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The next theorem is a stronger version of Pinsker’s inequality for Bernoulli distributions, that was
proved? by Ordentlich and Weinberger [2005]. Indeed, note that the function ¢ defined below satisfies
min ¢ = 2, so that the next theorem always yields an improvement over the most classical version of
Pinsker’s inequality: kl(p,q) > 2(p — ¢)?.

We provide below an alternative elementary proof for Bernoulli distributions of this refined Pinsker’s
inequality. The extension to the case of general distributions, via the contraction-of-entropy property,
is stated at the end of this section.

Theorem 15 (A refined Pinsker’s inequality by Ordentlich and Weinberger [2005]). For allp, q € [0, 1],
In((1 - q)/q)

T2 (p— 0= o(g) (0 —0)*,

kl(p,q) >
where the multiplicative factor p(q) = (1 —2q)~! ln((l — q)/q) is defined for all q € [0, 1] by extending
it by continuity as p(1/2) =2 and ¢(0) = p(1) = +oo.

The proof shows that (q) is the optimal multiplicative factor in front of (p — ¢)? when the bounds
needs to hold for all p € [0, 1]; the proof also provides a natural explanation for the value of .

Proof: The stated inequality is satisfied for ¢ € {0,1} as kl(p,q) = +oo in these cases unless p = q.
The special case ¢ = 1/2 is addressed at the end of the proof. We thus fix ¢ € (0,1) \ {1/2} and
set f(p) = kl(p,q)/(p — q)? for p # ¢, with a continuity extension at p = q. We exactly show that f
attains its minimum at p = 1 — ¢, from which the result (and its optimality) follow by noting that

g =S WA= _ )

Given the form of f, it is natural to perform a second-order Taylor expansion of kl(p, ¢) around q. We
have

9 Y IC ) A W b
ke =n(f0) ad ki) = s o), (41)

so that Taylor’s formula with integral remainder reveals that for p # ¢,

_ Kl(p,q) 1 /mww

1
f(p) = = p—t%ﬁ—/m¢q+UP—q 1 —u)du.
®) r—a? (p—q)? @0 0 2+ ulp =) —v)
This rewriting of f shows that f is strictly convex (as 1 is so). Its global minimum is achieved at the
unique point where its derivative vanishes. But by differentiating under the integral sign, we have, at

p=1-gq, .
F1-q =/0 ¢ (g +u(1 - 29)) u(l — u) du = 0;

the equality to 0 follows from the fact that the function u — ¢’ (g+u(1—2¢))u(l —u) is antisymmetric
around u = 1/2 (essentially because 1’ is antisymmetric itself around 1/2). As a consequence, the
convex function f attains its global minimum at 1 — ¢, which concludes the proof for the case where
€ (0,1)\ {1/2}.
It only remains to deal with ¢ = 1/2: we use the continuity of kl(p, - ) and ¢ to extend the obtained
inequality from ¢ € [0,1] \ {1/2} to ¢ = 1/2. O]

We now prove the second inequality of (13). A picture is helpful, see Figure 1.

2We also refer the reader to Kearns and Saul [1998, Lemma 1] and Berend and Kontorovich [2013, Theorem 3.2] for
dual inequalities upper bounding the moment-generating function of the Bernoulli distributions.
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