The more you know, the more you dare ${ }^{\ominus}$

HEC / Master in Management

STATISTICS (AND BASIC ECONOMETRICS) CORRECTIONS OF THE EXERCISES

Course coordinator:
Gilles Fortin-Stoltz (stoltz@hec.fr)

Instructors:
Vasiliki Kostami (kostami@hec.fr)
Benjamin Petiau (benjamin.petiau@gmail.com)
Dinah Rosenberg (rosenberg@hec.fr)
Dan Xie (dan.xie@hec.edu)

Academic year 2022-2023

Contents

Chapter 1. Statistical thinking: sample the world! 5
Advanced exercises 6
Discounts to increase the number and amounts of orders 6
Car insurance company 7
Chapter 2. Confidence intervals: the basics 11
Elementary exercises 12
Advanced exercises 14
Discounts to increase the number and amounts of orders, continued 14
Car insurance company, continued 17
An advertisement featuring statistics 21
TwitterAudit 22
Chapter 3. Confidence intervals: advanced notions 25
Elementary exercises 26
Advanced exercises 29
Gender pay gap? 29
Sample size determination, in a different way though. 32
Budget planning for traveling costs 34
The effect of touch 36
Success rate of a new dating method 38
Car insurance company: planning 40
Value of a stock 41
Chapter 4. Hypothesis testing: methodology 45
Elementary exercises 46
Advanced exercises 50
Nicotine patches, continued 50
Managing customers' dissatisfaction 53
Chapter 5. One-sample tests 55
Elementary exercises 56
Advanced exercises 62
A controversial governmental reform, short version 62
Seizure of MegaUpload and side effects 64
Public health surveillance 66
"We look like our names" 69
A controversial governmental reform, long version 70
Walking many steps a day 72
Chapter 6. Two-sample tests 75
Elementary exercises 76
Advanced exercises 80
Separate or pooled marketing campaign? 80
Comparing prices in two local supermarkets 84
Gender pay gap, revisited 89
Alcohol consumption during the POWs at HEC, first version 91
Cash in the wallet, by country 94
Speedy self-assessment 95
The effect of touch, re-worked 96
Choosing between two gifts 98
Lead levels in children's blood 100
Chapter 7. χ^{2}-tests 103
Elementary exercises 104
Advanced exercises 107
Reading habits per socio-professional category 107
The sinking of the Titanic 109
Hair color by gender 110
Call centers 112
"Junior entreprise" campaign at HEC Paris 114
Mendel's experiment 115
Alcohol consumption during the POWs at HEC, second version 117
M\&M colors 118
Satisfaction survey 120
Births by month 122
Chapter 8. Simple linear regression 123
Elementary exercises 124
Advanced exercises 126
The historical example of regression 126
An example of a spurious correlation 128
Some French politics: demonstrations 130
Prices of ski passes 132
Chapter 9. Multiple linear regression 133
Excerpts of past exams 134
Wage discrimination? 134
Modeling life expectancy 138

Statistical thinking: sample the world!

Advanced exercises

Discounts to increase the number and amounts of orders page 6
Car insurance company
page 7

Chapter 1 / Exerase: "Discants to increase lie number and amounts of orders"

Population: the hundreds of thousands of customers in the database Sample: 1,000 such customers, drawn at random
Variable of interest: \rightarrow first, whether each customers places an order or not second, in case she/ he does, the ament of the order.

second, lie average amount of such aiders that would be placed, which we denote by
Data collected
(to cstimete these $\longrightarrow x_{1} \ldots x_{100 s} \in\{0,1\}$ parameters)
where $\quad x_{j}=\left\{\begin{array}{l}1 \text { it the } j \text {-th customer placed } \\ 0 \text { an order }\end{array}\right.$
$y_{1}, y_{i 70} \in(0,+\infty)$ ie, positive numbers whore y_{k} is the ambit of the k-th ares ok placed (does not necessarily correspond to the $k-1$ ch es customer in siriuple)
∇ There is a slight ambiguity in lee statement; it is includes whetter the
73 corresponds to an average of 170
"real" andes, or if we count ot for no acer and 73 is then an average of 1,000 numbers.
I pricked lie first interpreterion, is then second one would have had to be underlined and explained in the' statement of the exercise...

Summary of the data: \rightarrow a fraction customas in the $\bar{x}_{1000}=17^{\circ} \%$ of the 1 oder widen gating Emp assort order whin getting lie discount
customers in lies semimple placed orders the cuistomess in lei m sample placed orders
of an averages come nt of \bar{y} ina 173 e (and with a standard of eviction of

$$
\left.s_{g_{1} 70}=\delta \epsilon\right)^{s}
$$

- The population proportion po is close to but different from lie simple proportion $\pi_{600}=17 \%$
The same can be said for μ_{0} and \bar{y}_{170}

Chapter 1 / Exercise: "Car insurance company"

1. Hows not to conduct the survey: eng.,

- int via Face Book
- not by stecoting just 34 or 10 French universtiss (there are loo of Resow, not taking the schools like Hex. into account') and by asking \& stasis sirea students of random there
- not only in le Passus tinea
- not on lea phone: most students only have cell phons

It's actually a very dificult steady to make!
Ny own solution would be: aggregate 10 simply of 500 students

Sample 1: at a major tollboth; try various days and hour, pick (e sch titus 30 gents reset 10 times
Sample 2: in front of movie heaters in major French cities; pick lo cities (Penis, Lon, ir. en as major one, as

Sample 3: in shopping walls (again 10×30 students)
Sample 4: in bars on a Friday night (same remark) Sample 5: in students' precis (same- remark)
ER.
\rightarrow Do you have any better idea? Please let us known! We
2. We should first wonder why this study is conducted: fist - to determine the size of the targeted market second - to asses how much at risk the target ppuulation is

For the size of le varkest:
Suppose we know how many stodederts the ie are in France (we do so: the Higher Education Ministry wester in December 2016 that there were 2, 5ST, 100 of them 2,5 this number even sears too precise to we... To determine the size of an marieot, be thus only need to know the per potion it Π_{0} of their who have a cos insurance
in their names.

Population of interest: The 25 millions of students in Franco
Sample: (hopefully representative of 3,00s students picked at random
(hopefully representative of
Variable of interest: whether or not each student has a car insurance
Parameter of interest: $\quad \pi_{0}$, the promotion of students that had from which we get be total number $\quad 2,5 \times 10^{6} \times \pi_{0}$
of such students :

Data collected: $z_{13} \ldots z_{3000} \in\{0,1\}$ where $z_{j} j=\{1$ if the j the student
0 otherwise
Summary of the data: a friction $\overline{3} 3000=\frac{1,772}{3000} \geq 491 \%$ of the the sample had a car instance in their olin names in the post year-

For the rISk
assessment:

Population of interest:
(= our business target in this case)

All French students with an insurance in place in their names (\ddagger all French students)

Simple r
1,472 such students (we discard the uninsured Students!)
Variables of interest: \rightarrow first, whether a given studevet had an accident for which she/he was held responsible
second, when this was the coss, the amount of expenses that had to be paid

Parameters of interest: \rightarrow first, the fraction po of all insured, (2 key numbers to assess \longrightarrow students that had an accident in the the viability of our business inlay) past year (for which they were held resp.)
I second, the average ament μ_{0} of second, the average amant μ_{0} of
expenses these itu an accident generated

Data collected: \longrightarrow first, $x_{1} \ldots x_{1422} \in\{0,1\}$ where $x=\left\{\begin{array}{l}1 \text { if the j-th msured } \\ \text { student had erin accident } \\ 0 \text { otherwise }\end{array}\right.$
second, $y_{1} \ldots y_{256}$, where ye denotes by the k-l ie student with an accident.

Sumivary of the data: \rightarrow a fraction $\bar{x}_{142}=\frac{2 \pi}{1,472}=17.4 \%$ in of simple had an accident in the pest
they generated an average amain of expend
equal to $256=1,865$ e
(with a sample standard deviation of $\left.s_{y_{125}}=524 \in\right)$
Elementary exercises page 12
Advanced exercises
Discounts to increase the number and amounts of orders, continued page 14
Car insurance company, continued page 17
An advertisement featuring statistics page 21
TwitterAudit page 22

Chapter $2 /$
Correction of the elementary

Exercise 2.1. \quad Calculation an under-estimata: : $\quad \bar{x}_{100}-1.65 \sqrt{\frac{\bar{x}_{1009}\left(1-\bar{x}_{100}\right)}{100}}$

$$
=0.78-1.65 \sqrt{\frac{0.78(1-0.48)}{100}}
$$

∇ yow should round
to stay on Re re safe side
Her Entermente to her manager will be:
"The satisfaction nae aimarig my poxffolio of custonners would (with high condense) be barges ob than 70% if you intaviewed them high all to get their opinions."
(of course the manager does not have the time nor the will to
interview
1536
$\frac{\text { Exercise 2.2. }}{\square} \frac{\text { Calculation of }}{\text { symmetric interval: }}$
® you should round the error margin Sole upwards to stay on the

$$
0.32274 \times 60=2233647 \quad l \quad l \quad 16 \pm \quad 30 \text { sec. }
$$

Final statement: A statistical study reveals that la average waiting time
 pest piffle O equals 16 minutes, a number we re highly corf dent' in up to 11 minute and 30 sec. Pit diffencith, Phis average waiting time lies between 14 mints ard)' 30 dec. O avid $C 17$ minus and 30 Rec. (with high Confidence).
 L This study proves that President
high confidence, already lower than 31%.

Chapter 2/ Exercise: "Discounts, continued"
0. How did we get the $364 \in$ number?

1. Summary of the relevant statistical information

Twin parameders of interest:
Po, the fraction of all customers that would place an oder if they all get the discount $=$ the order rate with the Mo, the average amount of such orders that would be placed

We will dol with their based on sample data collected over 1,000 custonnes:
$\bar{x}_{l o s e}=17 \%$ of the customers in the sample placed an sades when gating the discount
That is, 170 orders were placed.
$\bar{y}_{170}=\begin{gathered}736 \text { was the average arrant of the } 170 \text { orders thus placed } \\ \text { and is associated) with a standard deviation of }\end{gathered}$ (and is associated with a standard deviation of

$$
\left.\Delta y_{1} 170=8 \in\right)
$$

2. Confidence interval on po

Context: we are testing a new offer and thus vain to ty on the sole side, with we don 4 want to make less money than usual with too favorable a discount.
you might get fret get procinsted
\rightarrow Putting in place a new offer that leads to less profit will be d visible mistake.
\longrightarrow Not putting in place a new discavit that would have led to more 0 profit than usual is an invisible mistake that no one pill realize it

Therefore, we want to stay on the sifter side and draw conclusions based on a pessimistic estimate of po: an under-estimate.
That is, we are looking for a sotatewont like:
 at least [iI] \%."

Calculation: The under estimates equals

$$
\begin{aligned}
& \bar{x}_{1000}-1.65 \sqrt{\frac{\bar{x}_{1000}\left(1-\bar{x}_{1000 p}\right)}{1000}} \\
= & 0.17-1.65 \sqrt{\frac{0.17(1-0.17)}{1000}} \\
= & 0.1504004 \geqslant 15.0 \%
\end{aligned}
$$

which corresponds to
a confidence interval of $15 \%-100 \%$
Conclusion: With high confidence, the order rate po with the new offer would be langer than 15.0%
3. Confidence interval on pr

Context: same context, we wait to stay on the safe side and wee will output a pessimistic stimate (an under-estimate)
Calculation: this underestimate equals

$$
\begin{aligned}
& \bar{y}_{170}-1.65 \frac{\mathrm{~g}_{1} 70}{\sqrt{170}} \\
= & 73-1.65 \frac{8}{\sqrt{170}} \\
= & 71.98761 \geqslant 71.90 €
\end{aligned}
$$

∇ vie divide by $\sqrt{170}$ and not by $\sqrt{100}$ as we have only 170 data pants for amounts of orders ...

Conclusion: With high congdence, the average amount place of winders be larger than 71.90 E
4. General conclusion

Question is whether the news offer with a 5% overall discount is more profitable than the current situation.
To answer this question, we compute an underestimate of the gros margin per customer per trimester that we would got:

higher than in the current situation
smaller than in the current situation (beccove of the discant)

Nevi margin rate:

- Currently, if $100 \in$ of products are ordered, $100 \in$ are paid,
the product cost 60 e on average and 40 e.
of gross profit are made - With the news offer, baying in mind (zee statement of the
exercise-) that all amounts were reported before the 5% discount is supplied):

It 100 e of products are ordered, the customs pays gte
and the products cost $60 \in$ on average, hence a gross profit of 35ε on average, \rightarrow That is, the new margin rate would be 35%

Calculation: $\quad 15 \% \times 7.90 \in \times 35 \% \geqslant 3.77 \in$
General conclusion: The test performed on 1,000 customers shows that
 per more desirable) than the current $3.64 €$ such marge. Wi should generalize the now offer!

Note for later parpsis: As ie combine here two confidence intervals of confidence levied 95%, the en res resit only will
holds with confidence chive 90%, as you will
learn in the neat chapter. That is, the $3.77 e$ figure should be believed with a confidence.

Chapter 2. Exercise: "Gar insurance compony y, continued"

1. Summary of the relevant statistical information. Trio pracemeters of interest:
pos the fraction of all insured stodeatis that had an accident in the past year (for which they here held responsible)
μ_{0}, the average amount of expenses theses students ganerected
We will dead with them bared on simple data collected aet 1,472 insured students:

These arcidutus (there were 2566 of theme) generated an average amount of exponisas sovvil to

Mindset \# 1: The entrepreneur
2. The statement of the serecise says that he just mods to get an
better idea of to
stake through the prudential rules, and in turn, of hows much money to leverage.
Thus, to sly on the safe
side, he should overestimate
the accident rate p_{0} I and
the average expenses po suffered in case of an accident.
We get the following two statements:

- With high confflence, the accident rate with n the population of insured

$$
\begin{aligned}
& \bar{x}_{1472}+1.65 \sqrt{\frac{\bar{x}_{1427}\left(1-\bar{x}_{1472}\right)}{1472}} \\
= & 0.174+1.65 \sqrt{\frac{0.174(1-0.174)}{1472}} \\
= & 0.190304 \quad \leqslant 19.1 \%
\end{aligned}
$$

- With high confidence, the average expenses for the insurance company

$$
\begin{aligned}
& \bar{y}_{256}+1.65 \frac{\lambda_{y} 256}{\sqrt{256}} \\
= & 1865+1.65 \frac{544}{\sqrt{256}} \\
= & 1919.037 \leqslant 1920 \epsilon
\end{aligned}
$$

3. Conclusion:

Based on these values, we deduice a bound on po pis, the average expenses per
insured student:

$\underbrace{19.1 \%}_{$| responsible |
| :---: |
| accident rate |$} \times \underbrace{19206}_{$| average expenses |
| :---: |
| in case of a |
| responsible accident |$}=366.72 \leq 36+\epsilon$

And get the following general conclusion:

- With high confidence, the average expenses per insured student observed in 1 which is past year the value we smaller than in $367 \epsilon_{\text {, }}$, to top in mend to
Ageing
confidence
lever of 90%
given that we
Comber two
confodena intervals

Mindset *2: The best friend.

2. Having students share their driving rises is probably a terrible business ideas The best friend would this probably wait to convince the entrepreneur NOT to start this calipiny and would have to prove that students would generate much moan costs than the avesage/standard customer in the industry (. His statements would be of the form

* Look my friend with high confidence, the aver theater expenses per
insured students were is much superior to the average expenses per standard
policyholder ? policyholder \Rightarrow
That is, the best friend, will exhibit underestimate and comment that even these underestimate take large values.
Calculations:

$$
\begin{aligned}
\bar{x}_{1422}-1.65 \sqrt{\frac{\bar{x}_{1422}\left(1-\bar{x}_{142}\right)}{1472}} & =0.174-1.65 \sqrt{\frac{0.174(1-0.174)}{1472}} \\
& =0.157696 \geqslant 15.7 \%
\end{aligned}
$$

$$
\bar{y}_{256}-1.65 \frac{8 y 250}{\sqrt{256}}=1865-1.65 \frac{524}{\sqrt{256}}=1810.963 \geqslant 1810 \leqslant
$$

That is, confidence intervals at the 95% level for po and pro would respectively be:

$$
[15.7 \%, 100 \%] \quad \text { and } \quad[18106,+\infty[
$$

In plain words:

- With high confidence the accident rate within the population of insured students is larger than 15.7%
- With high confidence, the average expenses for the insurance company per accident are larger than 1810 e

3. General conclusion: an underestimate of po mo is

$$
15.7 \% \times 18106=284.17 \geqslant 284 \epsilon
$$

The friend's statement should bo somelling around:
With high confidence my dear, the average expenses per insured 9% confidence and I think we (arguer than may take this value in for the year, level and I think vie U May tate this value for the average expected expenses per insured student in the year
come. This is so much more than the expenses to come This is so much more than the expenses generated by lithe standard policyholder, not mention pay a lot of good drives! for your customers going to it it thank this is a d viable bur businas idea...

Mindset \# 3: The banker
Consider the following mindset:
"Bankers try to assess business plains in a rigorous and neutral way; they want
to simultaneously to simultaneously

- Control the risks (they do not want to lend money and not get it
- get an idea of the adder of magnitude of the profits" bides)

In that case, we want to exhibit both under- and ovenstimate (to have, respectively, au idea of the risks and profits); that is we should diam syminctric confidence intervals.

Calculations:

$$
\begin{aligned}
\bar{x}_{1422} \pm 1.96 \sqrt{\frac{\overline{21472(1-\bar{x} 1472)}}{14+2}}=0.174 \pm 1.96 \sqrt{\frac{0.174(1-0.146)}{14+2}} \\
=0.174 \pm 0.0193672
\end{aligned}
$$

is included in $\quad 17.4 \% \pm 2.0 \%$ the interval

$$
=[15.4 \%, \quad 19.4 \%]
$$

$$
\begin{aligned}
& \bar{y}_{260} \pm 1.96 \frac{s_{0.26}}{\sqrt{256}}=1865 \pm 1.96 \frac{524}{\sqrt{256}} \\
&=1865 \pm 64.19 \\
& \text { is included in the interval } 1865 \pm 65=[1800,1930]
\end{aligned}
$$

In plain words:

- With high confidence, the accident rate within the population of insured students $\left\{\begin{array}{l}\text { lies between } 15.4 \% \text { and } 194 \%\end{array}\right.$ or $\{$ equals 174% (up to an error margin
 or $\left\{\begin{array}{l}\text { equals } 1865 \in \text { (up to an error } \\ \\ \\ \text { mosgin of } \pm 656 \text {) }\end{array}\right.$

3. General conclusion.

With high confidence,
po his between 15.4% and 19.4%
we compute
the two
most extreme
values
thus Mo lis between 1800e and 1930 C

The banker should state:
"With high (90%) confidence, the average expenses per insured student He upcoming year) between year (and are thus likely to lie in

An advertisement featuring statistics (6 points)

The aim of the advertisement below is to show that stairs are so important in your daily life (it was designed for a French carpenter company named Lapeyre). The text says: "On average you will walk up and down your stairs 89,019 times: choose it carefully!" Some footnote indicated that this number had been provided by a survey conducted by BVA Group (a French polling organization) in July 2017. We did not get the corresponding raw data and made up some plausible data instead.

Of course, this number 89,019 was supposed to be humoristic! It is falsely accurate.

Suppose that about a thousand people were interviewed: we of course only keep the 534 of them that have stairs in their homes. Each of them was asked to indicate how many times they walk it up and down per day, as well as for how long they think they will keep their current stairs before the next renovation work. Answers were:

- an average number of 12.60 walks up and down (with a corresponding standard deviation of 2.41);
- an average period of 19.34 years before the next renovation (corresponding standard deviation: 4.35 years). We will consider below that 1 year is made of 365.25 days.
\square Which type of confidence interval (symmetric, underestimate, overestimate) should you pick, and why?
An underestimate: we want to convey the idea that on average, stairs are used often, at least X many times on average. We hope to get an impressive number X in our calculations.

Write a nice and enjoyable sentence indicating
\square the parameter of interest at hand and
\square a confidence interval on its value (please provide the details of your calculation):
With high confidence, people living in places with stairs walk them up and down at least

$$
12.60-1.645 \frac{2.41}{\sqrt{534}}=12.42844 \ldots \geqslant 12.42 \quad \text { times a day, on average. }
$$

\square Provide the numerical value of the confidence interval on the second parameter (no need for a nice sentence, just the number $[\mathrm{s}]$ with details of your calculation):

$$
19.34-1.645 \frac{4.35}{\sqrt{534}}=19.0303 \ldots \geqslant 19.03 \text { years, on average. }
$$Conclude by filling the gaps in the sentence below: the first gap (the confidence level) would not be part of the advertisement; for the second gap, write all needed words.

$\underbrace{\text { With confidence } 90 \%}$ and on average, you will walk up and down your stairs at least 86,000 times.
technical statement
Details of the calculation: $12.42 \times 19.03 \times 365.25=86,327.78715$, which we round downwards to 86,000 for readability. If you're concerned that we should still make a humoristic statement, pick rather 86,327 and explain that you are doing so for the sake of humor (and not because you do not realize that you should round off numbers for better readability).

TwitterAudit

TwitterAudit defines its methodology as follows (see https://www.twitteraudit.com):
"Each audit takes a sample of up to 5,000 [...] Twitter followers for a user and calculates a score for each follower. This score is based on number of tweets, date of the last tweet, and ratio of followers to friends. We use these scores to determine whether any given user is real or fake. Of course, this scoring method is not perfect but it is a good way to tell if someone with lots of followers is likely to have increased their follower count by inorganic, fraudulent, or dishonest means."

(webpage accessed on Wednesday October 4, 2017, at 9.20am)

In what follows we will assume that TwitterAudit always uses 5,000 followers, and that its classification as real or fake is accurate. Consider some random Twitter user, say, Donald Trump: see the associated picture above. The picture reports the sample proportion of real users.
\square Define in detail the population considered here; in particular, provide a population count.
All the followers of the ereal Donald Trump account: there are $23,869,359+16,045,957=39,915,316$ of hem
\square Indicate the parameter of interest.
The proportion po of real followers among this population of $39,915,316$ followers.
\rightarrow unknown, despite the misleading information in! we may reverse engineer the numbers:
Spell out the available sample data and summarize i
Wee may reverse engineer the numbers
$23,869,359 / 39,915,316 \simeq 59.8 \%$
Beware, the sample proportion actually equals 59.8% (how do we know that it is not just 59% ?).
Available data: $x_{1} \ldots x_{\text {goes }}$ where $x_{j}=\left\{\begin{array}{lll}1 & \text { if the jo le foll over in the } \\ \text { simple } & \text { s. } & \text { veal }\end{array}\right.$ Data summary: $\quad \bar{x}_{\text {soon }}=59.8 \%$ of the followers in lie sample

- Should we compute a symmetric confidence interval, an underestimate, or an overestimate? Explain.

Two answers are legitimate here, with a personal preference for flee frost one: - Either: symmetric meveval as Twitter Audit is a neutral third party evarbucion of a politer account

- Or: underestimate, as we should discard fate uses (tom wary Twitter accounts try to boost their statistics.) and only focus on the red users: haw many of teem can we wanaratite?

Symmetric case: $1.96 \sqrt{\frac{0.598(1-0.598)}{5000}} \approx 1.36 \%$
1 With high confidence, the propation of Trump's real followers among all his followers equals 59.8% up to a $\pm 1.36 \%$ margin of error. Based on your answer to the previous point, perform the calculations (provide some intermediary details, not just the final answer).
(Underestimate: $59.8 \%-1.65 \sqrt{\frac{0.598(1-0.598)}{5000}} \geqslant 58.6 \%$ or 58.65%
With high confidence, at least 58.6% of Trump's followers are real followers.

We go back to the picture. The number $23,869,359$ therein is misleading, isn't it? By which number or ${ }^{\prime}$ number range should it have been replaced?
\Rightarrow A number range obtained by multiplying the confidera interval on the proportion by the population count:

- Underestimate: at least $58.65 \% \times 39,9 i 5,316=23,410,333$ which we round downwards to 23.4 M :
with high confidence, Trump has at lost 23.4 M of real followers
\square All in all, provide a TwitterAudit box that would be both more accurate and more honest than the one shown above, while still containing the same information. To that end, just write in a box the $2 / 3$ numbers that would be relevant to show, based on all calculations above.

- Syminetric number range and box (our favorite choice):
with high confidence, the total number of real followers lies between

$$
\begin{aligned}
& \text { th high confidence, } \\
& (59.8 \%-1.36 \%) \times 39,9 i s, 316 \geqslant 23.3 \mathrm{M} \\
& \hline 16,316 \leqslant 24.5
\end{aligned}
$$

$$
\begin{aligned}
& (59.8 \%-1.36 \%) \times 39,915,316,24.5 \mathrm{M} \\
& \text { and }(59.8 \%+1.36 \%) \times 39,915,316 \leq 2, ~ f o l l o v e r s
\end{aligned}
$$

similarly/Equivalently, the total number of fake followers lies between

$$
\begin{aligned}
& \text { mularly/Equivalently, } \\
& \qquad(100 \%-(59.8 \%+1.36 \%)) \times 39,915,316 \geqslant 15,5 M \\
& \text { and }(100 \%-(59.8 \%-1.36 \%)) \times 39,915,316 \leqslant 16.6 M
\end{aligned}
$$

Hence the box:
(with a grey zone of 1.1 M followers)

DJ Tromp
\# Followers: $39,915,316$
Real: $\quad 23.3 M-24.5 M$
Fake: $15.5 M-16.6 M$

Real	?	Fate
23.3 M	1.1 M	15.5 M

Audit score:
59.8%
on 5,000 followers

Confidence intervals: advanced notions

Elementary exercises page 26
Advanced exercises
Gender pay gap? page 29
Sample size determination, in a different way though... page 32
Budget planning for traveling costs page 34
The effect of touch page 36
Success rate of a new dating method page 38
Car insurance company: planning page 40
Value of a stock page 41

Chapter $3 /$
Elementary exercises-

Exercise 3.1
We are already given twi o confidence intervals,

- first, on po, the purchase rate of a new product with a nice treatment.
- second, on qu, lea parchise rate of a new r product in a neutral setting
These intervals are:
- with high confidence (confidence level of 95%),
po is larger than 40% (ie lies between 40% and (oo\%)
- With high confidence (confidence level of 95%), q_{0} is smiler than 25% (ie, lis between 0%

Here is an picture:

With a confidence lewd of 90% (only), we have the simalteriecos statements

$$
\left\{\begin{array}{l}
p_{0} \text { is larger than } 40 \% \\
q_{0} \text { is smiler thin } 25 \%
\end{array}\right.
$$

From which we deduce:
Either:
"With a confidence level of $9_{0} \%$, a nice treatment leeds to ar at least is pant increase in the purchase rate"

$$
(15=40-25)
$$

Or: " With a confidence level of Yo \%s, a nice treatment

$$
(40 / 25-1=0,6=60 \%)
$$

Exercise 3.2.
First situation:
This is the kind of statements that some students would like to make to pasimingly maxivilice le
 Here is a picture:
po lies hare:
90 lis

Actually we may still conclude that the increase in the
purchase rates is with high confidence smaller than 35%.
But from a business viewpoint this is not an interesting statement..

We cannot draw any
conclusion, we could well have that $p_{0}=g_{0}$ ie, that the nice treatment has no effort!

Second situation: Again, we will not be able to draw any conclusion-
po lies here

$$
\underset{\text { again, there is a whole }}{\substack{\text { rance of compribbe values }}}
$$

Same lack of conclusion-

Well, again, no interesting conclusion can be made. Of course, we can still say that the impact of the smile in the purchase rate lies, with high confidence, anywhere between $+50 \%$ and $-25 \% \ldots$

Exercise 3.3

The parameter of interest is po, lie average the homevrek time der students
The sample average equals $\bar{x}_{35}=62$ man. ($\begin{array}{l}\text { with a } \\ \text { derision } \\ \text { sample } \\ \text { of }\end{array} s_{2,35}=4$ main) $)$
The current error margin equals $\pm 1.96 \frac{4}{\sqrt{35}} \simeq 1.33 \mathrm{~min}$
To have it of the order of 1 minute, we should bore our
calculation on a sample of n students, where

$$
\begin{array}{ll}
1.96 \frac{4}{\sqrt{n}}=1, \quad \text { that is, } & n=(1.96 \times 4)^{2} \\
32-35=27 \text { more students. } & =62
\end{array}
$$

An alterative way to get this conclusion is the following

$$
n=35 \times(1.33)^{2} \cong 62 .
$$

(2) We repeat the serve calculation with $s_{x_{1}, 35}=15$

The current ever margin equals $\pm 1.96 \frac{15}{\sqrt{35}}= \pm 4.97$ min
To reduce it to $\pm 1 \mathrm{~min}$, we should consider a total sample size of [first modlicd] in such that $1.96 \frac{15}{\sqrt{m}}=1$, that is, $\begin{aligned} n & =(1.96 \times 15)^{2} \\ & =865\end{aligned}$

This is a large sample size! It is larger than the number of students we have in one year. We conclude that the desired precision level is too demanding and should be relaxed. (Note: The population is composed here of thousands of students as we are considering several years of students, but still, 865 may be a non-negligible fraction of the population, which would call for a correction of the confidenceinterval formula, leading to a smaller interval, which is thus favorable.)

Chapter 3/ Exercise:: "Gender pay gepis
(0) Extraction of the relevarit statistical information-

Populations $=\left\{\begin{array}{l}\text { Den of the Ile-de-France region that are company } \\ \text { Women of the Ile-de-France region that are }\end{array}\right.$ women of the Ele-du-France region that are excumpras

Sample $= \begin{cases}179 & \text { such men } \\ 147 & \text { such women }\end{cases}$
Variable of interest $=$ The monthly net salary

Summary of the data $=$

(1) Existence of a "significant difference" between $\bar{x}_{1 p}$ and \bar{y}_{147} $\leftrightarrow D_{0} \bar{x}_{199}$ and $\bar{y}_{i 47}$ show that with high confidence, than μ_{0}° ?
To that end, we will

$$
\begin{aligned}
& \text { - underestimate } \mu_{0}^{0}{ }^{\circ}{ }^{\circ}{ }^{\circ} \\
& \text { - Compare there halo ashmentos }
\end{aligned}
$$

We will end up in one of the following two situations:

The data collected leads to the following estimates:

- With confidence 95%, μ_{0}^{0}, the average mentally ind salary of all considered

$$
\begin{aligned}
\bar{x}_{199}-1.65 \frac{\lambda_{x_{1} 199}}{\sqrt{179}} & =3,431.46-1.65 \frac{38995.449}{\sqrt{179}} \\
& =2991.047 \ldots, 96 €
\end{aligned}
$$

- With confidence 95%, μ_{0}^{q}, the average montidered net salary of all women than is

$$
\begin{aligned}
\bar{y}_{147}+1.65 \frac{p_{y, 147}}{\sqrt{147}} & =2,434,90+1.65 \frac{1,282.95}{\sqrt{147}} \\
& =2,609,4962=2,610
\end{aligned}
$$

- Therefore, ne are in the left situation above, whthere there is a significant
difference: With confolence 90% the average mentally salary of women working

we
actually \{
ever in quantified here the
gap at least grarcented by these data
(2) Pro we axtibit a gender pay gpp?

(3) Geting enror mangins of $\pm 10 \in$

Current emror margnns for he stimation of $k^{0.5}$ and joi: respectively, $\pm 1.96 \frac{\lambda_{3} 129}{\sqrt{79}}= \pm 1.96 \frac{3855.44}{\sqrt{79}}= \pm 570.6713$.

Atternetice caluabions (cber to the as detalald in the teatbore):

- For mani the desined sauple size n satiofsts

(hapter 3)

Exercise: "Sample size- determentarion, in a different way though.... .

Ante-scruptum: This is ard street, in Santa Monica, CA (greater Los Angeles)
(1) Extraction of the relevant statistical information as far as the test

Population = pedestrians/ potential customers walking in Ord Stet on
Sample $=100$ of them picked at random
Variable of $=$ whether or not they accept to take the survey
interest
Parameter of interest $=\quad p_{0}$, the participation rate that will be doserved on the saturday when the survey will be
massively administrated massively admènistrated
Data collected $=\quad x_{1} \ldots x_{100}$ where $x_{j}=\{1$ if the j -th pedestrian asked accepted to take the survey
otherwise

Summary of the data $=\quad \bar{x}_{100}=15 \%$ of the pedestrians in the sample accepted to take the survey
(2) Total number of pedestrians to be asked to get the 2,000 respondents

By definition of p_{0} it is $N={ }^{2,00 \%} / p_{0}$
To be on the sate side we should rather overestimate N To do so, we need to underestimate po
Ie, we will issue statements like:
With high confidence, we will get a participation sate of ct least [...] $\%$, so that it will be enough to interview [... pedestrians."
Underestimate of po: $\quad \bar{x}_{100}-1.65 \sqrt{\frac{\bar{x}_{100}\left(1-\bar{x}_{100}\right)}{100}}$

$$
\begin{aligned}
=0.15-1.65 \sqrt{\frac{0.15(1-0.15)}{100}} & =0.091083 \ldots \\
& \geqslant 9.1 \%
\end{aligned}
$$

Overestimate of $N: \quad 2,000 / 9,11 \%=21,978.02 \ldots$
which we will round up to 22,00

With high confidence (confidence level of 95%), it will be
enough to ask enough to ask 24 cod pedestrians for participation-
(3) Total (vio)man hours needed to administrate the survey

So we wait to make sure that 22,0co pedestrians be asked
 Total time needed: $\quad 22,000+2,000 \times 5=33,000$ minutes Let's hire 534 (wo)man hairs: if each survey cidmunistrator works Sh that day (say), will
break),
no ed to
ne in $53418=66.75 \simeq 67$ pollsters
It's quite ai array! Jos mad to plan wall this reccatment. Also, this number will be key in doteinnming hour wish to charge
for your sudy.

 Jo

Exercise 2 - Budget planning for traveling costs - 10 points

This exercise is based on a statistical experiment that I am currently conducting. Assume that I do not live in a neighboring area of HEC Paris, but rather in some farther away place to the West, in France's countryside. I come to HEC Paris 2 days / 1 night a week. When planning my monthly budget, I need to take into account weekly traveling costs (one fast-train trip and housing costs for one night). It turns out that train prices and accomodation prices (through AirBnB usually) are quite volatile and are difficult to predict. This is why, as a trained statistician, I collected data for 30 weeks. To study the data collected, I of course implicitly assume that my sample of 30 weeks (a bit more than a semester) is representative of the semesters to come (i.e., that the various favorable or unfavorable price situations I met will take place in a similar fashion in the upcoming years). The data set looks like that (the lines below are only an excerpt of the data set):

Date	Train	Housing
Feb. 7-8	44	53.10
Feb. 14-15	25	31.83
\ldots	\ldots	\ldots
Sept. 19-20	46.30	34.97
Sept. 26-27	60.20	65.00
Oct. 3+4	54	29.35

The data set can be summarized as follows:

- Sample average price for the train trips $=39.25$ euros
- Sample standard deviation of these prices $=18.92$ euros
- Sample average housing costs $=41.54$ euros
- Sample standard deviation of these prices $=14.24$ euros

Study of the prices of the train trips

© Indicate the parameter of interest out of the four following statements:
1A. the individual prices of the past train trips
1B. the average price of the past train trips
1C. the individual prices of the (past and) future train trips
\rightarrow (1D) the average price of the (past and) future train trips
Assume that I am conducting this study because on second thoughts, I am worried that I moved so far away from my workplace and I need to he reasured is far ay the traveling costs are concerned.

What is the best shape for a confidence interval on the parameter of interest?
2A. a symmetric interval (= with high confidence, the [parameter of interest] lies between [...] and [...] euros)
\rightarrow 2B) an overestimate ($=$ with high confidence, the [parameter of interest] is at most [...] euros)
2C. an underestimate ($=$ with high confidence, the [parameter of interest] is at least [...] euros)
We now want to compute the number(s) to put in the conclusion stated right above.
® Spell out the calculation you will type on your calculator (i.e., which formula with which numbers):

$$
39.25+1.65 \frac{18.92}{\sqrt{30}}
$$

冈 Provide your final numerical values），as read on your calculator（no need for rounding yet）：

$$
44.949 \ldots
$$

Provide your final numerical values），after rounding to integer values），ie．，without cents：

Study of the housing costs

$$
\begin{aligned}
& 45 \ell \quad \text { (we need to round } \\
& \text { upwards since we're } \\
& \text { speaking of an overestimate) }
\end{aligned}
$$

We are now interested in housing costs and proceed similarly to obtain a confidence interval on the parameter of interest corresponding to housing costs．

区 Spell out the calculation you will type on your calculator（ie．，which formula with which numbers）：

$$
41.54+1.65 \frac{14.24}{\sqrt{30}}
$$

ख Provide your final numerical values），as read on your calculator（no need for rounding yet）：

$$
45,8297 \ldots
$$

Provide your final numerical values），after rounding to integer values），ie．，without cents：

$$
46 €
$$

We are now putting all results together．
© Provide a concluding sentence on the total costs for one week（please provide all necessary adjectives，think of the verb tense，etc．）：

tain trip and accomodation in the upcoming months．
\otimes Quantify the confidence level guaranteed for the conclusion stated above： 90%（simultaneous use
A more precise picture
－】 How many weeks will I have to wait before my error margin on the parameter of interest for train trips will be（of the order of）± 5 euros？
 Need a total sample size of $\quad 30 \times\left(\frac{6.78}{5}\right)^{2} \simeq 55.16208$
rounded upwards to 56 That is：Gills will need to wit 26 more weeks．

Exercise 1 - The effect of touch (10 points)

It is well documented, e.g., in marketing studies (Jacob Hornik, "Tacticle stimulation and consumer response", Journal of Consumer Research, 1992) that light tactile contacts influence human beings in a subtle way towards the requests of the contact-maker. For instance, if a seller touches you slightly, you

HOLIISTER

 should be more inclined to buy a product.We want to illustrate this fact by performing the following experiment. We consider two similar stores (e.g., two Hollister stores) and ask the sellers of the first store to avoid any physical contact with the customers, while the ones of the second store are asked to lightly touch the customers' arm. We are interested in the corresponding purchase rates, which we denote by p_{0} (without any contact) and q_{0} (with a light contact), respectively. Data collected are that 12 out of the 120 customers served without a contact purchased an item, while 23 out of the 120 served with such a contact did so.

We want to quantify the impact $q_{0}-p_{0}$ of a light contact by exhibiting a confidence interval for it.

Symmetric interval on p_{0}

We exhibit first a symmetric confidence interval on p_{0}.
\square Spell out the calculation you will type on your calculator (ie., which formula with which numbers):

$$
\bar{x}_{120}=10 \% \quad \text { thus } \quad\left[10 \% \pm 1.96 \sqrt{\frac{0.1(1-0.1)}{120}}\right]
$$Provide your final numerical values),

- as read on your calculator (no need for rounding yet): $10 \% \pm 5.367$ in $\%$
- after rounding the error margin to a X.X\% format: $10 \% \pm 5.4 \%$ that is;
\square If 6,000 customers are served without any contact every week, how many purchases will be made each week, based on the previous result? Fill the following sentence by including all necessary numbers and words to avoid any ambiguity:

With high confidence, the store will get every week
between
276 and 924 purchases an average.How many customers should have been considered to get an estimation of p_{0} at a $\pm 2 \%$ margin? Provide calculation details for your answer.

Current margin of 5.4% : needs to be improved by a factor of 2.7
to get the desired $\pm 2 \%$ wosgin Thus the sample size should have been: $120 \times(27)^{2} \approx 875$

Numbers detained as: $276=6,00 \times(10 \%-5.4 \%)$
$924=6,000 \times(10 \%+5.4 \%)$
Could have been rounded off to 270 and 930 eq.
ie, we cannot rule
out a detrimental effect of a light touch!

Symmetric intervals on q_{0} and $q_{0}-\rho_{0}$Provide the final numerical value of the symmetric confidence interval for q_{0}, rounded into a X.X\% format (do not write the calculation details):

$$
[12.1 \% \text { to } 26.3 \%]
$$Same question for $q_{0}-p_{0}$ (with some calculation details or with a picture):

Confidence interval for $q_{0}-p_{0}$:

$$
\left.\begin{array}{rl}
& {[12.1 \%-15.4 \%} \\
& \text { to } \\
= & {[\text { from }-36.3 \%-4.6 \%}
\end{array}\right]
$$

What is the confidence level of the interval calculated in the previous question?
90% confidence only
Shape of confidence intervals
Let us consider an academic researcher and a shopkeeper. In which shape of a confidence interval on the difference $g_{0}-p_{0}$ (symmetric interval, underestimate, overestimate) would they be most interested? If your answer is not "symmetric", then explain which respective shapes for the confidence intervals on p_{0} and q_{0} should have been considered to that end.Academic researcher:
Symumeticic interval (q) neutral vievipont: ready to believe that a torch could have a positive cr a negative effect.)Shopkeeper:
Underestimate :
wants to see how effective a light touch is so as to determine whether all the sellers should act so
\rightarrow hopes to reach a positive underestimate on q_{0} - p_{0}
\rightarrow Needs an underestimate on 90 overestimate on po
\rightarrow Updating calculations, we get: $9_{0} \geqslant 13.2 \%$ and $p_{0} \leqslant 14.6 \%$ with high confidence and still cannot conclude to a significant effect of a light touch!

Details for

$$
\begin{aligned}
& \text { Details for } \\
& {[19.2 \% \pm 7.1 \%] \leadsto\left[\frac{23}{120} \pm 1.96 \sqrt{\frac{23 / 120(1-23 / 120)}{120}}\right] }=[19.166 \ldots \pm \pm .042 \ldots] \\
&=[12.124 \% \% \text { to } 26.2 \ldots \%]
\end{aligned}
$$

included in the range

$$
[19.2 \% \pm 7.1 \%]=[12.1 \% \text { to } 26.3 \%]
$$

Chapter 3) Exercise: "Success rate of a new dating

 Variole of interest $=$ the time elapsed between reggstribion to he (the statement of the service implicitly assumes that e key weer gets eventually a serious revilioiship, Irma not so sure that limo is a realistic assumption!!
Parameters of interest $=\int \mu_{0}^{\top}$, the curenge waiting tire before a vececos

associated with a standard darien of $s_{x, 200}=18$ dey)

(2) Answer to "By which guarantee' percentage is your mmathod mene This find sentence of a long statement is about the quantity $1-\frac{\mu_{0}^{N}}{\mu_{0}{ }^{\top}}$ That is , we want to say that the new average waiting time miss $\mu_{0}{ }^{\top}$ is shorter than μ_{0}^{\top} by $100 \times\left(1-\mu_{0}^{5} / \mu_{0}^{\top}\right) \%$. As some stimation will be needed, an find statement will rather be of The Gook: "The average waiting time $\mu_{0}^{+} \mu_{0}$ by is at shorter least $[\ldots] \%$. That is, because we are honest in air colimuminiction, we want to stay on the
safe side and underestimate the reduction in time $1-\mu_{0}^{0} / /^{\top}$. To that end, he will - ourrestimate $\mu_{\mu_{0}^{\prime}}$
as is illustrated on the picture below.

$$
\begin{aligned}
& \text { we read here } \\
& \text { the at lest } E \text { I. } \% \text { " } \\
& \text { reduction in average waiting times. }
\end{aligned}
$$

Computation of the two confidence intervals:

- With confidence $95 \%, \quad \mu_{0}{ }^{\top}$ is longer than $\bar{x}_{200}-1.65 \frac{\lambda_{0,200}}{\sqrt{200}}$

$$
\begin{aligned}
& =78-1.65 \frac{18}{\sqrt{200}}=75.899 \ldots \\
& \text { than } \geqslant 75.8 \\
& =46+1.65 \frac{23}{\sqrt{200}}=1.65 \frac{\sum_{1200}^{200}}{\sqrt{200}}=48.6834 \ldots
\end{aligned}
$$

- with confidence 95%, $\mu_{0}{ }^{\circ}$ is shorter than $\bar{y}_{200}+1.65 \frac{\mu_{1220}}{\sqrt{200}}$
(We will round numbers at the very end!)

$\underset{\text { We can wee these numbers }}{(35 \% \text { or } 1 / 3) \text { in air ads ! }}\left\{\begin{array}{l}-\frac{48.7}{75.8}=0.357519 \ldots \geqslant 35 \%\end{array}\right.$
or even $1 / 3$

Car insurance company: planning

This exercice is a continuation of previous exercices. Data was that out of 1,472 students with a car insurance interviewed, 256 had reported an accident for which they were held responsible, with an average amount of damages of 1,865 euros (and a standard deviation of 524 euros). We had already computed a symmetric confidence interval on the average expenses generated by students held responsible for an accident, namely, $1,865 \pm 65$ euros.

1. How many additional students held responsible for an accident should we interview to reduce the margin of error to ± 15 euros?

We want to improve accuracy by a factor $f=65 / 15$. We based our calculations so far on $m=256$ students held responsible for an accident. We would thus need in total

$$
m f^{2}=256\left(\frac{65}{15}\right)^{2} \approx 4,808 \quad \text { (rounding this number upwards) }
$$

students held responsible for an accident, that is, $4,808-256=4,552$ more such students.
2. In total, how many additional students with a car insurance (with or without an accident) should we interview to guarantee with high confidence that we will get the sample required in the previous question?

The question can be reformulated as follows: how many additional students with a car insurance should we interview to guarantee that among them, there will be 4,552 students held responsible for an accident?
We proceed carefully and must first determine the minimally guaranteed share of students with a car insurance that were held responsible for an accident: with high confidence, it is larger than

$$
\frac{256}{1,472}-1.645 \sqrt{\frac{(256 / 1,472)(1-256 / 1,472)}{1,472}} \geqslant 15.76 \%
$$

(no need for proper rounding for now). Therefore, with high confidence, it should suffice to interview

$$
\frac{4,552}{15.76 \%} \approx 28,884
$$

students with a car insurance. This is of course unfeasible (too costly).
Note: it was unsafe to directly use the sample proportion $256 / 1,472 \approx 17.39 \%$ and recommend to interview $4,552 / 17.39 \% \approx 26,176$ students with a car insurance. The sample proportion needed to be corrected into a (safe) underestimate.

Chapter 3 / Exercise:
Value of a stock
(i) She audits all reference of Category 2 because:

- it's feasible (it takes less than 4 hours)
- it matters (these references account for almost half of the stock value according to Table 1)
For Category 1, an exhaustive study would take about 30 h to 5 persons, ie, 150 (wo)man hours, ever which is probably too expensive per given the power of statistics see the needed time in question (8) \cup below.
(2) Population = The 1,532 references with small unit cost (less than loo)

Sample $=$ SO such referencos picked at randan
Variable of interest $=$ The actual value of a reference in the stock ($=$ actual price \times actual number of units)
Parameter of interest $=\quad$ Eventually, the total actual value of all there 1,532 references
Which we will got access to through the average actual value μ_{0} of all these 1,532 references
The total actual value then equals 1,532 μ..
Data collected $=x_{1} \ldots x_{\text {so }}$ taking positive values, where
y_{j} denotes the actual value of the stock for the jot reference checked
Summary of the data $=\quad$ The simple average of the actual values of We so references checked equals
$x_{50}=2,304.10 \in$ (with an associated

$$
\text { o standard deviation of } s_{150}=753.74 \text {) }
$$

(3) We first compute a confidence interval on μ_{0} and then provide a confidence intaval on the total value 1,532 μ_{0}

We resort to symmetric confidence intervals because we conduct a neutral study (a financial audit); se also the statements of Questions, (4) and (8), which confirm that we are interested in symmetric intervals.

$$
\text { Calculation :1: } \begin{aligned}
\bar{x}_{50} \pm 1.96 \frac{s_{x}, 50}{\sqrt{50}} & =2,304.10 \pm 1.96 \frac{753.74}{\sqrt{50}} \\
& =2,304.10 \pm 208.926
\end{aligned}
$$

(5) We consider here paired data: for each reference of in the sample y we have. :

- its cument value ii in the ledger account
- its actual value y^{0}, which we recomputed with save efforts
from which we are able to compute:

$$
\text { - its accounting gap } g_{j}=x_{j}-y_{j}
$$

This leads to the following extraction of relevant statistical information:
Population $=$ Still the 1,532 references with sinall unit cost
Sample $=$ Still So such references picked at random
Variable of interest $=$ This time, the difference between the actual value of a reference in the stock and its current value in the accounts

Parameter of interest = $\quad \begin{aligned} & \text { Eventually the sum of all difference, that is, by } \\ & \text { how much the current total value } 3,366,495\end{aligned}$ is incorrect
Which we will cot access to through the average difference over all the 1,532 references, which we denote. by Δ_{0}
The sum of all differences then equals $1,532 \triangle_{0}$
Data collected $=\quad e_{1}, \ldots$ ego taking positive, negative or null values, where oj dents the difference comprited for the fth reference checked
Summary of the data $=$ The sample average of the differences in values of the so references checked equals $e_{50}=-11.73 \in$
(with an associated standard deviation of

$$
\left.s_{9} s 0=110.32 \mathrm{E}\right)
$$

(6) We procood similarly to Question (3):

$$
95 \% \text { confidence intaval on } \Delta_{0}: \quad \begin{aligned}
e_{50} \pm 196 \frac{\lambda_{, 30}}{\sqrt{50}} & =-1173 \pm 1.96 \frac{110.32}{\sqrt{50}} \\
& =-11.73 \pm 30.58
\end{aligned}
$$

95\% confidence nerval on $1,532 \Delta 1,532 \times(-11.73) \pm 1,532 \times 30,58$

$$
=-17,970.36 \pm 46,848.56
$$

which is included in

$$
\begin{aligned}
& -18,000 \pm 47,000 \\
= & -18 k \epsilon \pm 47 k 6 \\
= & -65 k € t_{0}+29 k 6
\end{aligned}
$$

Conclusion: With high confidence (95% confdence level), the total differsides between the autumn values and the current accounting values of the 1,532 refiners at hand equals -isp ϵ up to $a \pm 47 \mathrm{kC}$ margin of err.
(7) 8 the statement of course means the external total stock value for the 1, 532 refereners corresponding to wit costs less than loess we

With high confidence (95% conffonce level), the actual total stock valve for the considered 1,532 requences equals

$$
\begin{aligned}
& 3,366,495-18,000 \pm \epsilon^{47,000} \\
& =3,345,495 \pm 47,000
\end{aligned}
$$

The current accuracy of lis estimate is at $\pm 100 \times(47,000 / 3,356$, Has $) \%$:

$$
\simeq \pm 1,4 \% \text { of the current }
$$

(8) Wee proceed as in Question (4): we want to reduce the enter margin by a factor of 1.4 and this have to consider a 2 simple sing That is, we rad a sample size of $50 \times 2=100$ and just reed to check, So other references on top of, le so references already
(9) High-leved reason:

The method considered in questions (2)-(4) started from scratch. In ausstios (5)-(8) we do exploit available data gives by the current accounting values; we use more information, be use existing infgamestion and that's always a plus.

How this high-level reason is reflected in our data:
\rightarrow the current or actual ushas il y and x a are giver by large
mummers, with large associated
standard devintitens o \rightarrow * while. * we only have for cent probably nor so big accounting
 than sacco and syiso.
Elementary exercises page 46
Advanced exercises
Nicotine patches, continued page 50
Managing customers' dissatisfaction page 53

Chapter 4 Elementary exercises.

Exercise 4.1

There are two possible emos:

- not offering a discount the it would have ban profitable for lie company Ls this results in some invisible shortfall (in some invisible the associated risk is moderate:
you will just at get promoted.
- offering a discount that turns out to generate lass benefits than not compensate. for lie reduced margin of profit) ${ }^{\text {in }}$ sales does

$$
\rightarrow \text { this reseats in tangible losses of beaftls, evorybarty }
$$

the associated risk is sauce you might get fred!

Hence:

- the prudent viewpoint $\left(H_{0}\right)$ is: $\quad H_{b}$: The discount is not
- the risky viewpoint $\left(H_{h}\right)$ is: $\quad H_{h}$: The discant is proffababe

nina/ / thin evidence of profitability will not be enough to reject tho; we nad

Exercise 42

The statement explains that she would be reedy to implement the no wee custonnerens. if and only if there is enough sport from

This is sand and rational:

- A name change is costly (in particular, in terms of advertisment!)
\rightarrow There are high, shant-tem risks associated with a
- But on the bong rung if supported by custorines, a nave change

4. There are moderate, long-tam benefits associated with a
name change.

Hence,

- The prudent riessosent $\left(\mathrm{H}_{0}\right)$ is to think that there is not exaigh suypeat
for the nile change and that it should not be implemerited

Mathematically speaking, dercoing by
- pos le propation of customers that would prefer the new naves - Pref $=50 \%$, the reference proportion,
we should test: $\quad H_{0}: p_{0} \leqslant 50 \%$ vs. $H_{1}: p .>50 \%$
8 Always put $\left\{\begin{array}{l}\text { a non-starict mequaitity or an equality for } H_{0}\end{array}\right.$ a strict inequality or a "different from" symbol \neq for H_{1}

The limit case of this set of hyooltees is: $H_{0}: p_{0}=50 \%$ vs. $H_{1}: p_{0} 750 \%$
(We are considering that the bank will arnaince le signal Exercise 4.3 publicly, if sha finds out that such a signal; Rip study

$$
1-1 c_{1} 1
$$

1. Sending a signal about a disaster to take place (here, an economic e crisis) must bour credibility will be with affected for ever. disaster didn't take place, your credibility will be affected for ever.

$$
\rightarrow \text { that is a high risk! }
$$

While not sending out a signal when it should have ben issued is

$$
\rightarrow \text { That is a moderate risk. }
$$

Hence,

- The prudent lieuspont $\left(H_{0}\right)$ is to think that the current
deliquency rate is the standard one: H_{0} po $=8.5 \%$
- The risky viewpoint (H_{1}) is to think that we have enough evidence
to claim n the we have ar early signal of a crisis,
$H_{1}: p_{0}>8.5 \%$

Angler justification could be that $H_{1}: p_{0}>85 \%$ is what we want
to possibly prove from le data: sample data wight indicate rome to posiday prove from The data: sample data wight indicate some deviation frow Holler such deviation can be explained bo when t chance only signal of a cis so unlikely plat tang actually carnies. the
2. On our simple, we brave a deliquency rate of $\bar{x} s 0=14 \%$ and
question is (heres above) whether 14% of deliguency rate
are significantly larger than the reference ate of 85%.
(of course they are larger, question is whether they are significantly larger.)

Test statistic: $\quad t_{50}=\sqrt{50} \frac{\bar{x}_{50}-\text { Pref }}{\sqrt{p_{\text {ref }}(1-\text { puff })}}=\sqrt{50} \frac{\bar{x}_{50}-0.085}{\sqrt{0.085(1-0.085)}}$
Behavior expected under tHai (ier Standard Gaussian distribibution) Behavior expected under $H_{1}: \quad$ larger values than under H_{0}

$$
\begin{aligned}
& \text { larger values than under Ho } \\
& \text { (why? because } \bar{x} \text { so is expected } \\
& \text { to bee close to po, which is } 7 \text { pref) }
\end{aligned}
$$

Value on data:

Summary of all these elements σ on a picture:

P-value $\geqslant 8 \%$, in particular,
(slightly) larger than 5\%

simple average of $7 / 50=14 \%$ this t_{80} takes the value $\sqrt{50} \frac{0.14-0.085}{\sqrt{0.055(1-0.055)}} \simeq 1.39$

Probe

$$
=100 \%-91.77 \%=8.23 \%
$$

Statistical conclusion:
Based on these cesta, we fail to reject Ho, that is, the evidence gathered with this sample, of 50 fils is not Strong enough to declare that a crisis is about C to O take place.

Business conclusion:
(was nat specifically asked for)

Wait one or two more months - then stronger signals may
be doservable.
All in all, it would also be a good idea to use a larger ('eg, 100 or 200 files) simple j 50 is not So large a simple size.

Chapter 4 Exercise "Nicotines patches, continued"
Question 1 Con we prove that, the population efficiency rate is
larger (Given that we could not prove it to be larger than 60%.) We are considering the hgpothous

He [parent viewpoint]: The desired efficiency is not achived,
H_{1} [what we want to prove]: The desired efficiency is achieved,
We take the limit cars: $\quad H_{0}: p_{0}=55 \%$ versus $H_{1}: p_{0}>55 \%$

Behavior expected under Ho: norival curve
\quad (ia standard Gaussian distribution)
Behavior expected under H_{1} : larger values than under H_{0}
Value on data:
an a picture:
Summary an a picture:
sample average of $\bar{x}_{10}=64 \%$, the $t_{10 p}$ tales the value $\sqrt{100} \frac{0.64-0.55}{\sqrt{0.55(1-0.55)}} \pm 1.81$
P value $<5 \%$.
(of the order
of 35%)

significantly larger than 55%.
Business conclusion:

Go and advertise
this 55% efficiency

Now, let's move to another (and 'actually, dishonest) viewpoint on the same data...

Question 2.
 but let us procure with the calculations despite all....

We take the limit case $H_{0}: p_{0}=65 \%$ versus $H_{1}: p_{0}<65 \%$
Test statistic: $\quad t_{100}=\sqrt{100} \frac{\bar{x}_{100}-0.65}{\sqrt{0.65(1-0.65)}}$
(now, la reference proposition equals 65%.

Behavior expected under H_{0} : normal curve
(le, standard Gaussian distribution)
Behavior expected under H_{1} :
smaller values than under Ho
(y. $\bar{x}_{\text {cos }}$ should be close to po, where under $H_{1}, \quad p_{0}<65 \%$)
Value on data: $\quad \sqrt{100} \frac{0.64-0.65}{\sqrt{0.65(1-0.65)}} \simeq-0.21$

Seminary on a picture:
P value $\geqslant 40 \%$, much larger than S\%

Statistical conclusion:
Based on those data, we fail to reject Ho, ... which simply means that these data, while proportion that is smaller than 65%), does not
contradict it severely enough for tho to be rejected.

Business conclusion: The statistical conclusion we could draw is useless!

Indeed (as indicated in the textbook), bred on the zaire data, we simultaneously failed to reject the following two statements',

$$
\begin{aligned}
& p_{0} \leqslant 60 \% \quad \text { and } \\
& \text { must be incorrect, though }
\end{aligned}
$$

 is true or false, there is no conclusion we con draw r from this failure of rejection.

Managing customers' dissatisfaction.
Population: Customers having recently bought or about to buy
a product a from our company a product o from our company

Population parameter: \quad The current or future dissatisfaction
Reference parameter: \quad Pref, the typical dissatisfaction rate customers' relation (before hiring sales advisers)

Hypotheses: The manager wants to see whether her/ his policy change
 don't write $\left\{\begin{array}{l}\text { viewspont that the manager's managers would start with } \\ \text { Now s the manager would like to }\end{array}\right.$ such a lengthy! \quad Nous, the manager would like to mastication prove (Ha (H) that justification g! (She /he has had an impact on the (dis)satisfaction nate.

Data collected:

Data summary:
A fraction $\bar{x}_{459}=\frac{32}{459}=7,0 \%$ of the customers of the sample intend to complain-
Test statistic: $\quad t_{459}=\sqrt{459} \frac{\bar{x}_{459}-\text { pref }}{\sqrt{\text { pret }\left(1-\text { prof }^{\prime}\right)}}$
Expected Ho behavior: normal curve
Expected H_{1} behavior: Smaller values
Value on data: $\quad t_{459}=\sqrt{459} \frac{0.07-0.10}{\sqrt{0.10(1-0.10)}} \approx-2.14$

Statistical conclusion:
We reject Ho, that is, these data
shows that the dissatisfaction rate draped
due to the new policy of better guiding
customers.

Bossiness conclusion:

Ask for a raise or a promotion - in any get some congratulations.

$$
\begin{aligned}
& \text { (If you have any more creative business } \\
& \text { conclusen, send it to we: stall e her f. }
\end{aligned}
$$

One-sample tests (Testing equality to a reference value)

Elementary exercises page 56
Advanced exercises
A controversial governmental reform, short version page 62
Seizure of MegaUpload and side effects page 64
Public health surveillance page 66
"We look like our names" page 69
A controversial governmental reform, long version page 70
Walking many steps a day page 72

Chapter S/ Elementary exercises.

Exercise $\$ 1$.

1. The statement points out that we have no preliminary goinion on the questions air reasonable stating paint will thus be O that average the average height of wale Abs students equals ike average height of the country whore the study is taking place, that is, the

Thus:
Ho [reasonable liewpant]:
same average heights, $\mathrm{m}_{0}^{\circ}=181$

2. Note that we collect data only after the hypollowes were set.

The sample data features 253 data values $x_{1} \ldots x_{253}$, where x_{j} is the height measured on the j- ike maker An se Ass student
$\begin{aligned} & \text { It can be summarized as follow: 12. sample average height equals } \\ & \bar{x}_{253}=s_{181.24} \text { (with an associated standard deviobton of } \\ &\left.s_{x 1233}=8 \cdot 11\right) \text {). }\end{aligned}$
The P-value is dotained as follows:
Test statistic $\quad t_{253}=\sqrt{253} \frac{\bar{x}_{253}-181}{\lambda_{x_{1} 253}}$
Under Ho: normal- curve behavior
Under $H_{1}: \quad$ lang of positive or lave deviations negative values

Numerical value: $\quad \sqrt{253} \frac{181.24-181}{8.11}=0.47$
Samniary picture:
The Prvalue
is obtained as the
seem of thur identical
pacoabalites.

$$
P \text { value }=2 \times(60 \%-\operatorname{cs} .05 \%)
$$

The P-value is (much) larger than $S \%$ we fail to reject tho. In plan words: these data do nor suggest that there is a difference. in average heights (e) between wale ABS Students \uparrow and butch wale adults.
(Waite a cautions
and inconclusive
conclusion, as always when re
stick to H_{3})

Note: we can already answer partly to question 1 of the third exercise:
Test (for men)

One-Sample Test

We find again our results, up to some minor roviding differences.

Exercise 5.2

1. We consider the hgopolasess

$$
\begin{aligned}
& \begin{aligned}
H_{0} \text { [reasonable riewpant]: save average heights for women, } \\
\quad \mu_{0}^{7}=169
\end{aligned} \\
& H_{h}: \quad \text { different average beighto, } \quad \mu_{0}^{i} \neq 169
\end{aligned}
$$

We will compute the P-vake based on data Ilk donets the height of the kith ABs file favares student in
$\begin{aligned} & \text { Data con be selmwosized as: average sample height } J_{223}=166.03 \\ & \text { (with an associated standard deviation of }=6.70 \text {). }\end{aligned}$
Test statistic: $\quad t_{223}=\sqrt{223} \frac{y_{23}-169}{s_{y}, 223}$
Same H_{6}, H_{1} behaviors as in the ppevicis exercise
Numerical value: $\quad \sqrt{223} \frac{166.03-169}{6.70}=-6.62$

In plan words: these data show that the average height of ABs

2. Given the context, we would this time resort to inhere "reasonable or H_{0} [reasonable]: save average heights, $\mu_{0}{ }^{\circ}=169$ stands for the H_{1} [unseat is to sealer average height at ABS than in the with no preconception

The only difference wat question 1 is lie behavior expected under H_{1} : now, only barge negative values are expected, so hat the picture is

The Peale gets twice swaller, and remains almost null of course. We then reach lie saline conclusions.

8 Becosise the Pevalue depends on H_{1}, lie hypolheses H_{0}, H_{4} have to be set before data is collected, based on the preconceptions or lack of preconceptions of the statistician.
3. We may check our results (numerical value + P-vake) on the gps out puts: see next exercise.

Exerise 5.3 .

We solve it only for women data; the solution is similar for men data.

1. Finding again all numerical values.

2. What other values correspond to!
(Note that O does not belong to the computed confidence interval for mo r. $\mathrm{o}^{\circ}-169$, which is yet cenoller, equivalent, proof
that $\mu_{0}+\neq 169$...) that $\mu_{0}^{q} \neq 169 \ldots$)

$$
\begin{aligned}
& \text { Standard error on the mean: } \\
& \qquad s_{y, 223} / \sqrt{223}
\end{aligned}
$$

that is the half-width

Test (for women)

One-Sample Statistics				
	N	Mean	Std. Deviation	\downarrow Std. Error Mean
Height (in cm)	223	166,03	6,700	, 449

One-Sample Test

$$
\begin{aligned}
& \text { Symuctric confidence } \\
& \text {-naval at Re 95\% } \\
& \text { confidence level for } \\
& \mu_{0}^{6}-169 \text {, that is: } \\
& y_{23}-169 \pm 1.96 \frac{s_{y_{1} 223}}{\sqrt{223}} \\
& =-2.969 \pm 1.96 \times 0.449
\end{aligned}
$$

Exercise 5.1

1. Population: All inhabitants of France (mature enough to actively prouticipate to political activities, say: older than 18 years)
Parameter: The fraction po of the population that would actively fight the reform if it was indeed proposed

Hypotheses: The prudent behavior is to think that there will be mass political fights $;$ the risky action is to propose the reform.
$\begin{array}{rlr} & H_{0} \text { [prudent]: } & \text { active political fights, } \\ & H_{1} \text { [risky]: } & \text { little active. apposition, } \\ \text { with limit case: } & H_{0}: \quad p_{0}=15 \% \\ & & H_{1}: \quad p_{0}<15 \%\end{array}$
2. Data collected: We * We discard the no-cponion intarievees!* Wee collected $x_{1}, \ldots x_{g g o}$ taking old values and

Data summary: A fraction $\bar{x}_{980}=\frac{131}{980} \simeq 13,4 \%$ of the citizens of ready to actively fight the reform-
Test statistic: $\quad t_{980}=\sqrt{980} \frac{\bar{x}_{980}-\text { pref }}{\sqrt{p_{\text {ref }}\left(1-p_{r e f}\right)}}$ where pref $=15 \%$

Expected behaviors \rightarrow under H_{0} : normal curve

$$
\searrow \text { under } H_{1} \text {. smaller values }
$$

Value on the data: $\quad t_{900}=\sqrt{980} \frac{0.134-0.15}{\sqrt{0.15(1-0.15)}}=-1.40$

Alternative solution suggested by Fall 2018 students

You could argue that politicians are not afraid at all to take risks and that they love to take actions. Furthermore, they are stubborn. Hence, their starting point could be $H_{0}: p_{0} \leq 15 \%$ and their alternative hypothesis could be $\mathrm{H}_{1}: \mathrm{p}_{0}>15 \%$. They would only be ready to consider H 1 and depart from what they had carefully planned if data strongly show that this is needed.

The test statistic would still equal -1.40 but the P -value would be come 91.92%. Hypothesis H_{0} would not be rejected. The conclusion in plain words would be: "Data collected do not rule out that little opposition would take place". (But data do not prove so, they only do not rule out this possibility.)

ExERCISE 52
Seizure of Negavpbad and side effects

1. Parameter of interest:

Mo, the average share of Internet users visiting considered. fo during lie period of time considered (January 20 to February 29, 2012)
4. This parameter may be difficult to grasp but suppose that alexia. com is measuring the Share of users every 30 minutes, then 48 measurements are made, time $11+29=040$ days: 1,920 measurements in total over the period considered. Then, mo is just the uniform average of these 1,920 values.
Since we do not have the physical time to go on this website avery 30 minus, we will Sonly go these one a day, at That is, our simple will consist of 40 measurements out of the 1,920 made in total.
(Our population is: these total 1,920 measurements.)
Hypotheses:
It is reasonable to thank that people went to nozavplarid Foe movies and TV shows leat are anyway nor O available on Splay. fry and hence, that its CO sizure did not
really impact our website. really impacts our website.
Of course, a goad surprise would be a positive impact; bet this good surprise must come with a proof, wi cannot take it
as our starting paint. as our starting paint.
H_{0} [reasonable]: The seizure of Megalpload did not resit in an increase reference of the Otrafic to Goplay, that is, $\mu_{0}=\mu_{r}$ f value:
ref $=0.02 \%$ HM [shat would need. by strong jacks!

It did result in an increase of our traffic, that is, $\mu \mathrm{M}>\mu_{r e f}$
2. Data collected: $x_{1} \ldots x_{40} \in[0,1]$, where $x j$ denotes the share measured on day j (at a randomly picked hour)
Data summary: $\quad \bar{x}_{40}=0.023 \%$ and $s_{x_{1} 40}=0.005 \%$
Question to be answered:
Is this sample average of 0.023% significantly? larger than the referee value of 0.024%

Test statistic:

$$
t_{40}=\sqrt{40} \frac{\bar{x}_{40}-0.021}{s_{x, 40}}
$$

Behavior under H_{0} : normal curve
Behavior under H_{1} : takes larger values then under H_{0}
Numerical value on data:

Summary picture:

$$
\sqrt{40} \frac{0.023-0.04}{0.005}=2.53
$$

$$
\begin{aligned}
P \text {-value } & =100 \%-99.43 \% \\
& =0.57 \% \quad \$ 5 \%
\end{aligned}
$$

Statistical conclusion: we (strongly) reject th: these data prove that the Internet traffic to Gplay. for increased offer the seizure af legal up lad.
∇ The increase is significant but maybe not so large (= it dee exist)
($=\mu_{0}$ is larger than μ oof $=0.02 \%$ bet maple oud so mach larger!).
Business conclusion (s):
1 - Quantify the increase, charge more for online advertisements on 6play. Fe, get (via confidence intervals)
2 - Take legal actions to get many dos filesharing websites sized

Exercise S3 - Public heath surveillance.

1. Population of interest:

Parameter of interest:

All the kids in Parisian elementary schools (Several dozens of thousands?)
Po, the current asthma prevalence rate among Rem
($=$ the current proportion among them suffering
frow asthma)

Hypotheses to be tested:
This study b a warm-yp, we merely want to determine whether we have a case and can alert press. We feel that there is a problem but we need to prove it, or at least, shows some red flag. Thus:
Ho: The situation of Paris wet pediatric asthma is similar to the rest of France, $p_{0}=9.7 \%^{\circ}$ H_{1} [what we want: The Parisian air induces asthma in greater to prove] The Parisian air induces asthma in gre
peoparion than what is nationally deserved
France:
po $>9.7 \% \%$ but I doubt than any
pee that lie Parisian air might be
Note: we could also have
parent would be
letter than in the
$H_{0} p_{0}=97 \%$
2. Data collected: $x_{1} \ldots x_{300} \in\{0,1\}$, where
$x=\left\{\begin{array}{l}1 \text { if the } j \text { th kid surveyed reports } \\ 0 \text { otherwise asthma athene }\end{array}\right.$
Data summary: $\quad \bar{x}_{300}=\frac{37}{300} \simeq 12,3 \%$ of the 300 kids in the attack in lime report an asthma

Test statistic: $\quad t_{300}=\sqrt{300} \frac{\bar{x}_{300}-0.097}{\sqrt{0.097(1-0.097)}}$
Behavior under th: nokia curve
under $H_{1}: \quad$ larger values

Numerical value on dalai: $\quad \sqrt{300} \frac{37 / 300-0.097}{\sqrt{0.097(1-0.097)}}=1.54$ Summary on a picture:

Statistical conclusion: a somewhat rather
borderline pa tue!
The best would be to point out that the P-value is close to 5%, hence serious doubts can be raised against H_{0}, and farther studies are Parents have some red flag, they shat ld lobby to get some official, action: better -quality, Roe study be conducted. They are enhittesi) to alert press given almost convincing dive they gathered.
F. You as an individual cannot prove or disprove the detrimental effect of air quality on children's
But your pout is to shrourcge them to start an official study. Your hand wade I Diy study is mended exactly for encouragement!
3. Which P-value would we have obtained with 35 kids suffering
from asthma instead of the 37 ans considered above? Value of t_{300} on these new data: $\quad \sqrt{300} \frac{35 / 300-0.097}{\sqrt{0.097(1-0.097)}}=1.74$ Thus a P-value of $100 \%-95.91 \%=4.09 \%<5 \%$ We would reject tho, but our business action would remain the save: ger some official study conducted.

The aim of this question was to make sure that you would not draw i Conclusions / make actions Heat would he completely different between
37 and 35 asthma cis reported.

One additional case should not drastically change the picture. AC O in all, this shows how relative / conventional the 5\% level is; this shows that the P-value has to be imerpreted in some cautious way.
(Se also the conclusion to the exercise about a controversial governmental reform.)

Exercise 1 - "We look like our names" - 4 points / 9 minutes

This exercise is based on the article "We look like our names: The manifestation of name stereotypes in facial appearance" (co-authored by an HEC Paris professor of marketing, Anne-Laure Sellier). Question was whether people guess the name of a person based on her/his face, and actually, whether they do so[better or worse than at random.] If so, it would mean that we think that some faces look rather like this or that name (hopefully but not necessarily, the true name), rather than some other one.
A typical experiment performed is reproduced on the right. We denote by p_{0} the proportion of people in the same country (here, Israel) that would correctly guess the name based on the face. Guessing at random would result in a correct answer rate of $p_{\text {ref }}=25 \%$.

- State your hypotheses, in words and in equations.

Briefly explain why you picked these hypotheses, in one sentence.
It's reasonable to think that people have no clue in guessing and hence, are not bettor or worse than pure chance -j the Ge explains alternative hypothesis call be two-sided os this sentence explains (we are open to people guessing better or worse than pure chance). $H_{0}: p_{0}=$ pref, where p_{0} is the proportion of people that would \leftrightarrow people guess like $H_{1}:$ pose $^{\ldots}$ pref \leftrightarrow lect name \leftrightarrow people guess better or wore than just at random

When the experiment was performed on 67 volunteers, 26 of them, that is, $26 / 67 \approx 38.8 \%$, found out the correct
name, Dan. Work out the test of your hypotheses, by drawing a picture summarizing
\square the expected behaviors of your test statistic under H_{0} and H_{1};
\square the numerical value of your test statistic on the data and the associated P -value.

\square Write a statistical conclusion (only; no business conclusion required). Beware, it must be most informative and formulated in plain words (do not use the words "reject" or " H_{0} ").
The data collected from this experiment showed that people can guess names
Significantly better individuals they were just guesting at randal.- This means
that
(Note : This experiment was successfully conducted with many other individuals
to identify.)
NB: no pant granted if your conswer just mentioned that the ability of guessing
was bethel or worse than a random ques,

$$
\bar{x}=\frac{275}{979} \approx 28.1 \%
$$

Exercise 2 - A controversial governmental reform (10 points)

Assume that you are the leader of a government that wants to put in place a highly controversial reform (e.g., on pensions) and wonders whether there will be massive actions against the reform. Sociologists have it that unless a fraction $p_{\text {ref }}=30 \%$ of the population is strongly against the reform, not much will happen; and otherwise, some massive actions (massive strikes or demonstrations) may take place. The question is of course whether the fraction p_{0} of the population strongly against the reform under renew is larger or smaller
 than 30%.

We will first consider two pairs of hypotheses and test each of these pairs, only then we will indicate which pair a given government should choose.

After figuring out its hypotheses, the governprent mandates a polling organization, which conducts a survey over 1,000 adults living in France. Among them, 979 express an opinion: 275 arg strongly against the reform under review, while the 704 other ones are not hey have no strong opinion are even indifferent).

First case - Testing $H_{0}: p_{0} \geqslant 30 \%$ against $H_{1}: p_{0}<30 \%$
Work out the test of the hypotheses $H_{0}: p_{0} \geqslant 30 \%$ against $H_{1}: p_{0}<30 \% \rightarrow$ Limit case H_{0} ' pos instead 30%
\square by drawing a picture summarizing the expected behaviors of your test statistic under H_{0} and H_{1},
\square by computing the numerical value of your test statistic (please spell out the calculation that you typed),

$t \simeq-1.30$

$$
P_{\text {-value }}=100 \%-90.32 \% \approx 9.7 \% 75 \%
$$

Write a conclusion consistent with the hypotheses and the P-value obtained, by picking the beginning and the middle of the sentence:
[Beginning]
A. The data collected cannot exclude that
B. The data collected suggest that
C. The data collected show that
[Middle]
1.) more than 30%
2. less than 30%
of the population is strongly against the reform under review.

Second case - Testing $H_{0}: p_{0} \leqslant 30 \%$ against $H_{1}: p_{0}>30 \%$
Same questions based on the hypotheses $H_{0}: p_{0} \leqslant 30 \%$ against $H_{1}: p_{0}>30 \%$.\rightarrow Again, limit $\begin{aligned} & \text { case } H_{0}: p_{0}=30 \%\end{aligned}$
\square Draw a picture summarizing the expected behaviors of your test statistic under H_{0} and H_{1},
\square Provide the P -value associated with the data collected.

Large Pralue: 90.32% (which is not a surprise:
$\bar{x}=28.1 \%$ is in accordance
with $H_{0}: p_{0} \leq 30 \%$)
Write a conclusion consistent with the hypotheses and the P -value obtained, by using the same coding as above:
\square Letter: A Number: 2

Picking the hypotheses

A government can be ideological (it would try to implement its reforms by all means) or cautious (risk-averse). Which pair of hypotheses would be chosen by which profile? Circle the correct profile in each sentence:

$$
\left.\begin{array}{ll}
\square H_{0}: p_{0} \geqslant 30 \% \text { against } H_{1}: p_{0}<30 \% \text { is for } & \text { cautious } \\
H_{0}: p_{0} \leqslant 30 \% \text { against } H_{1}: p_{0}>30 \% \text { is for } & \text { ideological }
\end{array}\right\} \text { governments }
$$

\square Provide a brief justification for your choices.
A cautious government wood like to prover $H_{1}: p_{0}<30 \%$ An idedogical government wald on the contras use $H_{0}: p_{0} \leq 30 \%$

SPSS output

port (= statement to
Consider the following fake SPSS output (assuming SPSS can run the kind of tests computed above, which) surprisingly, it cannot in its default configuration).
these values What number should be written in the empty cell, titled Sig. (2-tailed)?

in a 2-tailed

$$
\left\{\begin{aligned}
H_{0}: p_{0}=30 \% & \\
H_{1}: p_{0} \neq 30 \% & \\
& \\
& =2 \times(100 \%-90.32 \%) \\
& \simeq 2 \times 9.7 \%=19.4 \%
\end{aligned}\right.
$$

Exercise 1 - Walking many steps a day - 10 points

There is a long story behind the trendy 10,000 -steps-a-day recommendation issued in the recent years by fitness websites and magazines to experience trealth benefits. This story has strong links with the creation of pedometers: devices recording the number of steps taken. Nowadays, your smartphone can act as a pedometer via a suitable application.
Suppose that we want to offer a new such application; its distinguishing point would be that not only it would report the numbers of steps made so far but it would also be able to indicate by a green / orange / red color code whether the 10,000 -steps-a-day target is reached or not. More precisely, assuming that the pace observed so far is maintained, it would be able to tell whether we are confident that the aim would be
 reached in the long term, with three possible outomes:
green \leftrightarrow we are certain that it will be reached; \leftrightarrow we reject H_{0} and go for $H_{h} \mu_{0} 7 \mathrm{lo}$, aus
red \longleftrightarrow we are certain that it will not be reached; \leftrightarrow we peed H_{b} and go for $H_{1}: \mu_{0}<10,000$ orange \leftrightarrow we do not know yet \leftrightarrow we $\left\{\begin{array}{l}\text { fail to roget } \\ \text { Design of the underlying test }\end{array}\right\} H_{0}: \mu_{0}=10,00$
\square Indicate the parameter of interest μ_{0} out of the four following statements:
1A. the individual daily numbers of steps made so far $=$ sample data $x_{1} \ldots x_{49}$
15. the average daily number of steps made so far $=$ Sample average $\bar{\lambda}_{i 4}$
1... the individual daily numbers of steps (made so far and) to be made in the upcoming months $=x_{1} \cdots x_{4} 9_{3}^{x} x_{i}^{x}$ \rightarrow (1D.) the average daily number of steps (made so far and) to be made in the upcoming months

$$
=\mu_{0}
$$

\square What pair of hypotheses should we consider based on our aim for a color code?
2A. $H_{0}: \mu_{0} \geqslant 10,000 \mathrm{vs} . H_{1}: \mu_{0}<10,000 \longleftarrow$ would only result in 2 colors, not 3
2B. $H_{0}: \mu_{0} \neq 10,000$ vs. $H_{1}: \mu_{0}=10,000 \longleftarrow$
\rightarrow (2C) $H_{0}: \mu_{0}=10,000$ vs. $H_{1}: \mu_{0} \neq 10,000$
We cannot test for this, for mathenctical reasons H_{0} need to be stated with \geqslant, \leqslant, \square Provide a brief justification of your choice, based on our aim for a color code. or $=$, bat cannot be Red/Grein will be for the cases when we prove sated with \neq something, ie, when we are able to reed $H_{0}: \mu_{0}=10,0 \infty$ and op either for $H_{1}: \mu_{0}>10,000$ (Gwen) or " $H_{1}: \mu_{0}<10,000$ (Red);

A first user monitors his numbers of steps for 49 days and obtains a sample average number of steps equal to 10,532 steps, with a standard deviation in these data points of 3,154 steps. Work out the test of the hypotheses
$\square \square$ by drawing a picture summarizing the expected behaviors of your test statistic under H_{0} and H_{1}, by computing the numerical value of your test statistic (please spell out the calculation that you typed), by providing the associated P -value.

$$
\begin{aligned}
& t=\sqrt{49} \frac{10,532-10,000}{3,154}=1.18 \\
& \text { P- value }=2 \times(100 \%-88.10 \%) \\
&=23.8 \%>5 \% \\
& \text { We fail to reject Ho }
\end{aligned}
$$

Based on the same data set. SPSS provides the following output.
Reminder:
One-Sample Statistics
SPSS uses a
Student's distribution

	N	Mean	Std. Deviation	Std. Error Mean
Number of steps	49	10532	3154	450.578401

(with 48 dagoes of freedom) to compute
P-verlve

One-Sample Test

\square Explain where to check your two numerical an\$wers above and provide additional comments if needed.
 = the same as we had

All in all, which color code should this user see?
 Second data set
 $$
\rightarrow \text { Orange }
$$
 a we failed

We consider a second user: she monitored her numbers of steps for 115 days and obtained a sample average

$$
\begin{aligned}
& \text { it by a } \\
& \text { nokidistribution }
\end{aligned}
$$ number of steps equal to 10,452 steps, with a standard deviation in these data points of 2,356 steps.Provide the P -value associated with this data set, as well as the color code that the user should see. (Indicate some of your intermediary calculations.)

Third data set
A third user obtains a sample average number of steps equal to 9,759 steps, during 62 days.
\square Based solely on this information, do we already know the color code? How many colors are ruled out already? Explain. Green is ruled att, but both orange and Red are \rightarrow Green is ruled att: impossible to prove that $\mu_{0}>10,000$ based on

$$
\bar{x}_{62}=9,759<10,000
$$

\rightarrow Orange and Red are possible:
determine this, we would need the standard deviation $S_{x_{1}, 62}$. If we had it, we could compute $t=\sqrt{62} \frac{9,736-10,00}{s_{2,62}}$

$$
\begin{aligned}
& t=\sqrt{115}\left(\frac{10,452-10,000}{2,356}\right)=2.05 \\
& P_{\text {-value }}=2 \times(100 \%-97.98 \%)=4.04 \% \\
& <5 \% \\
& \text { We reject } H_{b} \text { and go for } H_{1}: \mu_{0} \neq 10,008 \\
& \text { Given the simple average } \bar{x}_{30}=10,452>10,000 \\
& \text { we this proved that } \mu_{0}>10,000 \\
& \text { we this proved that } \mu_{0}>10,000
\end{aligned}
$$

Elementary exercises page 76
Advanced exercises
Separate or pooled marketing campaign? page 80
Comparing prices in two local supermarkets page 84
Gender pay gap, revisited page 89
Alcohol consumption during the POWs at HEC, first version page 91
Cash in the wallet, by country page 94
Speedy self-assessment page 95
The effect of touch, re-worked page 96
Choosing between two gifts page 98
Lead levels in children's blood page 100

Elementary Exercise 6.1
(1)

The neisonable viewpoint is that, a prion, these should not be mich of a difference between laft-handed and right -handed persons (olherosse, to an evolutionary argument ai la Darwin categories) one of these two categories).
\rightarrow Thus H_{0} is the equality of the average
Now, as for as H_{1} is concerned, the statement clearly explains that there are two compering phenomena: better brain connections for left-handed people us. So dojects of dilly life typically designed for right-handed people. So, bald be wive have no evened... There Jonestion we are to ben to any deviation cateong and consider the two there fores we weeded alternative open to) $H_{1}: \mu_{0}^{R} \neq \mu_{0}^{L}$.
(2) The respective sample average reaction times equal 81.392 is (certiseconds) for right handed people and 94.958 is for
left_handed people. Are these two values significantly different?
We read the second table:

- First, the standard deviations of the reaction times are
not significantly different (P. value of 20.7%)
- Therefore,
we will
we will first line of

- Finally, lie Puabue associated to the two-sided lost seen to be equal $H_{0}=\mu_{0}^{R}$ is 2.3%, $H_{1}: \mu_{0}^{L} \neq \mu_{0}^{R}$ is then

Statistical conclusion: We reject H_{0}. These data show that the average reaction times are difosent.
Now, we *must* go one step further and say who is faster than whom: given the sample values, wee infer of that pres R < rob ${ }^{2}$, ie, that O right-handed people have foster reaction time on average

Elementary Exercise 6.2

The exerise is about independent data, as two unrelated sample are simuitteneously studied.
(1) The two gifts seem indistinguishable, it's reasonable to start with the Ot assumption $H_{0} \circlearrowleft$ that they have lie same impact. As for H_{1}, we are ready to be convinced that either of lan has more impact than the d leer, we have no clue in advance regarding which of them could be more efficient.
(2) We denote by $x_{1} \ldots x_{3 \alpha}$ and $y_{1} \ldots y_{3 a s}$ the facts whiter an order was placed $\left(x y=1\right.$ and $\left.y_{k}=1\right)$ or not $(x y=0$ and $y_{k}=0$).

Where ${ }^{\text {ty }}$.as $=\frac{\text { poled }}{\text { estimation }}$
Behavior under Ho: under H_{1} : nominal curve
larger or sivaller values than under tho (large positive or large neogtive values)
Numerical values on data: $\quad \overline{x y}=\frac{125+143}{300+300}=\frac{260}{600} \approx 44.7 \%$

$$
\text { and } \quad t_{309}=\frac{1}{\sqrt{2 / 300}}\left(\frac{125 / 300-143 / 300}{\sqrt{0.447(1-0.447)}}\right)
$$

$$
P \text { value }=2 \times(100 \%-93.06 \%)=13.8 \%
$$

We foil to reject Ho, that is:
These data do not bring to light any superiority
of one gift over the other. of one gift over the other.
Corresponding business action: if one of the two considered gifts is way cheaper than, the other ene, git pick et lie forstomer choose former! If not, let pee customer choose !

Elementary Exercise 6.3
(i) This is parred data as the seance 200 customers are followed. We measure 2 values x_{j} and y_{j} for
customer i, namely, customer j; namely,

- the amount x_{j} ordered in the first trimester (with
- the amant yo ordered in the second gift) trimester (with a gift)
We will study the differences $y_{j}-x_{j}$ not. z_{j} in the comannts ordered.

We got a sample average increase of $\overline{3}^{200}=1.58 \mathrm{E}$.
The comesponding parcimetes of interest is do, a population average amounts of increase: orders placed quantity by which the in the amounts of the orders placed of a out when could increase in the presence of a gift, where the average is computed over all the wevibers of the online buying cubs.
(2) We take as hypotheses:
proderit/risky $\quad\left\{\begin{array}{l}H_{0} \text { [prudent]: The small gilt has no impact, } \Delta_{0}=0 \\ H_{0}[\text { because }\end{array}\right.$ because
the gilt costs $\quad H_{1}$ [risky]: The suall gift has a positive imprict the gift costs
money!

Test statistic: $\quad t_{200}=\sqrt{200} \frac{\bar{z}_{200}-0}{s_{21200}}$
Behavior under Ho: normal curve under H_{1} : larger values than under H_{0}
Numerical value: $\quad \sqrt{200} \frac{1.58}{13.8} \approx 1.62$

$$
\begin{aligned}
P \text {-value }=100 \%-94.74 \% & =5.26 \% \\
& \approx 5 \%
\end{aligned}
$$

\rightarrow a border lina value... but as this is a business probleiu (and not a catical issue), we may well decare that those data lead to the rejection of Ho, le., that they shows a positive impact of la small gift.
\rightarrow he should safer the stall gift to everyone purchasing for more than $30 \in$!

Elementary Exercise 6.4

Answering studurits' complaints

This exercise is abut mopepondent data:
There are two ppoublions, $\frac{1}{2}$. the subjects taking the quiz first
Each of the er ppalblias is composed of thoussnds of stoduits as they gather -
The independent samples cassidied here have sizes 40 and 36 , repecocively. The parameters of interest are $\mu^{(1)}$ and $\mu_{0}^{(2)}$, the aivecge grades in exch group. We toot $\quad H_{b}: \mu_{0}^{(1)}=\mu_{1}^{(2)}=\mu_{0}^{(2)}$

$$
\begin{aligned}
& \text { the comunnication doing the eek hes re eff } \\
& \text { a detainertal or a shive effect }
\end{aligned}
$$

Outcome of the that: between take the 48.5%, 5 ,

$$
\bar{x}_{40}=14,3 \text { and } \bar{y}_{36}=
$$

(but as usual we haven't proved that fact).
Instructors' action:

Chapter Two-sample tests:
SEPARATE OR POOLED? MARKETING CAMPAIGN?

Ante-scriptam:

Question 1:

We pick one picture as a reference picture (left or right:

Ny business situation is a bt unclear-
-Let us assume that we want to determine whether men and women share similar tastes when it comes to the advertisment of fitness machines, or not. If so, then our marketing department will work on one single calupaign (but maybe with a third, different, picture); otherisies, it will build tuso separate campaigns.
G The two pictures considered here are only used as a test to asses whether the preferences cary or are similar
between men and women-

Type of data: independent sampler + proportions Populations: the mon and the women practising in fitness centers; by extension, we hope to study all men and women interested in using fitness machines \leadsto Parameters of interest: $P_{0}{ }^{2}$, the proposition of these men preferring the right picture and P_{F}, the proportion of these women preferring the right picture.
Data available: $\quad x_{1} \ldots x_{164}$ where $\quad x_{j}=\{1$ if the j-th man mervievied preferred the right picture - other wis
$y_{1} \ldots y_{105}$ where $y_{i}=\left\{\begin{array}{l}1 \text { if the } j \text {-th woman interviewed preferred } \\ \text { the right picture }\end{array}\right.$ O otherwise the right picture

Hypotheses to be tested:
\}
We need to decide them before digging into the data

Ho [prudent option]: save preferences among mon and women, the design of a single (en comines, campaign is enough.
H_{1} [costly option]: different preferences two separate campaigns would need to be created.
Put differently: $\left\{\begin{array}{l}H_{0}: p_{0}=p_{q} \\ H_{1}: \quad p_{0} \neq p_{q}\end{array}\right.$

Data summary:

$$
\begin{aligned}
& \bar{x}_{164}=\frac{89}{164}=54.3 \% \text { of the men in the } \\
& \text { sample prefer the right picture } \\
& \bar{y}_{105}=\frac{54}{105}=51.4 \% \quad \begin{array}{l}
\text { of the women in the sample } \\
\text { prefer lie night picture. }
\end{array}
\end{aligned}
$$

Pooed (grouped) simple proportion: $\quad \overline{x y} 269=\frac{89+54}{164+105}=53 \cdot 1 \%$
the global propsotion in favor of the right picture, when prating men and women in the bawl bag

L, Rephrasing of our question:
Are the sample average preferences 54.3% and 51.4% significantly different or not?

Test wracked out:

- Test statistic: $t_{164,105}=\frac{1}{\sqrt{1 / 164+1 / 105}} \frac{\bar{x}_{164}-\bar{y}_{105}}{\sqrt{\overline{x y}_{269}\left(1-\bar{x}_{1 / 269}\right)}}$
- Behavior under Ho: normal curve
- Behavior under H_{1} : takes larger or smaller values
- Value on our data: $\simeq 0.46$

Picture :

Pualue $=2 \times(1-0.6772) \simeq 64.6 \%$
We fail to reject H_{0} :
\rightarrow These data cannot exclude that men and women share similar preferenas when it comes to advertising fitness machines.
\rightarrow Business conclusion:
We have no ground for designing tub separate campaigns, so we will pay for the design of a singles common campaign

Post-scriptum:

Question 2:

Population:
Parameter:
Reference value:

Hypotheses:
of course, Phis exerise is a stylized version of what is! done in qualitative and quantitative
marketing!
[Not so related... but interesting! It's the simplest situation of a goodness of f fit. In chapter f, we will review more complex such situations.
I write: « not so related"s because despile the intentionally misleading formulation, all boils down to a one- sample O bot : we compare to the reference proposition $p_{r e f}=51.4 \%$.
a single population, those who attend fitness centers Po, the proportion of women in this population Pref $=51.4 \%$ the propsition of women in the global population

* Meaning:
the própsation
of men going to the g
gym, armure all comesprading probation for women Data: $z_{1}, \ldots z 269$ where $z j=\left\{\begin{array}{l}1 \text { if the jth interviewer varas } \\ 0 \text { if he was a man. }\end{array}\right.$ Here we have no agenda but our choice is led by mathematical constraints. By design, the tots we have studied pick
and

$$
\begin{aligned}
& H_{0}: \quad p_{0}=p_{\text {ref }} \\
& H_{1}: \quad p_{0} \neq p_{r e f}
\end{aligned}
$$

Now, note that $p_{0}=$ pref corresponds to the fact that men and women go to the gym in equal propositions,
while
$p_{0}>$ pref corresponds to women gang more often* than men to Jo the guin
and $p_{0}<$ pref is the "less often" case.

Data summary: $\bar{z}_{2} 269=\frac{105}{269}=39.0 \%$ of the persons in the sample
\rightarrow Is his sample proportion of 39.0% significantly different
from the 51.4% reference propation?
Test statistic: $\quad \sqrt{269} \frac{\bar{z}_{269}-0.514}{\sqrt{0.514(1-0.514)}}$

> - Ho behavior: normal carve - H_{1} behavior: takes larger or smaller values - Value on the data: $\quad \simeq-4$
$\underbrace{H_{4}}_{-4} \underbrace{\rightarrow H_{1}}_{4}$
Pualue: almost null
We strongly reject we H_{0}; given the sample
value
women are that er represented in this sample woman were wrder-represented in this sample and thus* in the studied population:
These data show that men and women do not go to the gun
in equal propshions: men go much more!
 in this case), we mad two measurements ($=$ the prices in the two supermarkets considered).
(2) It is reasonable to think that' at economic equilibriving if both super = markets exist and do well, then they should have le some average
prices. This will form Ho. There is no context or background suggesting that one of lem could be cheaper than the otter one. () Hence we will take a twosided hypothe sis H_{1}.
Summary: $H_{0}[$ reasonable]: Same average prices at Franprix and
H_{1} [no context]: Different average prices
(3)

> nonapnix prices

Hence, all in all, we suspect, after region.
This region corresponds to the cases where the Franprix price is larcener than the corresponding nenopsix price.
data Collection, that Tranpoix could be
mira expensive.
(4) Population $=$ All products sold in (both) these supermarkets Sample $=51$ such products (picked somewhat at randowio, but Variable of interest $=$ The difference in prices computed as (variable in Difference \Rightarrow) $=$ The difference in prices computed as price - nosoposix price statics

Parameter of interest =
The average difference in prices μ_{0}, where
the said average is computed over the side average is computed aver all the common products (not just the $s 1$ of the sample)
Data collected $=z_{1} \ldots z_{s t}$ where Bi donees the difference in prices for the j-th product
Data summary $=$
*Staribics n table)

$$
\left\{\begin{array}{l}
\overline{3}_{51}=0.20756 \\
s_{3,51}=0.534376
\end{array}\right.
$$

(5) * We resort to the test statistic $t_{51}=\sqrt{51} \frac{\bar{z}_{51}-0}{s_{3,} s_{1}}$

Behavior under H_{0} :
under H_{1} :
normal curve
larger or siwaller values than voider H_{0}

$$
\sqrt{51} \frac{0.2075}{0.53437}=2.77
$$

Numerical value on data:

Summary on a picture:

There data show that one of the two supermauleats is cheaper than the other, supermarkets is cheaper than the other,
nonoily (looking at the sample statistics).
Business conclusion: Go to nonopix: it's cheaper but also fancier! (At least if you can: Franpix' opening hours are probably
wider...
Statistical conclusion in plain words:
(6) Our well-choen Square is given by a confidence interval: au underestimate of the o difference in the average prices. with high confidence, this difference μ_{0} is larger them:

$$
\begin{aligned}
\bar{z}_{51}-1.65 \frac{s_{3151}}{\sqrt{51}} & =0.2075-1.65 \frac{0.53437}{\sqrt{51}} \\
& =0.084035 \geqslant 0.08 \epsilon
\end{aligned}
$$

\Rightarrow These data show that Monopsix is cheaper than Franprix (by at
least 8 cents per product on average).

$$
\begin{aligned}
& \text {... Except that "8 cents per product" is not easily } \\
& \text { understood, hence } \\
& \text { exercise } \\
& \text { (beware! it's a difficult question). }
\end{aligned}
$$

Question 7: To be skipped in class (it's a difficult question).
Lat us first look at what «LogRatio» corresponds to: we rend

We therefore study the averages of $x_{j}=\ln \left(F_{\dot{j}} / M_{j}\right)$
where F_{j} is the Franpoix price of product j
nj is the Ronopoix price of product j
Put differently: $\quad F_{j}=M_{j} x \exp \left(x_{j}\right)$
Thus:
$\exp \left(x_{y}\right)-1$ is hows much (in \%)
The product is more expensive or cheaper at Teanprix.

Now, what is len associated population parameter?
We denote by go the arithmetic average over all products of $\ln (F / M)$
Then edo is the geovietric average dies all products of F / M
The right notion of arrage variation in $\%$ is efo-1
We test H_{0} : same prices en average, $f_{0}=0$
H_{1} : one supermarket is more expensive on aurecge, $y_{0} \neq$
The second line of the \& One simple T-list tables indicate an (almost) null P value. It is dotained by using the tot

Artistic

$$
t_{51}=\sqrt{51} \frac{\bar{x}_{51}}{s_{x, 51}}
$$

with value on data (LogRatio): $\quad \sqrt{51} \frac{0.0901}{0.17093}=3.76$
with Ho behavior: normal-curve
H1 behavior: Sinaller or larger values

$$
\begin{aligned}
P \text {-value } & =2 \times(1-0.999892) \\
& \approx 0.02 \%
\end{aligned}
$$

is almost null

We reject the and conclude to a significant difference in prices.

We also see that γ_{0} is estimated bag:

- the sample mean: $\bar{x}_{51}=0.099$
- the confidence interval: $[0.0420,0.1352]$

So that the average varicion $e^{\gamma-1}$ is ortimated by:

- the single value $\exp (0.0901)-1$ a 94%
- the interval $[\exp (0.0420)-1, \exp (0.1382)-1]=[4.3 \%, 14.9 \%]$

Hence our general- public conclusion:

The data show a significant difference in average prices between the two supermarkets: the Franprix prices are higher than the Monopsix prices, by about 9.4%. (To be more precise, we can tell that with high confidence, this average difference in prices lies between $+4.3 \%$ and $+14.9 \%$.)

Exercise "Gender pay gap,
salic notation as in Chapter 3.
We consider again the sine notation as in chapter 3 .
SPSS tests $H_{0}: \mu_{0}^{0^{\prime}}=\mu_{0}^{8}$ us. $H_{1}: \mu_{0}^{0} \neq \mu_{0}^{+}$ and gets a P-value of 0.1% as indicated below:

But in our case, we have some heavy glass-cailing-effect assumption that we would actually like to Opncie/ bring to light and
 $H_{1}[$ what we
want to prove $]$: Women earn less on average, $\mu_{0}^{3}>\mu_{0}^{q}$

SPS measures the differences in the men-women direction (see the positive values for "Dean Difference" in the table).
The test statistic at state here is of the form $\frac{\bar{x}_{19}-\bar{y}_{147}}{\text { normalization' }}$
where the x are the wen data and the where the x_{j} are the wen data and the yid the wo mach data.
Its H_{0} behavior is close to a normal curve, its H_{1} behavior is that it takes larger values than under Ho ($H_{0} \mu_{0}>\operatorname{sen}^{8}>\mu_{0}^{\circ}$ under H_{1} and $\bar{x}_{H_{9}} \approx \mu_{0}^{B^{\circ}}$ while $\bar{y}_{147} \approx \mu_{0}^{9}$).
Irs numerical value on the data is 3.27 (see the SiBs atput). Thus we have the following sumviosies as far as the computation of

 \square

Exerise "Alcohol consumption during the Paws.
at the Paris"
(1) We actually had an agenda.

In that good dod time, my colleague and I were young professes (we just had joint that joined in september 2017) and O docents did not dare insist that the students be present - of course, that dramoically changed meanwhile as we got mere expesience land more self-confodence, art not mentioning the gean lat over the years, we could clearly bring to light a correlation between absence years, we cole and bad grads
Anyway.
In that good ald times our assumption was that:

- At sam we only get sober students who went to bed reasonably early: thus, ed vie get many absentees (all these who drank too (Much and cont t get up) Might before; students actually attending the classes behaved the night before;
- At lo am, you could have slept longer and thus could be attending while absent rate partying and binge typically drinking the night before;
Hence, denoting by μ_{0} aim and loam the respective average alcohol consumptions over le wowesks, for each group, we aviage had in mend to prove that Mo loam $>\mu_{0}$ sam, and group hence wanted to

$$
\begin{aligned}
& \text { want to prover]: }
\end{aligned}
$$

∇ Note that SPSS uses in its outputs $H_{0}: \mu_{0}^{\text {loam }}=\mu_{0}^{\text {sam }}$ vs. H_{1} : $\mu_{0}^{\text {loam } \neq \mu_{0} \text { gam }}$
(2) The second column report's the number of alcohol glasses drunte (and in that goad dd time, there was not only bask but also stronger alcohols good like vodka).
Thus, values like 18.7 (!) - or even 10 - are highly unplansible.
(1) We were surprised that students indicate non-integer values for the number of glasses drunk.... They of corrie were night () dang so!
(3) Two independent samples:

We have two different populations (the 8 ave students that are
present and the lo aim students that are present) and we measure the salve quantity (number of glosses drunk) for
each sample member. Fyi: these were 31 and 51
(4) In the second treatment of the data, we eliminated the numbers of glasses that were >20 (!). This only suppressed 2 data
points, in the 10 am group: points, in the 10 am group:

Sample sizes Before suppression After suppression

8 am sample	23	23
lo am sample	31	29

SPSS moossues the differences as: \quad am - 10 cir
The test statistic thus:
The test banistic thus: approximately as a normal curve under H_{0} and it has a takes smaller values under H_{1} value on the dan under H_{0}

Namisical
values of le
test statistic

What SPSS dos

$$
H_{0}: \quad \mu_{0}^{8 a m}=\mu_{0}^{10} \mathrm{am}
$$

v. $H_{1}: \quad \mu_{0}^{8}$ am $\rho_{0}^{\text {p }}$ lo arm

P- value (read in the SPBS output):

What we do

$$
H_{0}: \quad \mu_{0}^{8 a m}=\mu_{0}^{10 a m}
$$

Thus: Pralue of 4.9% in this case

Care of (partially) CIANNED DATA:
Save melteddolgy, he get a P value of $36 \% / 2=18 \%$

On the cleaned simper date cis did the lo ain group drink wore then the sam group.

(5) We of course trust more the cleaned data (how can I one drink clare than 20 glasses and not end up at hospital? and be present in class the day (after? B. But even the raw data was nat very
conclusive bordestine P-value of 4.9%). conclusive (we had a borderline P-value of 4.9%).

Ale in all, we fail to reject Ho, which was a surprise to us:
These data do nat suggest at a significant higher alcond consuruption for the students present at lo am compared to the students present at 8 am. $\leftrightarrow 8$ am students $\left\{\begin{array}{l}\text { should not } \\ \text { cannot }\end{array}\right\}$ be-declared more $\left\{\begin{array}{l}\text { bering } \\ \text { serious! }\end{array}\right.$

Exercise 2 - Cash in the wallet, by country - 4 points

A 2017 study by researchers of the European Central Bank, Hent Esseliniz and Lola Hernandez, titled The use of cash, by households in the euro area. provided the following picture, where the value written on each country is the average amount of cash in the wallet reported by interviewees of the sample.

Since I did not get access to the original data, I invented some that is compatible with this picture. Let's focus on Germany and Austria.

$$
\begin{aligned}
& 8 \text { We use indopendont samples but we } \\
& \text { are not testing for independence, } \\
& \text { we are testing equality of (population) } \\
& \text { means. }
\end{aligned}
$$

we rend this line
in $\left.\longrightarrow \begin{array}{l}\text { Equal variances assumed } \\ \text { assumed }\end{array}\right]$

Chart 20
Average amount of cash in wallet

Group Statistics

| | Country | N | Mean | Std. Deviation | Std. Error Mean |
| :--- | :--- | ---: | :---: | :---: | :---: | :---: |
| Cash in wallet | Austria | 857 | 89,13395283 | 19,95491575 | .681646937 |
| | Germany | 1026 | 103,0778278 | 30,33950275 | .947184927 |

this th

What hypotheses are tested here? (State them in words only, do not forget important adjectives.)
to be read
Circle on the SPSS output above where you read the final P-value for your hypotheses.
here
Do you reject or fail to reject your H_{0} ?
Ho: Germans and Austrians cary the save average amount of cash in their H_{1} : Germans and Austrians cory different such average amounts
P value almost null: we (strongly) reject H_{0}.
$\square \square$ Write a statistical conclusion quantifying the effect size. (Again, do not forget important adjectives.)
Data shows that Germans and Austrians cory different average comments
of cosh (loosing at simple data) Germans carry more cash on average.
Effed size: With high confidence, they cory at least $\| \in$ and at most $17 \in$
Alternative numbers: - at least $11.65 €$ and at most $16.24 €$ more

$$
\text { - at least } 13.94-1.65 \times 1.167 \geqslant 12 € \text { more }
$$

Exercise 3 - Speedy self-assessment - 7 points

A newly hired salesman wast given the company's sales pitch, that is currently successfully used by dozens of salesmen, but thinks he Would have such a better and more effective pitch. However, because he is prudent, he wants to test his idea first, before using it for an extended period of time. So, on day 1 of his first job, he does as he was asked to and uses the company's sales pitch. But on day 2 , that ambitious and self-confident salesman uses his own pitch. Results are: on day 1, he talked over the phone to 534 persons, out of which 64 subscribed to the product; on day 2 , he obtained 67 subscriptions-out of 526 phone calls. What should he do?
$\square \square$ What hypotheses are tested here? State them in words only and carefully explain your choice.
H_{0} [prudent]: The company's pitch is as efficient or more efficient than his H_{1} [risky]: His own pitch is (strictly) superior (is pcompany < Psabsman)

Work out the test of the hypotheses
\square by drawing a picture summarizing the expected behaviors of your test statistic under H_{0} and H_{1},

象
as the pooled stimnte of success rate
equals

$$
\frac{64+67}{534+526} \triangleq 12.4 \%
$$

$$
\begin{aligned}
P \text {-value } & =100 \%-64.43 \% \\
& =35.57 \% \geqslant 5 \%
\end{aligned}
$$

\square Provide a conclusion, by circling one element in each of the two columns; it must be picked in accordance to your hypotheses and your P -value:

1 beth pitches work equally well_ nice
2 the answers :
3 the salesman's personal pitch is more effective $\rightarrow 2$
4 the salesman's personal pitch isles effective
D 4

A These data show that
B These datarsuge that
C. These data do not bring to light that

1) These data eannoterelude that

Answer D1 is not as
nice though I counted it \checkmark as correct despite all.

Alternative correct answer: He could continue attemating tHee two pitches
till he can rank them; for now they sem to have a somershat comparable performance.
Alternative incorrect statements: - Both pitches have the same performance (too affirmative!)

- Ho he can pick whichever he prefers is slightly better so he should use it

Exact same statement as in a previous quiz!

But this time, with the batter wollooblogy we will be able to conclude to an impact.

Exercise 1 - The effect of touch, re-worked (10 points)

It is well documented, e.g., in marketing studies (Jacob Hornik, "Tactiche stimulation and consumer response", Journal of Consumer Research, 1992) that light tactile contacts influence human beings in a subtle way towards the requests of the contact-maker. For instance, if a seller touches you lightly, you Holifister should be more inclined to buy a product.

We want to illustrate this fact by performing the following experiment. We consider two similar stores (e.g., two Hollister stores) and ask the sellers of the first store to avoid any physical contact with the customers, while the ones of the second store are asked to lightly touch the customers' arm. We are interested in the corresponding purchase rates, which we denote by p_{0} (without any contact) and q_{0} (with a light contact), respectively. Data collected are that 12 out of the 120 customers served without a contact purchased an item, while 23 out of the 120 served with such a contact did so.

We want to determine whether a light contact has a significative impact on the purchase rate.
Two-sided test of $H_{0}: p_{0}=q_{0}$ against $H_{1}: p_{0} \neq q_{0}$
We first test $H_{0}: p_{0}=q_{0}$ against $H_{1}: p_{0} \neq q_{0}$ based on the data collected:
\square draw a picture summarizing the expected behaviors of the test statistic of interest under H_{0} and H_{1},compute the numerical value of this test statistic (please spell out the calculation typed on your calculator), \square provide the associated P -value.

Pooled stiwate : $\overline{x y}_{240}=\frac{12+23}{120+120}=14.6 \%$

$$
t=\frac{12 / 120-23 / 120}{\sqrt{(1 / 120+1 / 120) 0.146(1-0.146)}}=-2.01
$$

$$
P \text {. value }=2 \times(100 \%-9778 \%)=4.44 \%
$$

\rightarrow Reject H_{o}
Write a conclusion consistent with the hypotheses and the P-value obtained, and which is the most informative possible. Do so by picking the beginning and the end of the sentence:

One-sided test of $H_{0}: p_{0}=q_{0}$ against $H_{1}: p_{0}<q_{0}$
We now test $H_{0}: p_{0}=q_{0}$ against $H_{1}: p_{0}<q_{0}$; to that end,
\square draw a picture summarizing the expected behaviors of the test statistic of interest under H_{0} and H_{1}, provide the associated P -value.

(We do not ask for a conclusion in this case.)

One-sided test of $H_{0}: p_{0}=q_{0}$ against $H_{1}: p_{0}>q_{0}$
We finally test $H_{0}: p_{0}=q_{0}$ against $H_{1}: p_{0}>q_{0}$; to that end,
\square draw a picture summarizing the expected behaviors of the test statistic of interest under H_{0} and H_{1},\square provide the associated P -value.

$$
P_{\text {-value }}=97.78 \%>5 \%
$$

Write conclusions consistent with the hypotheses and the P -value obtained, by using the same coding as above; data, two conclusions are possible here and we ask for both of them:

First conclusion possible	Letter: A	Number: $\mathbf{2}$
Cannot exclude n Hs		

Who picks which hypotheses?
Let us consider an academic researcher and a shopkeeper. Which of the three pairs of hypotheses above would they each consider?

(Pair 1)	$H_{0}: p_{0}=q_{0}$	against	$H_{1}: p_{0} \neq q_{0}$
(Pair 2)	$H_{0}: p_{0}=q_{0}$	against	$H_{1}: p_{0}<q_{0}$
(Pair 3)	$H_{0}: p_{0}=q_{0}$	against	$H_{1}: p_{0}>q_{0}$

Just write the number, no explanation or justification is needed (for once):
Academic researcher: Pair 1
Shopkeeper: Pair 2

Exercise 3 - Choosing between two gifts - 6 points / 15 minutes

Consider an online buying club: members have to place an order every trimester (otherwise, they get some product by default, like "the book of the trimester"). Typically, members were ordering for an average amount of $\mu_{\text {ref }}=165$ euros. The club wants to assess the effect of a small gift on its revenue but hesitates between two gifts. Its conducts a simultaneous test on two different samples of 200 customers picked independently at random; the customers of each sample are notified that they will get the corresponding small gift if they place an order above 100 euros. Denote by μ_{0}^{1} and μ_{0}^{2} the average amounts of orders that would be achieved if the first and second small gifts considered were offered to the many customers of the club. We wonder which gift is the most effective in terms of total revenue (or equivalently, in terms of per customer average revenue).

Consider first the following SPSS output:

| | Group Statistics |
| :--- | ---: | ---: | ---: | ---: |
| $\left.\begin{array}{\|ll\|r\|r\|r\|}\hline & & & \\ \hline & \text { Group } & \text { N } & \text { Mean } & \text { Std. Deviation } \\ \text { Std. Error Mean } \\ \hline \text { Amount } & 1 & 200 & 166,076 & 22,8922 \\ & 2 & 200 & 170,076 & 31,8717\end{array}\right] 2,6187$ | |

Independent Samples Test

significantly different
\square What hypotheses are tested here? (State them in equations only.)
Circle on the SPSS output above where you read the final P-value for your hypotheses.
Do you reject or fail to reject your H_{0} ?

$$
\left\{\begin{array}{l}
H_{0}: \mu_{0}^{1}=\mu_{0}^{2} \\
H_{1}: \mu_{0}^{1} \neq \mu_{0}^{2}
\end{array} \quad \text { P-value }=15 \% \rightarrow \text { we foul to reject } H_{0}\right.
$$

\square Write a statistical conclusion (in plain words, that should be understandable by a layman).
Do these data, based on their treatment above, indicate per se which gift, if any, should be chosen? to the Conclusion: - These data cannot exclude that the two gits would lead to the
same average ament of orders. [or] - These data do not bring to light any supvicrity of one gite oven
the other as far as the average amounts of alders are concerned.
Which gift should be chosen?
git should be chosen?

- The treatment above (consisting of comparing the means) does not indicate.
per se which gift to choose. Other dimensions/citeria way help
if different; also, note that as it leads to a smaller variana in the detained aments adored).

These tests complement the ane performed on the previous page. We test whether each gift is effective in leading to larger amounts of adders, by comparing to the reference. value 165 . They look at the same. data but with a different

Group 1 / Comparison to the reference value 165

perspective.

Group 2 / Comparison to the reference value 165

One-Sample Statistics				
	N	Mean	Std. Deviation	Std. Error Mean
Amount	200	170,076	31,8717	2,2537

We define
$\mu_{\text {ref }}=165$
\} ~ W e ~ a n s w e r ~ f o r ~ G r a y ~ 1 only,
What hypotheses are tested here? Which would we rather want to test? (State them in equations only.)
Tested: $H_{0}: \mu_{0}^{1}=\mu \mathrm{cf}$

$$
H_{1}: \mu_{0}^{\hat{0}} \neq \mu_{r e f}
$$

\square Indicate the P-values associated with the hypotheses we would rather want to test. Do we reject or fail to reject H_{0} in each of the two cases?
In these cases (q p positive numerical values of the test statistic), they are given by the P-values read above divided by 2 , that is:
$\square \square$ Do the answers to the question right above prove per se that one gift is superior to the other one? Explain. Do we get a contradiction with or a confirmation of the conclusion written on the previous page, or none of these?
Superiority? Yes and no:

- Hes: The real pint of this study is not to compare gits but pick one; we could prove, that the second git was effecue but could not we need to pick one gift, then let's pick the second one, it's a safe option.
-No: We did not prove that the second gift is superior to the first git: we proved, $\mu_{0}^{2}>\mu_{\mathrm{ref}}$ bat still weill still we that $\mu_{0}^{2}=\mu_{0}^{2}$, we did not exclude nor prove this yet.
Contradiction 1 Confirmation? None of them: merely yet another non- conclusive
why do pu think this study was conducted in the
first place? Because these was som background that (surprisingly enough) children whose parents work in lead related industris suffer frow lead pasoning Exercise 4 - Lead levels in children's blood - 6 points / 15 minutes

The presentation of the data set considered here is extracted from an article written by Robert M. Pruzek and James E. Helmreich and published in the Journal of Statistics Education:

> "[This exercise is] based on an observational study by Morton et al. Children of parents who had worked in a factory where lead was used in making batteries were matched by age, exposure to traffic, and neighborhood with children whose parents did not work in lead-related industries. Whole blood was assessed for lead content yielding measurements in $\mathrm{mg} / \mathrm{dl}$; results shown compare the exposed with control children."

Reference: Morton, D., Saah, A., Silberg, S., Owens, W., Roberts, M. and Sabah, M.: Lead absorption in children of employees in a lead related industry. American Journal of Epimediology, volume 115, pages 549-55, 1982.

Data is listed and plotted on the final page of this statement (for information only).
\square Do we deal with one sample, two independent samples, or two paired samples?
State accordingly the parameter of interest. (Only one single parameter of interest should be stated.)
Paired samples: for each location, two measurements are modem (one on a control child and ore on a child whose panerits work in a lead-related industry) Parameter of merest: the average difference Δ in lead levels in blood between all - State relevant hypotheses to be tested. Explain with few words in brackets why you picked them. childrenHo [reasonable] $\Delta=0, \quad$ only parents are exposed to lead and they their children H_{1} [what we want $\Delta>0$, parental exposure to lead at wat has an effect on to prove] Descriptive Statistics
H_{0} is "reasonable because why/ how could children be contaminated through their It seems old at fist.
\square Which sample statistics in the table above will your calculations use? Circle them.
Compute accordingly the numerical value of your test statistic (provide intermediary calculations).
\square Then work out the test of your hypotheses, by drawing a picture summarizing the expected behaviors of your test statistic under H_{0} and H_{1} and by computing the associated P-value.

$$
t_{33}=\sqrt{33} \frac{15.97}{15.864} \simeq 5.783
$$

 (ale 5783 is at of the that pounded, and remember from cher exercise done in class that P value are already almost null when the list starisic is larger than 4)

These data strongly show that children whose parents wok in lead related industris suffer from this and get higher lead levels in blood (on average).
\square To check your results with the following SPSS output, which two cells do you read? Are the two values thus read in line with the ones that you calculated?
kequed

 (the P-value here is the double of our P value as SPAs conducts a two-sided test, but as both are almost null, we cannot read any difference for once...)

Note : The study then reeds to quantify Δ to see how detrimental the jo of the parents is to the health of the childrenHere, we get the confidence interval $10.3-21.6 \mathrm{mg} / \mathrm{dl}$ on the average difference in lead levels in blood.

χ^{2}-tests of independence and of goodness of fit

Elementary exercises page 104
Advanced exercises
Reading habits per socio-professional category page 107
The sinking of the Titanic page 109
Hair color by gender page 110
Call centers page 112
"Junior entreprise" campaign at HEC Paris page 114
Mendel's experiment page 115
Alcohol consumption during the POWs at HEC, second version page 117
M\&M colors page 118
Satisfaction survey page 120
Births by month page 122

Elementary exercises.

Exercise 1 (x^{2}-test of independence)
(1) This expected count equals

(2) We check whether the wilidity conditions are wot:

$$
\begin{aligned}
& \text { - Total sample sine } n=116 \geqslant 30 \\
& \text { - No expected cont sweller than } 5 \text { (se take note) }
\end{aligned}
$$

(3) he read a P-value of $56.3 \%>5 \%$, we fail to reject Ho.

Exercise 2.

Instructor 1
(1) $\quad 50 \times 15 \%=7.5$

\uparrow	\uparrow
total	target
number of	proportion
grads guin	of A

Instructor 2

$$
49 \times 15 \% \cong 7.4
$$

(similar explanation)
(2) Yes, the validity conditions are net in both cases:

- Total simple size $n=50 \geqslant 30 \quad$ and $n=49 \geqslant 30$
- No expected count smaller than 5 (see table rots)
(3)
P-value $=48.4 \%>5 \%$
P-value $=4.3 \%<5 \%$
We gill to reject H_{0}
We should reject Ho
(through it is
value)
(4) No significant discrepancy to the,

The grading performed is targe distribution can be
found, thess be could declare the grading performed consistent with the school's policy.
lie schools policy. It
should be revered.
The biggest issue (compare observed cants to Expected counts) is that there are too many C 's and too would be to convert some easy C^{\prime} 's

Exercise 3: $\quad \frac{X^{2}-\text { tot version of "Answering students' complaints" }}{}$
(i) Hypotheses H_{0} [hamogeraity] Same performance profits, it the grades detained in the two groups H_{1} [lack of homogeneity] Different performance propels/
(2)

$$
\begin{aligned}
& \text { spin / 15-20 Observed cant: } 8
\end{aligned}
$$

(3) Les because sample sine $11=76 \geqslant 30$ (sen table note)
(4) P -value $=62.0 \%>5 \% \quad \rightarrow$ Fail to reject H_{0}
(5) The performance profits are not significantly different between the Same actions to take as for the other version of this exercise. Instructors should repeat that tot year after year and continue collecting evidence. For now, a single quiz statement is
tine.

Reading habits per sxic-profesional category.
(1) Test: X^{2} test of homogenity/independence

Ho Chomogenetyy independence]:

Readings habitats do not vary by the sociol professional category
The socio-professional category has no influence on the reading habits
v. $\quad H_{1}\left[\begin{array}{l}\text { lack of homogeneity } \\ \text { some dependence }\end{array}\right]$:

Rending habits vary by the socio-professional $\}$ cateopry
or: The socio professional category has an influence on la reading habits
(2) Output 1/2: The test is NoT validly worked out because one catcopry has an expected) count smaller thin 5, navaly: Farmers/ 1 book per month, or more
It would be awswourd to merge the farmers with any other socio professional category, so we simply drop them.

Che consequence will be that our study will be mute about the reading habits of farmers.
This suppression of farmers leads to the second output:
Output 2/v: This second test is now validly wooled out as:

- the sample size $n=1,454$ ill $\geqslant 30$
- all expected © cants are larger than 5 (see le table note)
(3) Output 1/2: The reading of lie Pvalue is rat applicable, as the test is not validly applied. he cannot exploit this ait put
Output 2/2: We read an almost null Pualuey we strongly reject H_{0}.
(4) The reading habits differ among the various scio-profossional categorise-

L We hoed to explain why categories read more than average (To do so, we compare expected and observed counts) as the average less than

Craftsmen \&co: as the average? or just slightly less than average Company arecutives \& co: (much) more than average
Associate/intermediate more than average
Eliployes:
almost exactly as average
Waters:
(much, much) less than average
Other non-economically (slightly) more than average
active:
Retired:

$$
\begin{aligned}
& \text { mixed picture but overall they read los than average } \\
& \text { (see the 2nd and } \\
& \text { Bid coulis) } \\
& \text { because } \\
& \text { its a mixed category, } \\
& \text { with various brikgronds) } \\
& \text { publisher do based on leis data? } \\
& \text { eg, long nutty, }
\end{aligned}
$$

(5) What should a publisher do based on leis data?
 market

- Identify a segment where a strong progression in sibs
could be wade : aguish plain
books with simple but thoughtful puustories,

(6) $\quad \begin{array}{r}\text { Company executives } / ~ \& ~ b o c k ~ p o r ~ m o r t h, ~ \\ \text { \&co. }\end{array}$

Exercise "The sinking of the Titanic"
(1) Test: x^{2} test of independence
H_{0} [independence/ homogeneity]: Same $\left\{\begin{array}{l}\text { death } \\ \text { survival }\end{array}\right\}$ rate among all
that is: all Titanic passengers were equal before dosith
v. $H_{1}[$ dependence/ lack of
homogeneity .: Some categopis of passengers fared
(2) The test is validly worked out:

- Total sample size $n=2,201 \geqslant 30$
- No expected cont smaller than 5 (woe table note)
(3) We read an almost null Pualue
(4) Ho is strongly rejected given these data
\rightarrow There data show that some categories of passengers fared better than others, ie, that passengers were not equal before
death:
Namely, first-class and to a lesser extent, pecond-chss
Namely, first-class and to a lesser extent i pecond-class
compare passengers enjoyed a survival rate larger than
deserved cants survival rate. to expected counts the crew gwoaibers and survival rate. a) larger death rate than the global death rate.

Why? 1. Because the crew members sacrificed themselves
2. Because it was not "women and kids first" to get a seat in the rescue boats but rather whoever coming first, and as lie rescue boats are close to the deck, wistere first-class passengers are hosted (while third-ckas passengers travel in the bows of the ship...); whoever comes finest in was given mostly by these upper -class / upper -ship
(5) N/A

Hair color by gender.

1. Test: χ^{2} of independence

Ho [independence/homogenaity]: Same hair color distribution, regardless (or: Hair color does not depend on the gender or: The gender does nor influence the hair color:)
H_{1} [dependence / homogeneity]:
The test is validly waked out:

- Total sample size $n=3883 \geqslant 30$
- No expected count less than 5 (see table note)

3. We read a P-vatue of 33%
4. P-vake $55 \% \rightarrow$ ha reject tho

These data show that some hair colors are more frequent among women than men, or vice versa: which ones? We should indicate them but it is nor so easy to read. See the subsidiary question below.
5. N/A (no business conclusion; at least, Fisher did nor conduct this study with a business implication in mind!)
6. E.g., expected count for red-haired women:

$$
99.2=\frac{216}{3883} \times 1783 \quad(=\underset{\text { global propstion }}{\text { of red impaired }} \times \underset{\text { persons }}{ } \times \text { of women t number })
$$

To be compared to the observed value for leis category: 97

\downarrow \& very difficult

7. Subsidiary question: which hair color dries the results?

The value of the tat statistic is computed as
$D=\Sigma \frac{\left(N_{\text {cos }}-N_{\text {exp }}\right)^{2}}{N_{\text {exp }}}$

We have, for the values of $\frac{\left(N_{\text {oles }}-N_{\text {up }}\right)^{2}}{N_{\text {esp }}}$

Den	Women
0.82	0.96
0.04	0.05
0.68	0.80
0.30	0.36
3.00	3.52

$$
\begin{array}{r}
\text { Sum of all thess numbers } \because 10.467 \text { as we reed in } \\
\text { lie sis output }
\end{array}
$$

\Rightarrow Two calls dive the results: jet-black/mon \& jet-black womenActually, without the jet-black color, these would be no significant difference in the distribution of the other hair colors!

Exercise "Gall centers"

Ante - scriptan:
We consider here a whom family of suitable distributions for the waiting times, of el lee form
a fraction x of the customers waits $\leqslant 2 \mathrm{~min}$ a fraction y

$$
2 \mathrm{~min}<\text { and }
$$

where

$$
\begin{aligned}
& x \geqslant 50 \% \\
& x+y \geqslant 9 \% \%
\end{aligned}
$$

$$
\leqslant 5 \mathrm{~min}
$$

Many (x, y) pairs are possible, eg: $\quad \begin{aligned} x & =60 \%, y=30 \% \\ x=70 \%, & y=25 \%\end{aligned}$ etc.
The one when people wart the longest is:
but don !t forge's
that it's just the
least faviarable distribution among

$$
x=50 \%, y=40 \%
$$

this will be our reference distr audion

$(=$ limit distribution) all acceptable distribution-
After this lengthy introduction, we answerer the questions in order:
(1) Test: x^{2} test of goodness of ft

Ho [conformity]: The waiting times of the customers follow then
limit distribution:
50% of Pam are $\leqslant 2$ min
40% are 72 min \& 55 min are 75 min
hypotheses
stated in $\quad H_{1} \quad$ [ron. conformity]. a. technical though accurate ven y
\rightarrow Seffer, statements would be:
(but not accurate enough, as we shall iso below)

The wasting time follows sore allier distribution) (more favorable or less favorable: both alternatives have to be considered)
(3) P -values:

$$
\begin{array}{ll}
\text { Call Center } \# 1: & 77.4 \% \text {, we foul to } \\
\text { reject } H_{0} \\
\text { Call Center } \# 2: & 2.2 \% \text {, wi reject } H_{0}
\end{array}
$$

(4) $f(5)$ Statistical + business conclusions: (We cannot exclude that data abides by the Gal Center \#1: The head of lee Inaternet-access politercannot raise any claim canst the
performance of call center
GIl Center $\# 2$: Here we reject the but if we dig into the data) we se that it's because customers waited las than what is prescribed by the limit distritation: there are more customers thin expected in the two 55 min categois and fever in the 75 min catacosy. We hence reach lie same conclusions as for the other center: no claim can be raised.
(6) Eg;, expected counts in live 75 min category,
Gal center \#1:
III $\times 10 \%=11.1$
Cl center \#2:
$104 \times 10 \%=10.4$
to th
sample
sin
fervency of
this Eatecony
under lead
prescribed distribution.
(vs. observed
(vs. observed 9) cont of 2)
"Junior entreprise" Campaign at HEC Bris.
(1) Test: x^{2} - test of goodness of fit

Ho [conformity]: The simple is representatives ie He distribution of the 200 s rimple members by gender and program matches lie overall distribution (over the entire 2,983 students)
H_{1} [non-conforwity]:
The sample is not representative, its distribution by gender and program differs from the overall
such distribution.
(2) Raw data: The test is Not validly worked ait because some categoris have expected C cants smaller than S, navig: \quad PhD/man - 3.0

PhD/ woman - 2.6

An easy way out is to merge these two categoris into a greater Phis wan or woman category, which will \bigcirc be associated with an expected cant of 56. This leads to the second application of the test principle:

After some treatment: This second test is now validly warred ant as:

- the sample size $n=200$ b $\geqslant 30$
- all expected counts are larger than 5 (see the table note)
(3) Raw data: The reading of the Pualue is nor applicable, as the test is ci ft vididy applied.
Wee cannot exploit © this" output.
After some treatment: Palms of 66.3% we gail to reject Ho.
(4) The sample does not exhibit any doviais/signifcant bias as to it's gender/program distribution.
(5) This Junior Entreprise list should point out in its study that it gathered a quality sample and thus that the results of its Otstudy about cultural actintis are highly reliable.
(6) Expected count for MiM/ Woman: $\quad 200 \times 3.3 \%=62.6$ supple size overall frequency

Mendel's experiment.

1. Test: x^{2} of goodness of fit

Ho [conformity: Random transmission of alludes to childrent resoling in a 2nd-genecation distribution of phenotypes equal to

$$
\begin{array}{llll}
9 / 16, & 3 / 16, & 3 / 16, & 1 / 16 \\
y+R & G+R & y+W & G+W
\end{array}
$$

H_{1} [ron-conforimity]: Some other, less or ron-randan, transmisser resiting in another $2 n d$. Generation distribution of plearotypes

2s. The test is validly waked out:

- Total sample size $n=556 \geqslant 30$
- No expected count less than 5 (se table note)

3. The read a P -value of 92.5%, much larger than 5%.
4. We fail to reject Ho. These data are compatible with the theory of random transmission.
(BTw: As this theory of random transmission was deemed compatible with the many experiments Mendel performed, it was finally, and only then, held true.)
5. In his case: perform many dies experiments of the rave kind (but on different species, er.) and publish the results, so that other scientists can read, evaluate and validate them (scientific results are always and have always been perreviewed before disclosed to the geneal public).
G. E.g.s the expected count for Green Raid:

$$
-104.3=556 \times \frac{3}{16}
$$

sample size
1 frequency for his class
given by line reference destraibaition
To be compared to the observed value 108.
7. Subsidiary (and 8 very arinicurs) question:

Fisher performed ox-post (several decades later) better statistical treatments of mendel's data (the x^{2} tests did not exist in his time:) and systematically obtained P -values larger than 90%... which is implausible!

Indeed, if Ho is true, then the is test statistic follows some X^{2} distribution and lie P valve is uniformly distributed between 0% and boo (ie, Mendel should only have got P-valves kier than 50% in a fraction 50% of his experiments, and in only 10% of the experiments should be have cpl Puabues larger than $90 \% . .$.

What happened? Nendel cheated and always multiplied his sample sins by 10 or bo, adjusting the doserved cants at random. Eng., he would cultivate 56 pea plants, get the observed counts $31-11-10-3$ and make up the numbers we read in the table:
556 plants (instead af 56)
$315-108-101-32$ as obisured counts (instead of 31-11-10-3)
But it was for a good cause! No one was ready to believe in a random transmission, be needed convincing data...
∇ This exercise is not at all about participation rates VS. drinking behaviors...
Exercise 2 - Alcohol consumption at HEC Paris - 4 points / 10 minutes
We already studied this data in class, from a different angle. We collected data on HEC Paris students, on a Friday morning: how many glasses of alcohol they had the night before. We already showed in class that the average numbers of glasses per group of students (8 am or 10 am) were not significantly different. We now look at the same data but in the following way:

Chi-Square Test

Some mentioned
"dorking patterns"
or "drinking profits",

	Value	di	Asymp. Sig. (2- sided)
Pearson Chi-Square	$2,335^{\mathrm{a}}$	2	, 311
Likelihood Ratio	2,343	2	, 310
Linear-by-Linear	, 072	1	, 789
Association	52		
N of Valid Cases			

answers as well.
a. 0 cells $(0,0 \%)$ have expected count less than 5 . The minimum expected count is 6,63 .

- What do we compare here, given that we are not comparing average numbers of glasses?

Carefully state the corresponding hypotheses.
We compare distributions of numbers of gases (to do so, we group data in 3 categories).
Ho [homogeneity]: Sine drinking behavior
Which is the complete name of the test worked out here?
Can the outcome of the test be validly exploited? Explain.
v.

x^{2} test of homogeneity / independence
Yes, validly applied: total simple size $n=52 \geqslant 30$
A io expected count less than 5 (x ea table note)
\square What P-value do you read, and do you reject or fail to reject H_{0} ?
State a statistical conclusion (in plain words, that are understandable by a layman).
P-value $31.1 \% \rightarrow$ we fail to reject H_{0} :
These data cannot excluck that students present in class at 8 am or at 10 am data cannot exclude that student present in chat a statistical analysis do as not
have a sinking behavior: our in the top -right cell? bring to light any To which observed value should it be compared?
expected count
vs. Observed count 5

Note: "Data are compatible with the Temassee factory"
is equivalent to "We cannot exclude that data are distributed
according to the Tennessee factory distaibaion" Exercise 1 - M\&M colors - 6 points
This exercise is based on real data linked to M\&Ms, which are famous chocolate candies that come in various colors. Rick Wicklin is a computer programmer and statistician at SAS, the company that owns and develops the statistical software of the same name. Rick Wicklin also spends a lot more time than most people do
 in proximity to M\&Ms: his employer is the biggest corporate consumer of M\&Ms. Indeed, its CEO Jim Goodnight instituted "M\&Ms Wednesday" upon the company's founding in 1976, after falling in love with the snack during one late-night work session. Ever since, bowls in every SAS office are refilled once a week with the candies. Given the chocolatey bounty of his workplace, Wicklin had plenty of opportunities to ponder the statistical distribution of M\&M colors. Then inspiration struck. The first step was to collect his data: two scoops of M\&Ms a week from a jar in the closest break room over several weeks in late 2016 and early 2017. He eventually collected 712 candies, or about 1.5 pounds. Then he got counting. The breakdown of the colors in his sample was: 139 green, 133 orange, 133 blue, 108 red, 103 yellow, and 96 brown candies.

Some breakdowns to compare his sample to include: the latest color distribution available on Mars' website (was published in 2008, did not get updated since then, was actually erased from the website meanwhile, but Rick Wicklin could get it from a Google search); the color distributions of the US M\&M factories as sent by Mars to Rick Wicklin upon his request early 2017.

He tested in this order:

2

3.2.

He then conducted a series of tests," whose results are reported on the next page. Shorter alternative sesterce: \square What are the hypotheses tested in each of these tests? Naifork dishabition of colors, with Data are incompatible with a A. Ho: Ho dependence between variables vc - H_{4} : some dependency the 2008 diskibucion and C. H_{0} : some dependency between wo variables H_{1}. independence with
(D) H_{0} : conformity to some distribution vs. H_{1} : lack of conformity distaibodion compatible with the
Circle all P -values and indicate below each table which tests reject H_{0} and which fail
$\square \square$ Title each test with the name of color distribution considered. Carefully explain (on the next page, below the set of tables) how you obtained the assignment.
$\square \square$ Write a one-sentence-long conclusion, that is understandable by a layman (i.e., avoid statistical jargon!).
The data collected show that the Dens currently available at SAS are not uniformly distributed in colors, nor do thing follows the color distribution used in 2008 , nor the one currently output by the NJ. factory,
but the sample date are compatible with being produced by the Tennessee factory. [Since the candies have to come from somewhere, Since the candies have to come from somewhere,
we deduce Hat they must come from the Tennessee
factory]

Note.
Al χ^{2}-tees of goorkes of ft are validly applied, as:

$$
\begin{aligned}
& \text { - sample size equals } n=712 \geqslant 30 \\
& \text { - all expected counts are } \geqslant 5 \quad \text { (they are actually all } \\
& \text { even } \geqslant 88 \text {) }
\end{aligned}
$$

uniform color distribution 2017 New Jersey factory distribution

Color

2008 webrte-posted distribution

Color

Test Statistics

2017 Tennessee factory distribution

	Observed N	Expected N	Residual	
Green	139	147,4	$-8,4$	$=712 \times 20,7 \%$
Orange	133	146,0	$-13,0$	
Blue	133	141,0	$-8,0$	
Red	108	96,1	11,9	
Yellow	103	93,3	9,7	
Brown	96	88,3	7,7	
Total	712			

Test Statistics

We detained the assignment by looking at the expected counts (the observed counts do not unary and correspond to Wicklin's sample): one expected count per table is enough, e.g., for Green-

Exercise 4 - Satisfaction survey - 4 points

Assume that you want to conduct a survey on academic satisfaction at HEC Paris, and that you want to do it in a clean way (ie., unlike http://qpvhec.fr/2018/satisfaction-generale/ which simply collected as many responses as possible). You identify at random 100 French-only students that are taking or took the pre-MiM program, 100 international students that joined HEC for the 1st year of the MiM program, and 100 students that joined HEC for a 1-year specialized master (French or international ones). Each of these sets of 100 students is decomposed between 50 students that are currently taking the program, and 50 recent alumni. You pick them at random based on lists of students and then chase them till they answer. (Of course, a few of them remain unreachable.) Your single question was: on a 1 (lowest satisfaction) to 5 (highest satisfaction) scale, how do you rate HEC's academic curriculum?

At the end of the day, the data collected look like that:

Assume that you have to comment on these results.
\square Give a quick example of numbers (percentages) that you would highlight.
Does the table above prove that satisfaction varies among the three subpopulations considered? Explain.
The two sets of circled triplets ($22.1 \%-35.1 \%-33.3 \%$ for highly satisfied students and " $26.3 \%-18.6 \%-14.6 \%$ for highly unsatisfied two other categories of students (and among these, that Sn. students are even To knows for sere and get a proof, we of course must run a test!

Next you perform, on second thoughts, the treatment reproduced on the next page.

Note: Too many students compared the modes (= the most frequent values):

| | Value | of | Asymptotic
 Significance (2-
 sided) |
| :--- | :---: | :---: | :---: | :---: |
| Pearson Chi-Square | $11,302^{\mathrm{a}}$ | 8 | .185 |
| Likelihood Ratio | 11,342 | 8 | , 183 |

which can be rephrased as: H_{0} : hamegereity of
A. H_{0} : independence between two variables vs. H_{1} : some dependency B. H_{0} : lack conformity to some distribution vs. H_{1} : conformity G. H_{0} :- dependency between variables- $\mathrm{ws} . H_{1}$-independence
D. H_{0} : conformity to some distribution vo. H_{1} : lack of conformity
satisfaction profits H_{1} : lack of homogeraity thereof
[I didn't want to wite the word "homogeneity", I wanted you to introduce it]

Jos:

$$
\text { Sample size } n=285 \geqslant 30
$$

(the smallest expected cant
equals $11.2^{\text {(}}$)
\square Does the table above prove that satisfaction varies among the three subpopulations considered? Explain.

\rightarrow These data do not bring to light any dovios/significant differences in satisfaction profits between the three groups of students considered.

Put differently: He differences we spotted in the table,
even though they looked impsetaint to

Exercise 1 - Births by month - 4 points / 10 minutes

This exercise is inspired by real data. Births used to occur with some seasonality: for instance, there was a significant peak in April (due to having much free time 9 months before in the summer). But the modern lifestyle allows for spare time on a more regular basis throughout the year: did it affect the seasonality of births? We study data collected in 2010 from some large maternity center, consisting in the number of births per month:

Which is the complete name of the test worked out here? X^{2} test of goodness of fit直 $\frac{d}{}$ Can the outcome of the test be validly exploited? Explain.

What are the hypotheses considered? (State them in plain words only.)
What P -value do you read, and do you reject or fail to reject $H_{0} ? \xrightarrow{ }$
H_{0} [conformity]: Births occur uniformly
H1 [ron-conforwity]: Births occur with
\square State a statistical conclusion (in plain words, that are understandable by a layman).
\longrightarrow These data cannot exclude that beths now occur uniformly our the year and that their seasonality disappeared. At least, these What calculations led to the expected count for births occurring in May? To which observed value should it be compared?

expected cont $667.9=8,015 \times \frac{1}{12}$
vs.
observed count: 667
reference distribution is: $(1 / 12, \cdots 1 / 12)$

Advanced exercises

The historical example of regression
page 126
An example of a spurious correlation
page 128
Some French politics: demonstrations
page 130
Prices of ski passes
page 132

Elementary exercise on "Growth of orange trees"

1. (a) Existence of a significant linear regression:

The indicated J value (to) be read in the kit column of the middle table or equivalently in the last colum \& kist line of the third table) is almost null. Hence the slope coefficient is significantly different from 0 .
(b) We read $r^{2}=835 \%$ which is very good, truly excellent
actually.

$$
\begin{aligned}
& \rightarrow 83.5 \% \text { of the (rasiations in the) circumference (s) } \\
& \text { are explained by the (variations in the) ages). }
\end{aligned}
$$

Note: the remaining 16.5% are due to genetic factors, environment (though all these tress are grown up side by side, miner diffeercos still exist in environments,
(c) $\begin{aligned} \text { Circumference }= & 17.4 \\ & +0.107 \times \text { Age (in days) }\end{aligned}$

+ Residual tam
(with standard deviation: 23.735)
(d) Well. the intercept here would be the circumference at dy O...
while at day o, the tree is just a seed.
We would erect a 0 circumference. We would super a 0 circumference.
Now, A tarns out that our 17.4 here is Not significantly different from o (P-value 52% for the tot of the
nullity,
H_{0} where io molly and H_{1} the nonnullify').

Slope coefficient:

- of course picuificantly different from 0 (see question (a)!)

2. Approximate growth rate: 0.107 millimeters per day (= estimated coefficient)

Conversion into a more palatable number: $365 \times 0.107 / 10 \approx 3.9 \mathrm{~cm}$ per year

More precise answer: with high confidence, the growth rate equals $0.107 \pm 2 \times 0.008 \mathrm{~mm}$ per day That is, we provide a confidence interval on the coefficient

The same conversion would indicate: $3.9 \pm 0.6 \mathrm{~cm}$ per year
3. (a) Point stimate of this circumference:

$$
\begin{aligned}
17.4+0.107 \times 852 & \simeq 108.6 \mathrm{~mm} \\
& \simeq 10.9 \mathrm{~cm}
\end{aligned}
$$

(b) Calculation: $\quad \begin{aligned} & 108.6 \pm 2 \times 23.738 / \sqrt{35} \\ = & 108.6 \pm 8.03\end{aligned}$

35
data points,
rounded of to $10.9 \pm 0.9 \mathrm{~cm}$
see of column in the nimble take
4. With high confidence, the average circumference of 2 -yeos-and-4-wath
should lie trees in the interval $10.9 \pm 0.9 \mathrm{~cm}$ $10.9 \pm 0.9 \mathrm{~cm}$
(c)

$$
\text { Calculation: } \quad 108.6 \pm \quad 2 \times 23.738
$$

$$
\text { rounded off to } 10.9 \pm 4.8 \mathrm{~cm}
$$

$$
\text { or even } 11 \pm 5 \mathrm{~cm}=[6-16 \mathrm{~cm}]
$$

L) Most (95\%) of the 2-year-and-4-month-old trees should have circumferences within the 6-16 cm range.
4. Solid lines are $\pm 47.5 \mathrm{~mm}$ away from the regression line, hence they correspond to the lower and $\begin{aligned} & \text { underwings bounds of prediction } \\ & \text { in Question } 3(c) \text {. }\end{aligned}$

No outliers: all data points are within their prediction intervals, all are compatible with the model.

Exercise "The historical example of regression"

1. Dependent variable: Sons' height \longrightarrow y-axib to be statistically explained by the
Independent (explanatory) variable: fathers heights
We should thus read the Regression output $=2$
2. - Existence of a significant linear regressions:

- Quality of this relation:

Yes, se the almost null P-vatue in the middle table, last column $r^{2}=25.1 \%$, goad!
$G 25.1 \%$ of the (variations of the) sons height are explained by the (variations of the) fathers' heights.
Where do the other almost 75% lie?
Perhaps, 25% of the sons heights could be explained by
mothers heights, which would make 50% for mothers' heights, which would wake 50% fol opnetic factors, and thus, it would remain 50% of the variable of interest to be explained by
environmental factors.

- Whiting of the relation:
(*)

$$
\begin{aligned}
& \text { Sans' heights } \\
& \text { (in cm is) }
\end{aligned}
$$

$+0.514 \times$ Fathers' heights (in cm)

+ Residual tan (with standard deviation: 6. 1889)
- Interpretation: both 86.072 and 0.514 are significantly dififsent from 0 and need to be interpreted.. \rightarrow However we can find no easy such interpretedion! Hence the hint given by the next question-

3. We know thanks to the theory that the regression line goes through

$$
\bar{x}=171.925
$$

$$
\begin{aligned}
& x=1+1.425 \\
& \bar{y}=174.458
\end{aligned}
$$

That is (as can be checked by direct computations as well): (**)

$$
174.458=86.072+0.574 \times 171.925
$$

We subtract $(* *)$ from (*) and get:

$$
\begin{aligned}
\text { Sons' heights }-174.58= & 0.514 \times(\text { Fathoms' height st }-17.925) \\
\text { (incan) } & \\
& + \text { Residual tallow (inch) } \\
& \text { (with standard duvétion: 6.1189) })
\end{aligned}
$$

That is, Differences of sons' heights \quad to sons it average $=0.514 \times$ Differences of fathers' (in Cm) sons' average height heights to
height

+ Residual term
(with standard deviation: G1/5si)
$\rightarrow \quad$ Differences to the average are reduced (on average) by a ficoof 0.514 < 1 height. \rightarrow wee indeed doseive a reeghesion Grafton was right

But wait, just a sanity check: how r confident are we that the slope coefficient 0.514 $\rightarrow \frac{\text { Its gitconfidence interval } 0.461-0.567 \text { dos }}{\text { not contain } 1 .}$

Exercise "An example of a spurious
"comedian"
(1) Existence of a significant
linear regression: linear regression:
Quality of this relation:

Yes of the almost null Pale in tic middle tables last column excellent - $r^{2}=98.4 \%$
G Over the considered period, 98.4% of the (variations in the) mental-disase rats are explained by
the (variations of the) TV-equipment rates. the (variations of the) TV-equipment rates.
Waiting of the relation:

$$
\begin{aligned}
\text { Mental disease rate }= & 4.552 \\
& +0.222 \times \text { TV-equipment rate }(\text { in } \%) \\
& +\quad \text { residual term } \\
& \quad \text { (with standard deviation: } 0.728)
\end{aligned}
$$

Interpretation of the coefficients:
4.552 is significantly $\neq 0$, thus has to be interpreted:
really?! $\quad \begin{array}{r}=\text { soma baseline value for the mental disease rate? } \\ \\ \text { ie n the rate that existed berar }\end{array}$ ie, the rate that existed before TV was created?
0.22 quanlifis hows much TV gets people wentally ill?
$+10 \%$ TV equipment rate $\Rightarrow+2.22 \%$ people in the mentaldisease rate

Outliers: we can se from the scatterplat that there are no
(2) Be cautious with the interpretations !

We can only say here that we observe a strong linear association between the two variable over the considered period.
It dos not mean that the explanatory variable is the "true" source of variation of the dependent variatile.
Here, we probably rather have lie following causality triangle:

Where \uparrow dents
some causal linear relation.

Indeed, reading the "Explanation: Part $x / 2$ " at putt, we se that

TV equipment rate / Time
(Year)
Mental- dis sase rate / Time
(Year)
is a very linear relations se:
is a very linear reaction see:

$$
r^{2}=97.2 \%
$$

$$
r^{2}=96.4 \%
$$

So that by transitivity,
Mental
disease
rates $\underset{\substack{\text { TV -equipment } \\ \text { rate }}}{ }$
is also a very
Linear rektior, be: $\quad r^{2}=954 \%$

Causality explanations are just that over the considered period (which was probably hand - picked to fool you...),
science, industry \& medecine made huge progress
$\leftrightarrow \rightarrow$ the mental disorders are just butter diagnosed (they probably don't happen more often than before) the time period corresponded to TV sets becoming a mass
consumption good. consumption good.
\rightarrow Time is our third, latent variable, explaining in a causal way the two
(3) We will briefly comment on all thin material in class.

Exeriw on "Some French politics: demonstrations"

Question 1

We take the number of demonstrants as canted by organizers as the dependent variable, and the number of demonstrants as costed by the police as the independent variable.

1. Existence of a significant linear regression: yes, see the alanost null P-vakie
2. Quality of this relation: 82.2 very good, $r^{2}=82.2 \%$ (meaning that where do the \longrightarrow is explained by the other count's variations)
remaining 178% lie? I guess that llere is
a variability on (the tope of
organizers: unions, political position,
O "ordinary" citizens" et!
3. Waring the relation:

Number of demonstrants $=358.197$

4. Intapréation:

- The constant factor 358. 197 is significantly larger than O (see intacept coefficient r)
- The scale factor 2.254 is significantly larger than 1 (see
its confidence interval).

So yen definitely, organizes and plaice disagree on the numbers! (They would have agree if boll the constant term would nor have baser wouldigificantly me different been significantly different from 1). An tope coefficient
Question 2. See my intaprotation in question 1.

Question 3:

With high confidence, when the pos ice reports Jogoco demonstrcents, the organizes repeat, an avenge,

$$
\left(\begin{array}{l}
(355.197+2.254 \times 500) \pm 2 \times \frac{413.44445}{\sqrt{29}} \\
1485.197 \pm 153.550
\end{array}\right.
$$

thousands of demorstrants, hat is, after rounding: ley report

$$
\text { 1, 480,000 } \pm 160,000 \text { demonstranto on awrage. }
$$

* 95% of the demonstrations for which, the police reports Sou, ores demmonstranto include, in the organizers' eyes,
$1485.197 \pm 2 \times 413.444 .5=1485.197 \pm 826.89$
that is, offer rounding:

$$
\text { 1,450,000 } \pm 830,000 \text { demerstrants. }
$$

${ }^{\text {"Prices of ski poses" }}$
(1) Existence of a significant Yes, of the almost null P-value in the Quality of his relation: (very good - $r^{2}=571 \%$ C, $5+1 \%$ of the (varicioris in the) ski pas
Writing of the rebtion:

$$
92.366
$$

$+0.434 \times$ size of (he ski area

+ Residual tam
(with standard division: 20.594)
Interpretation of lee coefficients:
[we try to imagine some
intepretatiens, that would then ned to be confirmed by mire extensive. analyser ...]

92. 366 is significantly $\neq 0$, there needs to de interpreted:
it corresponds to some fixed costs, eq:
0.434 (signuificoutly to) mineasuses the average sacra carbs per adilitionl additional ski soon offer regures an adtititinal ski tow of ski chairleft (which needs to
be burt and manstaned + needs to be grated by
emplanes. euplayes).
(2) Let us compute the prediction interval for a ski resort with size 250 km : Our model indicate that 95% of these ski resonkss have pass prices
included in the intevars

$$
\begin{aligned}
& 92.366+0.434 \times 250 \\
& =200 \cdot 866 \\
& \approx[159-243] \pm 41.185
\end{aligned}
$$

and the ski bess pice doserved for for sere-Churatier (es) E) does

$$
\begin{aligned}
& \text { - buses connecting remote cillags to the central one }
\end{aligned}
$$

Excerpts of past exams
Wage discrimination?
page 134
Modeling life expectancy
page 138

Wage discrimination?

(9) We recover this (significant but) swall-impact salary difference when Compassing the r^{2} of Gender variable (who mod eh 3 iv was lee least wien drooping significant), the r^{2} only drops from 87.8% to 86.9% many (and the standsad deviation only increases from $23,540 \$$ to
(10) This woman:
$\left\{\begin{array}{l}\text { dosevved salary: } 32,250 \\ \text { Total expesinc: } 5 \text { years (and o for Years junior, } \\ \text { No highly valued skill }\end{array}\right.$

The model of Question (7) predicts an individual salary, given loose characteristics,
lying apprcximatiely in lie interval:

$$
\begin{aligned}
& 34,282,779+461.729 \times 5-1,775.308 \pm 2 \times 3,540 \\
& =34,886.116 \pm 4,080
\end{aligned}
$$

The model of Cluction (9) predicts

(12) The studied regression is not statistically valid, as lea b it means that the salary increasares between genders are j not significantly different (all other tangs being equal/cotesis
paibles)).
Note: the + 166.220 is net significantly positive bat ya me ar still (rather than a non- significantly creative-) number, especially given the premiss question I!
So, we have no good argument for discrimination in ssilary increases based
If however ore wanted to discuss that topic, one would have to check whether there would not be a gass_caling effect preventing women from accessing the higher (jnnid/serios), levels in ing The first place.
Here we are meassiring salaries conditional on lie yeas spent in these higher levels, but to the xe levels. he are not studying equal access

This, based on these data we are only left e with the additive difference already discussed in Question (8) and which probably conespoods to the stating sitiry. to the is proven to exist butude of the pinallev compendziely our to detailed andenswer of therein).

Modeling life expectancy.

2. Scatterplots: Top left matrix, last line: Pants "follows the line"
[0,25 pant] are bey fair forme the line on Life Exp/ GDP. We can
 same trend!

Numerically:
Compare the regression out puts for Life Exp $/ \operatorname{Ln} G D)^{\prime}$ and Le Exp / GIP: bert question) and statistically and economically
[0.25 point]

$$
\begin{array}{ll}
\text { Life Exp } / G D P: & r^{2}=50.7 \% \\
\text { Le fo Exp }
\end{array}
$$

$$
\text { Life Exp Ln } \ln D P: \quad r^{2}=71.6 \%
$$

\rightarrow Both criteria indicale that lifeExp/LnGDP is a superior mode to
LifeExp/GDP.
3. We study LifeExp / LGGDT (Simple regression \#2)
[O Spent] Statiscally valid: yes, see Pivalue in the $2 n d$ table: almost null, $<5 \%$,
Economically valid: the positive coefficient indicates that the the life expecteracer, which makes sene: The country is then more developed, with a better healthcare system, etc.

4. [0.5 point] AQ of than ce! (can the P-values <5\% on the
5. [0.5 pant] Alcohol and tobacco are bad for one's heath. They should have a detrimental effect on life expectancy, at lest from an individual vieurpant. We expect receive coefficients But we read positive coefficients! So, be are puzzled.
[0.5 pant] Actually (see the warkix of scatter plots on pace ii) per capita GDP. They measure in some sense (se also question Ra: up to nusilim counties) how developed is
a country. How developed is a country (the GDP/ LI GDP) is a latent variable positively correlated with Lip exp and Alcohol/ Tobacco. Its explains why we read his surprising positive coefficient.
6. [ass pant] * Statistical interest: measured by r^{2}. The best models would be Life Exp $/ \ln$ GDP: $r^{2}=71.6 \%$ $\begin{array}{ccc}\text { while all other models } & \text { Life Exp/ ia: } & r^{2}=72.1 \% \\ \text { have } r^{2} \leqslant 50 \% & \text { Life Exp/ ina: } & r^{2}=73.3 \%\end{array}$

* Economic meaning: IQ variable ley questionable (x oe
* Thus, best trad -of: Lifexp/Ln GDP.

7. [0.5 pant] We compared LifeExp/Var and Life Exp/Linkar

$$
\begin{aligned}
& \text { but for IQ vs LIQ: seine performance or almost for } \\
& \text { tole models so we pelops to stick } \\
& \text { to the nominal variable IQ for simplicity. }
\end{aligned}
$$

8. [as pant] We rend the outputs of page If.
node an 5 variables:

- globally valid (at lest are variable is useful), wee

The 5-variable model is unnecessarily complex, the incremental contribution of the Ln Tobacco is not significant \rightarrow we drop this variable and git the 4-varible model in the second part of page 17.

9. [0.5 pent] Statistical validity: global \& marginal, salve welled os in |te

Economic validity: \rightarrow Positive coefficient for \ln GST as already
\rightarrow Negative coefficicint for Alcohol as expected in question 5 \rightarrow For $1 Q$ \& Democr: why not... The martel says that countries with smarter people and mere democratic castries have fighter life
expectancies. expectancies.

each of the variable increases or degrees:

$$
\begin{array}{ll}
+1 \text { liter/ adult of alcohd } & \rightarrow-0.361 \text { years of life } \\
+10 \text { IQ number } & \rightarrow+4.6 \text { years } \\
+1 \text { Democtarcy } \\
\text { GDP } \times 2 & \longrightarrow+3.752 \text { years } \\
&
\end{array}
$$

10. [os point] This is the forward selection method

- we start with the best individual verialde. (from a statistical liewpant)
- as long as we can, we add a variable at each step in the extended model; if several such additions are possible, we pick the one leading to the best model
(ie) with largest r^{2}).
It recommends the sine model as the one studied in the previous question.

[1poit] Compatibility: yes the difference between the observed Pit deviationPut differently, the prediction interval for France
was 795 year
and 81 lies in live and 81 lies in |Pis interval.

12. $[05$ pant $]$ a) \& b)

IQ is not a nice racially, see question lb, ${ }^{\text {do }}$
 margin validity for Alcohol).
Thus, we further draped Alcohol and get the second alterative model Lfeexp I LunGis \& Democr, which is satisfactory bolt foin a statistical and
economic viewpoint:
[0.5 point] c) To mes we should only compre the following

question 9

Life Exp / LIGDP, Demoer, Alcohd, IQ

$$
r^{2}=82.8 \%
$$

question 12b)
Life Exp $/$ LnGip, Demos $\quad r^{2}=72.9 \%$
question 6 Life Exp / Ln GDP
$r^{2}=71.6 \%$
the $\left.r_{00}^{2} \begin{array}{l}\uparrow \\ \text { are very close } \\ \text { to these } r^{2}\end{array}\right)$
Is the 10% difference in r^{2} worth adding 3 variables in the model, two of difficult to grasp? (Demode, IQ) are L I doit think so. So So I would stick to Life Exp / GiD!

Question 9, alternative interpretation:
Taking a developing country as a baseline: [baseline IQ: to \quad Democr.it in this Life expectancy $=57.345$
 where we got the St. 345 by waiting $\begin{array}{r}57.345=22.067+0.461 \times 70 \\ +0.752 \times 4\end{array}$

