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Fano’s inequality for random variables

7.2. Proofs of the refined Pinsker’s inequality and of its consequence (13)

The next theorem is a stronger version of Pinsker’s inequality for Bernoulli distributions, that was
proved2 by Ordentlich and Weinberger [2005]. Indeed, note that the function ϕ defined below satisfies
minϕ = 2, so that the next theorem always yields an improvement over the most classical version of
Pinsker’s inequality: kl(p, q) > 2(p− q)2.

We provide below an alternative elementary proof for Bernoulli distributions of this refined Pinsker’s
inequality. The extension to the case of general distributions, via the contraction-of-entropy property,
is stated at the end of this section.

Theorem 15 (A refined Pinsker’s inequality by Ordentlich and Weinberger [2005]). For all p, q ∈ [0, 1],

kl(p, q) >
ln
(
(1− q)/q

)

1− 2q
(p− q)2 def

= ϕ(q) (p− q)2 ,

where the multiplicative factor ϕ(q) = (1− 2q)−1 ln
(
(1− q)/q

)
is defined for all q ∈ [0, 1] by extending

it by continuity as ϕ(1/2) = 2 and ϕ(0) = ϕ(1) = +∞.

The proof shows that ϕ(q) is the optimal multiplicative factor in front of (p− q)2 when the bounds
needs to hold for all p ∈ [0, 1]; the proof also provides a natural explanation for the value of ϕ.

Proof: The stated inequality is satisfied for q ∈ {0, 1} as kl(p, q) = +∞ in these cases unless p = q.
The special case q = 1/2 is addressed at the end of the proof. We thus fix q ∈ (0, 1) \ {1/2} and
set f(p) = kl(p, q)/(p − q)2 for p 6= q, with a continuity extension at p = q. We exactly show that f
attains its minimum at p = 1− q, from which the result (and its optimality) follow by noting that

f(1− q) =
kl(1− q, q)
(1− 2q)2

=
ln
(
(1− q)/q

)

1− 2q
= ϕ(q) .

Given the form of f , it is natural to perform a second-order Taylor expansion of kl(p, q) around q. We
have

∂

∂p
kl(p, q) = ln

(
p(1− q)
(1− p)q

)
and

∂2

∂2p
kl(p, q) =

1

p(1− p)
def
= ψ(p) , (41)

so that Taylor’s formula with integral remainder reveals that for p 6= q,

f(p) =
kl(p, q)

(p− q)2
=

1

(p− q)2

∫ p

q

ψ(t)

1!
(p− t)1 dt =

∫ 1

0
ψ
(
q + u(p− q)

)
(1− u) du .

This rewriting of f shows that f is strictly convex (as ψ is so). Its global minimum is achieved at the
unique point where its derivative vanishes. But by differentiating under the integral sign, we have, at
p = 1− q,

f ′(1− q) =

∫ 1

0
ψ′
(
q + u(1− 2q)

)
u(1− u) du = 0 ;

the equality to 0 follows from the fact that the function u 7→ ψ′
(
q+u(1−2q)

)
u(1−u) is antisymmetric

around u = 1/2 (essentially because ψ′ is antisymmetric itself around 1/2). As a consequence, the
convex function f attains its global minimum at 1− q, which concludes the proof for the case where
q ∈ (0, 1) \ {1/2}.

It only remains to deal with q = 1/2: we use the continuity of kl(p, · ) and ϕ to extend the obtained
inequality from q ∈ [0, 1] \ {1/2} to q = 1/2.

We now prove the second inequality of (13). A picture is helpful, see Figure 1.

2We also refer the reader to Kearns and Saul [1998, Lemma 1] and Berend and Kontorovich [2013, Theorem 3.2] for
dual inequalities upper bounding the moment-generating function of the Bernoulli distributions.
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