min LT(q)} <0
Tooo T q

where the supremum is over all possible sequences of observations
and of expert forecasts. (Not just over most of these sequences!)

Remarks:

— Hence the name “prediction of individual sequences” (or robust
aggregation of expert forecasts).

— The best convex combination g* is known in hindsight
whereas the statistician has to predict in a sequential fashion.



Framework
ocoe

This framework leads to a meta-statistical interpretation:

— each series of expert forecasts is given by a statistical
forecasting method, possibly tuned with some given set of
parameters;

— these base forecasts relying on some stochastic model are then
in a and manner.

The cumulative loss of the statistician can be decomposed as

Lr= min L7(q) +

This leads to the following interpretations:

— the term indicating the performance of the best convex
combination of the expert forecasts is an approximation error;

— the regret term measures a
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First study, continued

Forecasting of the air quality
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How good are our experts? See the “oracles” below.

Do we expect the aggregation methods to provide significant
improvements? Yes, whenever the best convex and/or linear
combinations significantly outperform the best expert.

Uniform mean Best expert Best p Best u
24 .41 22.43 21.45 19.24

Performance, in terms of RMSE, of (some combinations of) the experts
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Disclaimer

We could also consider batch learning methods to aggregate
models/experts, like

— BMA (Bayesian model averaging),
— CART (classification and regression trees),
— random forests, etc.,

or even selection methods, and apply them online, by running a
batch analysis at each step.

We instead resort to “real” online techniques that, in addition, come
up with theoretical guarantees even in non-stochastic scenarios.

We will also see that calibrating their parameters can be done in a
more satisfactory way, using the sequential character of the
prediction.
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A strategy to pick convex weights

Let's do some maths!
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Reminder of the aim and setting:
Given a loss function £: C x C — R, where C C R is convex

Choose sequentially the convex weights p; ;

To uniformly bound the regret with respect to all sequences of
observations y; and expert predictions f; ;:

T

N T N
Z L ij,t fieoye | — mqin Z ¢ Z qj fi.e, Yt
t=1 =1

t=1 j=1

When £ is convex in its first argument, sub-gradients exist, i.e.:

For all x,y € C, there exists V/(x,y) such that

vx' e, Ux,y) — X' y) < VU(x,y) - (x = X)
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To uniformly bound the regret with respect to all convex weight

vectors , we write

N T N

-
max Z 14 Z Pt fies e | — Z ¢ Z qj fit: Yt
t=1 =1 t=1 =1

T N N
< max zve<zpk,tfk,t, yf>- prefie— > b
L k=1 =1 j=1
T N _ N _
= max > (D pielie =D il
t=1 \ j=1 j=1
T N " T _
- S e yin,
t=1 j=1 t=1

where we denoted

N
by =V1{ <Z Ptk t5 yr) r

k=1
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Via the (signed) pseudo-losses

N
Ej,t = Ve <Z pk,tfk,t’ }/t> : ﬁ,t

k=1
it suffices to consider the following simplified framework.

At eachround t =1, 2, ...,
— the experts provide forecasts fi ¢, ..., fy ¢;
— the statistician picks convex weights p, = (p1s¢, .-, Pn,t);
— the environment then determines, possibly with the knowledge

of p;, a loss vector (271,,_;, ey EN,t)

The aim is to bound uniformly the regret

RT*ZZPJte,t—I_ min Z&t

t=1 j=1



For all j € {1,..., N}, we pick pj1 = 1/N and for all t > 2
exp (1 Zi;izjs)
Eivzl exp( 772 Ek s)

This strategy is known as performing exponentially weighted
averages of the past cumulative losses of the experts (with fixed
learning rate n > 0).

pjt =

Lemma. Consider two real numbers m < M.

For all n > 0 and for all individual sequences Zj,t € [m, M],

T

N2
RT—ZZPthm.mm Z:r\'“N WM

t=1 j=1

References: Vovk '90; Littlestone and Warmuth '94
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Proof of the regret bound

It relies on Hoeffding's lemma: for all random variables X with range
[m, M], for all s € R,

InE[e™] < sE[X]+ = (M — m)?

8(
Forallt=1,2,...,

N exp (—77 S, s>
Q) Pl = -7
;Jt“ ;Zk 1eXP< Uztlgks)

N ~
> j1 €XP (—77 > EJ,S> n? )
n— — =5 — —(M —m)
D k=1 €XP (‘77 P ék,S)
A telescoping sum appears and leads to

N T 7

L 1 =1 (—n 21 fj,s) (M — m)?
Zijtfjt\—fm +l} T.
o n N 8

t=1

Jst
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We now discuss the obtained bound.

Recall that [m, M] is the loss range.

The stated bound can be optimized in #:

. [InN (M — m)? T
< = — —
RT\T;B{ ; +n 5 T} (M m)\/2 In N

for the (theoretical) optimal choice

. 1 /[8InN
77 =
M—m T

This choice depends on M and m, which are sometimes not known
beforehand, as well as on T, which may not be bounded (if the
prediction game goes forever).

Since no fixed value of > 0 ensures that R = o(T), we still
have no fully sequential strategy... but this can be taken care of.
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The possibles patches are, first, to resort to the “doubling trick.”

Alternatively, the learning rates of the exponentially weighted
average strategy may vary over time, depending on the past: for
t>2,

exp (*Ut Zi;}l Zj,s)
Zk 1 &XP ( e Y e . Zk,s)

Pjt =

By a careful such adaptive choice of the 7;, the following regret
bound can be obtained:

Rr <OM—-m)vVTInN+O(M-—-m)InN
where the [J denote some universal constants.

We thus recover the same orders of magnitude for the regret
bound.

References: Auer, Cesa-Bianchi and Gentile '02; Cesa-Bianchi, Mansour and Stoltz '07
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However, these theoretically satisfactory solutions would not work

well in practice.

This is what we do instead. (It is very different from techniques like cross-validation:
we exploit the sequential fashion.)

The exponentially weighted average strategy &, with fixed learning
rate ) picks the convex combination p:(n), where

exp <_77 Z;;} ZLS)
S exp (<1 ko)

Pj,t(n) =

We denote its cumulative loss Lt Z 14 ij s(Mfiss ¥s

Based on the family of the &,, we build a data—dnven
meta-strategy which at each instance t > 2 resorts to
Pey1(ne) where ne € arg min Ly(n)
n>0

Reference: An idea of Vivien Mallet
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Other natural variants: Focus on the most recent losses

Moving sums (with window of size H):

exp (‘77 Zi;imx{l t—H} zJS)
Zﬁlzl exp ( n Es max{1,t—H} gkﬁ)

One can prove that the regret is > [ T in the worst case.

Pjt =

Discounted losses (with discounts given by a sequence (3; \, 0):
exp (—r/t Z (1 + B S)EJ S)
ELV:]- exp ( Nt Z ( + 31‘ s)gk 5)

Sublinear regret bounds hold for suitable sequences (5;) and (7):
tne — 0 and nt2ﬁ5—>0

s<t

Pjt =

(We often take 3s = [J/s? in the experimental studies.)
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First study, continued

Forecasting of the air quality
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Oracles
(RMSE of the experts and of fixed combinations thereof)

Uniform mean Best expert Best p
24.41 22.43 21.45

Semi-sequential strategies
(RMSE of the strategies tuned with best parameters in hindsight)

Original version Moving sums (H = 83) Discounts (8s = 1/s2)
21.47 21.37 21.31

Fully sequential strategies
(RMSE of the original version of the strategy)

Best parameter Data-driven
21.47 21.77
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Our strategies do not focus on a single expert. We knew it from
the numerical performance.

But actually, the weights associated with the experts change
quickly and significantly over time and do not converge (which
illustrates in passing that the performance of the considered
experts varies over time).
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Convex weights output by the (original) strategy with best parameter 7 in hindsight
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A strategy to pick linear weights

It will ring a bell to the statisticians among you!
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Linear combinations:  Ridge regression (and the LASSO?)

The ridge regression was introduced in the 70s by Hoerl and
Kennard; it was intensively studied since then in a stochastic
setting.

We consider the case where C C R and /(x,y) = (x — y).

The ridge regression resorts to linear combinations of the experts:

2
N

t—1
v; € arg min /\||UH§+Z Ys—zuj fis
ucRN s=1 j=1

for some regularization parameter A > 0.

It also exhibits a sublinear regret against individual sequences.

We do not know any such regret bounds for the LASSO yet.



Linear weights
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Theorem. Consider a bound B > 0.

For all A > 0, for all individual sequences of observations
yt € [-B, B] and of expert predictions fj; € [-B, B],
for allu € RV,

T N

T N
Z 14 Z\/j,tﬂ',n Yt _Z ¢ Zujﬁ',h Yt
=1 t=1 \j=1

t=1
NTB? TB2
< 2 2 e
\)\HUH2+2NB <1+ \ ) In <1+ Nx\)

)\ of the order of 1/\/7 is thus a good theoretical choice and leads
to O(V/T InT) regret bounds.

Time-varying or data-driven parameters \; can be considered (both
for theoretical bounds or for the sake of practical performance).

References: Vovk '01; Azoury and Warmuth '01; Gerchinovitz '11
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The interest of this method is that it can compensate for biases (in
either direction) as the weights do not need to sum up to 1.

Even better, we can/should use it as a pre-treatment on each
single expert and

— turn it into a modified expert with predictions v; f; ,

— performing on average almost as well as the best expert of the
form ~ f; ; for some constant v € R.

This would improve greatly the predictions if there existed, for
instance, an almost constant multiplicative bias of 1/~.
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First study, continued

Forecasting of the air quality
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In our application to the prediction of air quality, we have extra
sums over the stations of the network.

E.g., the ridge regression is defined as

2

V: € arg min )\HUH2+ZZ yy; — ZUJ
ucRV

=1 seS;

One can show that O(ﬁ In T) regret bounds are still preserved.

The experts are indeed improved via the ridge pre-treatment. We
illustrate this on the worst and best experts.

Original  Pre-treated Original  Pre-treated
35.79 24.78 22.43 21.66
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Oracles
(RMSE of the experts and of fixed combinations thereof)

Uniform mean Best expert Best p Best u
24 .41 22.43 21.45 19.24

Semi-sequential ridge regression
(RMSE of the strategies tuned with best parameters in hindsight)

Original version Moving sums (H = 45) Discounts (3s = 100/s2)
20.77 20.03 19.45

Fully sequential ridge regression
(RMSE of the original version of the strategy)

Best parameter Data-driven
20.77 20.81
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Our strategies do not focus on a single expert and the weights
associated with the experts do not converge. |...]
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Linear weights output by the (discounted) version of the ridge regression
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Methodological summary

@ Build the N experts (possibly on a training data set) and pick
another data set for the evaluation of our methods, with T
instances;

@ Compute some benchmarks and some reference oracles;

© Evaluate our strategies when run with fixed parameters (i.e.,
with the best parameters in hindsight);

@ The performance of interest is actually the one of the
data-driven meta-strategies.

We typically expect T > 5N (or even T > 10N).

Hope arises when the oracles are 10% or 20% better than the methods
used so far (e.g., the best expert when the latter is known in advance).

This usually requires the experts to be as different as possible.
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Second study: Forecasting of exchange rates I l EC

PARIS
Starting date: March 2012

Academic partner: Tomasz Michalski, HEC Paris

M.Sc. student involved over time:

— Christophe Amat (5 months in 2013; from Ecole
Polytechnique)

Associated publication: In preparation
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The goal is to predict monthly averages r:;1 of exchange rates
based on few macro-economic indicators x; ; describing the state of
the world:

— consumer price indexes (CPI);

industrial production (Prod);

monetary mass (Mon);

required rates of return (“interest rates”, 3R).
They will give rise to four experts.

The prediction horizon is 1-month ahead.

A classical stochastic modeling is
Inrepr =Inr+ o (Wip1 — We)
for some Brownian motion W.

It is considered difficult to improve on it (Meese and Rogoff '83).

It will give rise to the final expert (“random walk, RW").
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We denote by r; the averaged exchange rate of currency A with
respect to currency B.

We focus on the log—variation yyy1 = A1 = Inreps — Inry.

The stochastic modeling suggested the prediction fy ;1 = 0.

The economic theory indicates that a given macro-economic
indicator j € {1,2,3,4} can be used to forecast the exchange rate
according to

\ _ B
Aj,t-i-l =In Xj,

Using our methods we propose convex or linear combinations of
the log—variations:

4 4
Apyr = E Uj,t+1 E uj, t+1 Jt+1
Jj=0 Jj=1
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The predicted log—variations At and exchange rates ﬁt +Inr_q
are evaluated via their common RMSE:

T
. 1 - >
RMSET = m ; (At - At)
1 LR 2
= w;((At—Hn ft—1) —In rt)

where ty = 30 allows a short training period.

We apply two (families of) strategies:

- (exponential weights on the gradients of the losses), as it
leads to interpretable weights;

— the , as it pushes in favor of the RW expert.
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Some orders of magnitude for the prediction problems at hand are
indicated below.

Time intervals Every month
Period April 1973 — May 2013
Time instances T about 480
Number of experts N 5(=1+4)

usD / GBP

Median of the A; 1.48 x 102
Maximum of the |A| 11.08 x 1072
JPY / USD

Median of the A; 1.57 x 1072

Maximum of the |A| 10.52 x 1072
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Results for USD / GBP

Experts RMSE Oracle RMSE
RW 247 x1072 Best expert 2.47 x 1072
CPI 2.71 x 1072 Best p 2.47 x 1072
3R 2.84x1072 Best u 2.46 x 1072

Prod 2.59 x 1072
Mon 2.68 x 1072

VS.

EG disc. Semi-seq. 2.39 x 1072
Fully seq. 2.42x 1072 (—2.1%)

Ridge disc. Semi-seq. 2.35 x 1072
Fully seq. 2.36 x 1072 (—4.3%)
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Results for JPY / USD

Experts RMSE Oracle RMSE
RW  2.82x1072 Best expert 2.82 x 1072
CPl  2.94 x 102 Bestp  2.82 x 102
3R 3.05x1072 Best u 2.79 x 1072

Prod 2.88 x 1072
Mon 3.18 x 1072

VS.

EG disc. Semi-seq. 2.73 x 1072
Fully seq. 2.79 x 1072 (—0.9%)

Ridge disc. Semi-seq. 2.71 x 1072
Fully seq. 2.73x 1072 (—3.0%)
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Other empirical studies
— Forecasting of the electricity consumption (EDF R&D)

— Forecasting of the production data of oil reservoirs (IFP-EN)

'ﬁ: €Energies Q:é %j
Q nouvelles eDF

R@®D

But time is over...

(Please consider inviting Pierre Gaillard for more details on our
work with EDF R&D!)
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References

In case you're not bored to death (yet) by this topic!
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The so-called “red bible!”

PREDICTION, LEARNING, AND GAMES
Nicokh Cesa-Blanchi Gibor Lugosi

Prediction, Learning, and Games

Nicold Cesa-Bianchi et Gabor Lugosi
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| published a survey paper (containing this talk!) one year ago in
the Journal de la Société Francaise de Statistique

H #k Journal de la Société Frangaise de Statistique

Agrégation séquentielle de prédicteurs :
méthodologie générale et applications & la
prévision de la qualité de I'air et a celle de la
consommation électrique

Even better (or worse)—it is in French!
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