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The framework of this talk

Sequential and worst-case deterministic prediction of time series
based on expert advice
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A statistician has to predict a time series y1, y2, . . . ∈ C, where C is
a convex subset of Rd .

Finitely many expert forecasts are available, e.g., given by some
stochastic models.

At each instance t, expert j ∈ {1, . . . ,N} outputs a forecast

fj ,t = fj ,t
(
y t−1

1

)
∈ C

Observations and predictions are made in a sequential fashion:

The prediction ŷt of yt is determined based

– on the past observations y t−1
1 = (y1, . . . , yt−1),

– and the current and past expert forecasts fj ,s , where
s ∈ {1, . . . , t} and j ∈ {1, . . . ,N},

before getting to know the actual value yt .
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A typical solution of the problem is to form convex (or linear)
combinations of the expert forecasts, with weights
pt =

(
p1,t , . . . , pN,t

)
or vt =

(
v1,t , . . . , vN,t

)
adjusted over time.

The statistician then outputs the forecasts ŷt =
N∑
j=1

pj ,t fj ,t

The observations yt will not be considered stochastic anymore at
this stage; thus the performance criterion will be a relative one.

We consider a convex loss function ` : C × C → R+, e.g., the
square loss `(x , y) = (x − y)2 when C ⊆ R.

The cumulative losses of the statistician and of the constant
convex combinations q = (q1, . . . , qN) of the expert forecasts equal

L̂T =
T∑
t=1

`

 N∑
j=1

pj,t fj,t , yt

 and LT (q) =
T∑
t=1

`

 N∑
j=1

qj fj,t , yt





Framework Convex weights Linear weights Summary / Second study Conclusion

First study: Forecasting of air quality

Starting date: September 2005

Academic partner: Vivien Mallet, INRIA, project-team CLIME

Industrial partner: Edouard Debry, INERIS (Institut National de
l’EnviRonnement Industriel et des RisqueS)

M.Sc. students involved over time:

– Boris Mauricette (6 months in 2007; from M2 Pro
Paris-Diderot and ENS de Lyon)

– Sébastien Gerchinovitz (5 months in 2008; from M2 Maths
Paris-Sud)

– Karim Drifi (4 months in 2009; from M2 MVA ENS Cachan)

– Paul Baudin (4 months in 2012; from M2 MVA ENS Cachan)

Associated publication: in the Journal of Geophysical Research
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Some characteristics of one among the studied data sets:

– 126 days during summer ’01; one-day ahead prediction

– 241 stations in France and Germany

– Typical ozone concentrations between 40 µg m−3 and
150 µg m−3; sometimes above the values 180 µg m−3 or 240
µg m−3

– 48 experts, built in Mallet et Sportisse ’06 by choosing a
physical and chemical formulation, a numerical approximation
scheme to solve the involved PDEs, and a set of input data
(among many)

→ Instead of trusting only one model/expert (“selection”), we
proceed in a more greedy way and consider many models/experts,
which we combine sequentially (“aggregation”).

This leads to more accurate and more stable (meta-)predictions.
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The stations of the network are indexed by S.

Each model j = 1, . . . , 48 outputs a prediction f sj ,t for the ozone
peak at station s and day t, which is then compared to the
measured peak y st . (We discard measurement errors.)

The statistician chooses at each round a single convex weight
vector pt or linear weight vector vt to be used at all stations; this
leads to prediction fields.

The strategies are assessed based on their RMSEs, which amounts
to considering the convex losses

`t(pt)
def
=
∑
s∈St

 48∑
j=1

pj ,t f
s
j ,t − y st

2

where St is the subset of active stations at day t.

The RMSE equals

√√√√∑T
t=t0

`t(pt)∑T
t=t0
|St |

for t0 = 31 (short training)
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Left: There are several good and useful experts.

Right: Their forecasting profiles are quite different (the experts are
not clones the ones of the others!).
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Left: Coloring of Europe according to the index of the locally best expert

Right: Average forecasting profiles during a day (averages over time and space)
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The framework of this talk

(continued)
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The regret RT is defined as the difference

L̂T −min
q

LT (q) =
T∑
t=1

`

 N∑
j=1

pj,t fj,t , yt

−min
q

T∑
t=1

`

 N∑
j=1

qj fj,t , yt


We are interested in aggregation rules with (uniformly) vanishing
per-round regret,

lim sup
T→∞

1

T
sup

{
L̂T −min

q
LT (q)

}
6 0

where the supremum is over all possible sequences of observations
and of expert forecasts. (Not just over most of these sequences!)

Remarks:

– Hence the name “prediction of individual sequences” (or robust
aggregation of expert forecasts).

– The best convex combination q? is known in hindsight
whereas the statistician has to predict in a sequential fashion.
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This framework leads to a meta-statistical interpretation:

– each series of expert forecasts is given by a statistical
forecasting method, possibly tuned with some given set of
parameters;

– these base forecasts relying on some stochastic model are then
combined in a robust and deterministic manner.

The cumulative loss of the statistician can be decomposed as

L̂T = min
q

LT (q) + RT

This leads to the following interpretations:

– the term indicating the performance of the best convex
combination of the expert forecasts is an approximation error;

– the regret term measures a sequential estimation error.
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First study, continued

Forecasting of the air quality
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How good are our experts? See the “oracles” below.

Do we expect the aggregation methods to provide significant
improvements? Yes, whenever the best convex and/or linear
combinations significantly outperform the best expert.

Uniform mean Best expert Best p Best u

24.41 22.43 21.45 19.24

Performance, in terms of RMSE, of (some combinations of) the experts
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Disclaimer

We could also consider batch learning methods to aggregate
models/experts, like

– BMA (Bayesian model averaging),

– CART (classification and regression trees),

– random forests, etc.,

or even selection methods, and apply them online, by running a
batch analysis at each step.

We instead resort to“real”online techniques that, in addition, come
up with theoretical guarantees even in non-stochastic scenarios.

We will also see that calibrating their parameters can be done in a
more satisfactory way, using the sequential character of the
prediction.
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A strategy to pick convex weights

Let’s do some maths. But simple maths, and for 10 minutes only!
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Reminder of the aim and setting:

Given a loss function ` : C × C → R, where C ⊆ Rd is convex

Choose sequentially the convex weights pj ,t

To uniformly bound the regret with respect to all sequences of
observations yt and expert predictions fj ,t :

T∑
t=1

`

 N∑
j=1

pj ,t fj ,t , yt

−min
q

T∑
t=1

`

 N∑
j=1

qj fj ,t , yt



When ` is convex in its first argument, sub-gradients exist, i.e.:

For all x , y ∈ C, there exists ∇`(x , y) such that

∀x ′ ∈ C, `(x , y)− `(x ′, y) 6 ∇`(x , y) · (x − x ′)
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To uniformly bound the regret with respect to all convex weight
vectors q, we write

max
q

T∑
t=1

`

 N∑
j=1

pj ,t fj ,t , yt

− T∑
t=1

`

 N∑
j=1

qj fj ,t , yt


6 max

q

T∑
t=1

∇`
(

N∑
k=1

pk,t fk,t , yt

)
·

 N∑
j=1

pj ,t fj ,t −
N∑
j=1

qj fj ,t


= max

q

T∑
t=1

 N∑
j=1

pj ,t ˜̀j ,t − N∑
j=1

qj ˜̀j ,t


=
T∑
t=1

N∑
j=1

pj ,t ˜̀j ,t − min
i=1,...,N

T∑
t=1

˜̀
i ,t

where we denoted

˜̀
j ,t = ∇`

(
N∑

k=1

pk,t fk,t , yt

)
· fj ,t
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Via the (signed) pseudo-losses

˜̀
j ,t = ∇`

(
N∑

k=1

pk,t fk,t , yt

)
· fj ,t

it suffices to consider the following simplified framework.

At each round t = 1, 2, . . . ,

– the experts provide forecasts f1,t , . . . , fN,t ;

– the statistician picks convex weights pt =
(
p1,t , . . . , pN,t

)
;

– the environment then determines, possibly with the knowledge
of pt , a loss vector

(˜̀
1,t , . . . , ˜̀N,t)

The aim is to bound uniformly the regret

RT =
T∑
t=1

N∑
j=1

pj ,t ˜̀j ,t − min
i=1,...,N

T∑
t=1

˜̀
i ,t
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For all j ∈ {1, . . . ,N}, we pick pj ,1 = 1/N and for all t > 2,

pj ,t =
exp

(
−η∑t−1

s=1
˜̀
j ,s

)
∑N

k=1 exp
(
−η∑t−1

s=1
˜̀
k,s

)
This strategy is known as performing exponentially weighted
averages of the past cumulative losses of the experts (with fixed
learning rate η > 0).

Lemma. Consider two real numbers m 6 M.

For all η > 0 and for all individual sequences ˜̀j ,t ∈ [m,M],

RT =
T∑
t=1

N∑
j=1

pj ,t ˜̀j ,t − min
i=1,...,N

T∑
t=1

˜̀
i ,t 6

lnN

η
+ η

(M −m)2

8
T

References: Vovk ’90; Littlestone and Warmuth ’94



Framework Convex weights Linear weights Summary / Second study Conclusion

Proof of the regret bound

It relies on Hoeffding’s lemma: for all random variables X with range
[m,M], for all s ∈ R,

lnE
[
esX
]
6 s E[X ] +

s2

8
(M −m)2

For all t = 1, 2, . . .,

−η
N∑
j=1

pj,t ˜̀j,t = −η
N∑
j=1

exp
(
−η∑t−1

s=1
˜̀
j,s

)
∑N

k=1 exp
(
−η∑t−1

s=1
˜̀
k,s

) ˜̀j,t
> ln

∑N
j=1 exp

(
−η∑t

s=1
˜̀
j,s

)
∑N

k=1 exp
(
−η∑t−1

s=1
˜̀
k,s

) − η2

8
(M −m)2

A telescoping sum appears and leads to

T∑
t=1

N∑
j=1

pj,t ˜̀j,t 6 −1

η
ln

∑N
j=1 exp

(
−η∑T

s=1
˜̀
j,s

)
N︸ ︷︷ ︸

6 min
i=1,...,N

T∑
t=1

˜̀
i,t +

lnN

η

+η
(M −m)2

8
T .
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We now discuss the obtained bound.

Recall that [m,M] is the loss range.

The stated bound can be optimized in η:

RT 6 min
η>0

{
lnN

η
+ η

(M −m)2

8
T

}
= (M −m)

√
T

2
lnN

for the (theoretical) optimal choice

η? =
1

M −m

√
8 lnN

T

This choice depends on M and m, which are sometimes not known
beforehand, as well as on T , which may not be bounded (if the
prediction game goes forever).

Since no fixed value of η > 0 ensures that RT = o(T ), we still
have no fully sequential strategy... but this can be taken care of.
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The possibles patches are, first, to resort to the “doubling trick.”

Alternatively, the learning rates of the exponentially weighted
average strategy may vary over time, depending on the past: for
t > 2,

pj ,t =
exp

(
−ηt

∑t−1
s=1

˜̀
j ,s

)
∑N

k=1 exp
(
−ηt

∑t−1
s=1

˜̀
k,s

)
By a careful such adaptive choice of the ηt , the following regret
bound can be obtained:

RT 6 � (M −m)
√
T lnN +� (M −m) lnN

where the � denote some universal constants.

We thus recover the same orders of magnitude for the regret
bound.

References: Auer, Cesa-Bianchi and Gentile ’02; Cesa-Bianchi, Mansour and Stoltz ’07
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However, these theoretically satisfactory solutions would not work
well in practice.
This is what we do instead. (It is very different from techniques like cross-validation:

we exploit the sequential fashion.)

The exponentially weighted average strategy Eη with fixed learning
rate η picks the convex combination µt(η), where

pj ,t(η) =
exp

(
−η∑t−1

s=1
˜̀
j ,s

)
∑N

k=1 exp
(
−η∑t−1

s=1
˜̀
k,s

)
We denote its cumulative loss L̂t(η) =

t∑
s=1

`

 N∑
j=1

pj ,s(η)fj ,s , ys


Based on the family of the Eη, we build a data-driven
meta-strategy which at each instance t > 2 resorts to

pt+1(ηt) where ηt ∈ argmin
η>0

L̂t(η)

Reference: An idea of Vivien Mallet
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Other natural variants: Focus on the most recent losses

Moving sums (with window of size H):

pj ,t =
exp

(
−η∑t−1

s=max{1,t−H}
˜̀
j ,s

)
∑N

k=1 exp
(
−η∑t−1

s=max{1,t−H}
˜̀
k,s

)
One can prove that the regret is > �T in the worst case.

Discounted losses (with discounts given by a sequence βt ↘ 0):

pj ,t =
exp

(
−ηt

∑t−1
s=1(1 + βt−s)˜̀j ,s)∑N

k=1 exp
(
−ηt

∑t−1
s=1(1 + βt−s)˜̀k,s)

Sublinear regret bounds hold for suitable sequences (βt) and (ηt):

tηt −→ 0 and ηt
∑
s6t

βs −→ 0

(We often take βs = �/s2 in the experimental studies.)
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First study, continued

Forecasting of the air quality
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Oracles
(RMSE of the experts and of fixed combinations thereof)

Uniform mean Best expert Best p

24.41 22.43 21.45

Semi-sequential strategies
(RMSE of the strategies tuned with best parameters in hindsight)

Original version Moving sums (H = 83) Discounts (βs = 1/s2)

21.47 21.37 21.31

Fully sequential strategies
(RMSE of the original version of the strategy)

Best parameter Data-driven ηt

21.47 21.77
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Our strategies do not focus on a single expert. We knew it from
the numerical performance.

But actually, the weights associated with the experts change
quickly and significantly over time and do not converge (which
illustrates in passing that the performance of the considered
experts varies over time).
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Convex weights output by the (original) strategy with best parameter η in hindsight
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A strategy to pick linear weights

It will ring a bell!
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Linear combinations: Ridge regression (and the LASSO?)

The ridge regression was introduced in the 70s by Hoerl and
Kennard; it was intensively studied since then in a stochastic
setting.

We consider the case where C ⊆ R and `(x , y) = (x − y)2.

The ridge regression resorts to linear combinations of the experts:

vt ∈ argmin
u∈RN

λ ‖u‖2
2 +

t−1∑
s=1

ys −
N∑
j=1

uj fj ,s

2 
for some regularization parameter λ > 0.

It also exhibits a sublinear regret against individual sequences.

We do not know any such regret bounds for the LASSO yet.
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Theorem. Consider a bound B > 0.

For all λ > 0, for all individual sequences of observations
yt ∈ [−B,B] and of expert predictions fj ,t ∈ [−B,B],
for all u ∈ RN ,

T∑
t=1

`

 N∑
j=1

vj ,t fj ,t , yt

− T∑
t=1

`

 N∑
j=1

uj fj ,t , yt


6 λ ‖u‖2

2 + 2NB2

(
1 +

NTB2

λ

)
ln

(
1 +

TB2

Nλ

)
λ of the order of 1/

√
T is thus a good theoretical choice and leads

to O
(√

T lnT
)

regret bounds.

Time-varying or data-driven parameters λt can be considered (both
for theoretical bounds or for the sake of practical performance).

References: Vovk ’01; Azoury and Warmuth ’01; Gerchinovitz ’11
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The interest of this method is that it can compensate for biases (in
either direction) as the weights do not need to sum up to 1.

Even better, we can/should use it as a pre-treatment on each
single expert and

– turn it into a modified expert with predictions γt fj ,t ,

– performing on average almost as well as the best expert of the
form γ fj ,t for some constant γ ∈ R.

This would improve greatly the predictions if there existed, for
instance, an almost constant multiplicative bias of 1/γ.
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First study, continued

Forecasting of the air quality
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In our application to the prediction of air quality, we have extra
sums over the stations of the network.

E.g., the ridge regression is defined as

vt ∈ argmin
u∈RN

λ ‖u‖2
2 +

t−1∑
τ=1

∑
s∈Sτ

y sτ −
N∑
j=1

uj f
s
j ,τ

2 
One can show that O

(√
T lnT

)
regret bounds are still preserved.

The experts are indeed improved via the ridge pre-treatment. We
illustrate this on the worst and best experts.

Original Pre-treated Original Pre-treated

35.79 24.78 22.43 21.66



Framework Convex weights Linear weights Summary / Second study Conclusion

Oracles
(RMSE of the experts and of fixed combinations thereof)

Uniform mean Best expert Best p Best u

24.41 22.43 21.45 19.24

Semi-sequential ridge regression
(RMSE of the strategies tuned with best parameters in hindsight)

Original version Moving sums (H = 45) Discounts (βs = 100/s2)

20.77 20.03 19.45

Fully sequential ridge regression
(RMSE of the original version of the strategy)

Best parameter Data-driven ηt

20.77 20.81
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Our strategies do not focus on a single expert and the weights
associated with the experts do not converge. [...]
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Methodological summary
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Methodological summary

1 Build the N experts (possibly on a training data set) and pick
another data set for the evaluation of our methods, with T
instances;

2 Compute some benchmarks and some reference oracles;

3 Evaluate our strategies when run with fixed parameters (i.e.,
with the best parameters in hindsight);

4 The performance of interest is actually the one of the
data-driven meta-strategies.

We typically expect T > 5N (or even T > 10N).

Hope arises when the oracles are 10% or 20% better than the methods
used so far (e.g., the best expert when the latter is known in advance).

This usually requires the experts to be as different as possible.
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On some data sets, the convex oracle does not improve much upon
the best expert,

min
i=1,...,N

T∑
t=1

`(fi ,t , yt) = min
q

T∑
t=1

`

 N∑
j=1

qj fj ,t , yt


In this case, one does not need to resort to the gradient trick.

It suffices to bound the regret with respect to the best expert,

T∑
t=1

`

 N∑
j=1

pj ,t fj ,t , yt

− min
i=1,...,N

T∑
t=1

`(fi ,t , yt)

6
T∑
t=1

N∑
j=1

pj ,t ˜̀j ,t − min
i=1,...,N

T∑
t=1

˜̀
i ,t

where the inequality follows by convexity and ˜̀j ,t = `(fj ,t , yt).

Exponentially weighted averages (EWA) over the ˜̀j ,t can be
applied.
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Second study: Forecasting of exchange rates

Starting date: March 2012

Academic partner: Tomasz Michalski, HEC Paris

M.Sc. student involved over time:

– Christophe Amat (5 months in 2013; from Ecole
Polytechnique)

Associated publication: In preparation
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The goal is to predict monthly averages rt+1 of exchange rates
based on few macro-economic indicators xj ,t describing the state of
the world:

– consumer price indexes (CPI);

– industrial production (Prod);

– monetary mass (Mon);

– required rates of return (“interest rates”, 3R).

They will give rise to four experts.

The prediction horizon is 1-month ahead.

A classical stochastic modeling is

ln rt+1 = ln rt + σ (Wt+1 −Wt)

for some Brownian motion W .

It is considered difficult to improve on it (Meese and Rogoff ’83).

It will give rise to the final expert (“random walk, RW”).
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We denote by rt the averaged exchange rate of currency A with
respect to currency B.

We focus on the log–variation yt+1 = ∆t+1 = ln rt+1 − ln rt .

The stochastic modeling suggested the prediction f0,t+1 = 0.

The economic theory indicates that a given macro-economic
indicator j ∈ {1, 2, 3, 4} can be used to forecast the exchange rate
according to

∆̂j ,t+1 = ln xBj ,t − ln xAj ,t
def
= fj ,t+1

Using our methods we propose convex or linear combinations of
the log–variations:

∆̂t+1 =
4∑

j=0

uj ,t+1fj ,t+1 =
4∑

j=1

uj ,t+1fj ,t+1

Note: The fact that an expert suggests f0,t+1 does matter!
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The predicted log–variations ∆̂t and exchange rates ∆̂t + ln rt−1

are evaluated via their common RMSE:

r̂mseT =

√√√√ 1

T − t0 + 1

T∑
t=t0

(
∆̂t −∆t

)2

=

√√√√ 1

T − t0 + 1

T∑
t=t0

((
∆̂t + ln rt−1

)
− ln rt

)2

where t0 = 30 allows a short training period.

We apply two (families of) strategies:

– EWA (without a gradient trick), as it leads to interpretable
weights;

– the ridge regression, as the regularization term should push in
favor of expert 0 (the RW expert).
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Some orders of magnitude for the prediction problems at hand are
indicated below.

Time intervals Every month

Period April 1973 – May 2013

Time instances T about 480

Number of experts N 5 (= 1 + 4)

GBP / USD

Median of the ∆t 1.48× 10−2

Maximum of the |∆t | 11.08× 10−2

JPY / USD

Median of the ∆t 1.57× 10−2

Maximum of the |∆t | 10.52× 10−2
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Results for GBP / USD

Experts RMSE Oracle RMSE

RW 2.47× 10−2 Best expert 2.47× 10−2

CPI 2.68× 10−2 Best p 2.47× 10−2

3R 2.78× 10−2 Best u 2.46× 10−2

Prod 2.66× 10−2

Mon 2.75× 10−2

vs.

EWA disc. Semi-seq. 2.42× 10−2

Fully seq. 2.47× 10−2 (−0.2%)

Ridge disc. Semi-seq. 2.34× 10−2

Fully seq. 2.37× 10−2 (−4.0%)
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Results for JPY / USD

Experts RMSE Oracle RMSE

RW 2.76× 10−2 Best expert 2.76× 10−2

CPI 2.89× 10−2 Best p 2.75× 10−2

3R 2.96× 10−2 Best u 2.74× 10−2

Prod 2.91× 10−2

Mon 3.24× 10−2

vs.

EWA disc. Semi-seq. 2.73× 10−2

Fully seq. 2.75× 10−2 (−0.3%)

Ridge disc. Semi-seq. 2.67× 10−2

Fully seq. 2.70× 10−2 (−2.2%)
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Other empirical studies
– Forecasting of the electricity consumption (EDF R&D)

– Forecasting of the production data of oil reservoirs (IFP–EN)

But time is over...
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References

In case you’re not bored to death (yet) by this topic!
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The so-called “red bible!”

Prediction, Learning, and Games

Nicolò Cesa-Bianchi et Gábor Lugosi
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I published a survey paper (containing this talk!) one year ago in
the Journal de la Société Française de Statistique

Journal de la Société Française de Statistique
Vol. 151 No. 2 (2010)

Agrégation séquentielle de prédicteurs :
méthodologie générale et applications à la
prévision de la qualité de l’air et à celle de la

consommation électrique

Title: Sequential aggregation of predictors: General methodology and application to air-quality forecasting
and to the prediction of electricity consumption

Gilles Stoltz *

Résumé : Cet article fait suite à la conférence que j’ai eu l’honneur de donner lors de la réception du prix Marie-Jeanne
Laurent-Duhamel, dans le cadre des XLe Journées de Statistique à Ottawa, en 2008. Il passe en revue les résultats
fondamentaux, ainsi que quelques résultats récents, en prévision séquentielle de suites arbitraires par agrégation
d’experts. Il décline ensuite la méthodologie ainsi décrite sur deux jeux de données, l’un pour un problème de prévision
de qualité de l’air, l’autre pour une question de prévision de consommation électrique. La plupart des résultats
mentionnés dans cet article reposent sur des travaux en collaboration avec Yannig Goude (EDF R&D) et Vivien Mallet
(INRIA), ainsi qu’avec les stagiaires de master que nous avons co-encadrés : Marie Devaine, Sébastien Gerchinovitz et
Boris Mauricette.

Abstract: This paper is an extended written version of the talk I delivered at the “XLe Journées de Statistique”
in Ottawa, 2004, when being awarded the Marie-Jeanne Laurent-Duhamel prize. It is devoted to surveying some
fundamental as well as some more recent results in the field of sequential prediction of individual sequences with expert
advice. It then performs two empirical studies following the stated general methodology: the first one to air-quality
forecasting and the second one to the prediction of electricity consumption. Most results mentioned in the paper are
based on joint works with Yannig Goude (EDF R&D) and Vivien Mallet (INRIA), together with some students whom
we co-supervised for their M.Sc. theses: Marie Devaine, Sébastien Gerchinovitz and Boris Mauricette.

Classification AMS 2000 : primaire 62-02, 62L99, 62P12, 62P30

Mots-clés : Agrégation séquentielle, prévision avec experts, suites individuelles, prévision de la qualité de l’air,
prévision de la consommation électrique

Keywords: Sequential aggregation of predictors, prediction with expert advice, individual sequences, air-quality
forecasting, prediction of electricity consumption
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† Ces recherches ont été menées dans le cadre du projet CLASSIC de l’INRIA, hébergé par l’Ecole normale supérieure
et le CNRS.

Journal de la Société Française de Statistique, Vol. 151 No. 2 66-106
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2010) ISSN: 2102-6238

Even better (or worse)—it is in French!
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