Gilles Stoltz Researcher, CNRS Affiliate professor, HEC Paris Paris-Saclay master in mathematics (tracks: Optimization / Data science / ALEA) ## Sequential learning, sequential optimization Final exam – Wednesday April 13, 2016 | Exercise *1 | (d,4) - UB | | |---------------------------------------|---|-------------------------------| | Consider (a bandit | function 4 3 such that all distributions 3 & 20 | satisfy | | Y.170, | wax of In Eled(x-Ex)], In Eled(Ex-x)] | < 4(Y) | | | where: | X ~ 7j. | | For example, Hoeffer $4(1) = 12/8$ is | ding's lemme shows that for D = P(E | C[1]), | | For all 270, we and assume that | e define $\Upsilon^*(x) = 8ip_{d>0} \sqrt{4x - \Upsilon(d)}$
Υ^* is invertible, with inverse denoted by | (4*)-1 | | We generalize US | | | | Algorithm (a,4) - UCB | =: for a banchit problem with K | arms | | Paramoters d> | O and $\Psi: CO_{+\infty}) \longrightarrow \mathbb{R}$ | | | For t=1,2 | |))
VI | | tor to kin; - | - Pull I E ars max of juint + (+*) (or Int) | } | | where | 5- 915-01 | (ties
roken
exbitarily) | | | and $\hat{y}_{j+1} = \frac{1}{N_{j}(t-1)} \frac{t-1}{S^{2}} \frac{1}{S^{2}} \frac{1}{S^{2}} \frac{1}{S^{2}}$ | | | - | - Get a reward S_{ξ} down at eardonn according to \mathcal{I}_{ξ} (conditionally to \mathcal{I}_{ξ}) | ording | | Ne | war | 4 | 40 | bo | und | IR | 0_ | | 1 | do - | | Sie | r | 0 | 2 | (| Y,x, | ?) | _(| XB | ۱ د | | | | |------|--------|----|----------|-----------|------------|-----|--------------|-----|----------------|------------------|----------|------|------------|--------|---|--------------|--------------|------------|-------------|-----|----------|-----|------------|-----| | | | RT | 2 | T | Je* | | E | | T
Z
t7 | J _L _ | | | | | | | | | | | | | | | | isho | (e_ | |) bj | * | E(3 | | | | | 0 | 68 | pec | tats | Ω, | | of | | <i>3</i> . | ε | Q | | | | | | | | We | | -fin | st | 1 1 | tala
Sj.t | - 1 | 1 | that
(+)* | | | x In | t ` |) | | | | | | | | | | | | | Ś | an | U | per | | | - 1 | | bund | | 0 | | je | | | | (| fc | x (| all j |) | | | | (1 | .1) | | S | pow | . (| ect | | for | _ | all | Mt(| 4) | 3 | eх | P(| 4 | ξ
S= | (2 | s - | 14) |) 4 | \$ I | .= <u>)}</u> | 3 | | ψ | (H) | N; | (t) | | | | | | Ìs | a | Sug | | | - |) * | | افي | | # | | | | | | | | | | | | | | | | P. | | | | + | - | | Ŧį., | | - | | | c-1 (| 4) | | | | | | | | | | + | hirt : | | for
e | a
1(5) | - ja) 11g | | | = | 3 ₅ |) 1 | to
jj | | | ate 13 | -
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- | | رز(| Y. | -): | 7) | | | | | | (1 | 2) | | Prove | | Part | | ¥£. | 70 |) | He. | راج | | ₩Ł | 7 | K+1) | | | | | | | | | | | | | | | | P{ | بق | t-1 | 4 | ، ع | ≤ Jej | | ar | À | 1 | <i>Jj</i> (t. | 1) | = Q | } | | 4 | \$ 6 | = 0 | <u> </u> 4 | *(8 | | (1 | (3) | | Ded | we. | ·Hh | eit | 1 1 | 5 | P{ | بزنر | <u> </u> | + (4 | (*ز | -» (| | int
1;(t- | | | \$ } | u, | b | < | 1 to | - | | (2) | We no | us establish th | e (egret | -bound | Fix a 8 | suboptimal arm j. | |-----|-------|-----------------|------------|--|------------|-------------------| | | (2-1) | Explain why | It = j -! | õe t7 | KH entail. | s one of | | | | | + (4*)-1 | | | | | | | | (1×)-1 (x1 | | | | | | | N; (t-1) | < a In T | 12) | where | 4) = Ju* - Ju3 | | | (2-2) | Establish a | regnet bou | (dx) | Re Form | α \ | | | | | S. 370 | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | x-2) | | (3) | Can 1 | this bound be | related | to the | - One inse | proved for | | | | on D = 3(C | ? ([10 | The la | Her was | | | | | 2 | <u> </u> | 8 hT | + 2). | Ex | ercise | #2. | | | | 1 | Sudo |)ekd | | Spedio | ction |) | | | | | | | | | |-------------|--------|-------------------|--------|------------|-------|----------|-----------|--------------|----------|--------|-------------|-------------|------|------------|------|------|------|-------------|--------------|------| | | | With | + | ixed | and | , k | incism | ` | | hor | rga
iscu | ر
ب
ا | n | L | , | DOX | 2 0 | ancre | . 0 | [1,0 | | For | ec | ich re | boad | ŧ | = 1 | 2,. | T | 1 | 1 1 | 1 1 | d | 1 | | 1 | 1 1 | | | | 1 1 | | - | 3 | | | | | Pick | 80 me | PE | 6 | P{1 | , N | 3) | | ar | ,d | -lt= | | lit |) 1 | . \ | NF |) (| | [1p | 7 | | | - | the | oppon- | ent | plau | er | cps | esure | 7 | - c | nd | Pt | , | | | | | | | | | | 630 | the | deci | SiOn- | mc | ker | 9 | esideo |) | ushe | ther | C | r | not | | she | W | ants | 70 | 5 | | | | observ | | Re. | لزا | + | C | , k | re | Can | C | d | છ | cn | ly . | 4 | 8 | he | ha | snt | | | | requeste
times | | | ١, | ' | em
Far | | n | an | 300 | ienue | dion | | mc | SPE. | 4 | han | M- | \ | | thus
the | the | deci- | | | | | | dos
ecide | | cshi | | | st | | m | | da | | ino
Serve | () | | | | , , | |) | | | | | | | | | | | | | | | | | | Stra | degy | | Let a | Con | struc | <u> </u> | 4 | Step | by | 81- | φ- | | | We | ₽, | < < | Se (| (l) | e, | | | | The | dec | lSign | - mc | kor | U | ses. | a | ,b: | echevo | e. | 4 | Ζ, - | - 2 | | | | 19 | | | | | rav | dom 1 | | | | | | | kco | rdens |) | to | a | | | 1. | | lì | | | | | | m with | | para
ct | wae | | 270
t | | to
Zi | =1) | boio | | who | | | | = 0 | reque
). | 34 | the | | (1) | To | respect | iko | b | ıdab | + | Const | raint | | We | lsza | h | to | | ock | | ٤ | sit | | | | | | | Bi | 2, | + Z | 2 | 4 W | 1 | 7, | 1- | S. | | | | | | | | | | | Shows that | $\mathcal{E}_{1} = \frac{M}{T} - \frac{1}{T} \sqrt{\frac{M}{S}}$ | is a suitable choice when \$7.7/11. (Resort to Chebychev's inequality: VE70, FPQ X-EX > E & Var(x) | |---|--|--| | (2) We de fine | Îjt = Ljt Z | as our shimator for lift- | | Shous that | | Altration (Fs) szo we have: | | tj, tt, | E[Îjt Ft.,] | = lj _E . | | (3) A lemma; | shous that for numbers uit 70, | all 170 and all non-neighbre jed1, N/o and ted1, T/o, we have | | T N e-7. | E uns With | - min \(\S \) ukt \\ k=1.\(\) t= ukt | | | denoted by 9it | \$ 100 + 9 5 5 9it uit | | Hint: Use e-re | \leq $1-x+x^2$ | | | (4) We conside | | distributions to a | | | \hat{P}_{ij} = $\exp(-\eta)$ | $\left(\begin{array}{c} t-1 \\ \Sigma \\ S=1 \end{array}\right) \left(\begin{array}{c} N \left(\begin{array}{c$ | | and It ~ (P) Show that for E[\subseteq E | | the pseudo-regnet is controlled as E[\frac{\tau}{\tau_{-1}} \frac{\tau}{\tau}] \left\ \frac{\tau_{-1}}{\tau} \frac{\tau}{\tau} \frac{\tau_{-1}}{\tau} \frac{\tau_{-1}}{\tau} \frac{\tau_{-1}}{\tau} \frac{\tau_{-1}}{\tau} \frac{\tau_{-1}}{\tau} \frac{\tau_{-1}}{\tau} \frac{\tau_{-1}}{\tau} \frac{\tau_{-1}}{\tau} \frac{\tau_{-1}}{\tau_{-1}} \frac{\tau_{-1}}{\tau_{-1 | | | Pitt - min | $\frac{1}{2\varepsilon}$ | | Exercise | #3 | Approachability | of a contex | <u>24</u> . | |------------|--------------------|------------------|---|---| | A los: | Function 1; g1; | | } R is | Siven and known | | A closed | s convex let &c | Rd is freed. | | | | Setting: | | t=1,2, | Re apponent. | symultareously pick | | | Iε (1) | N) and | $J_{\epsilon} \in \{1, M\}$ for dead by | possibly at raindom, $P_{E} \in \mathcal{P}_{E}[N]$ | | | - Re decise | n- maker sult | in a loss I | I _E , J _E) | | timz.; | The decision- m | 1 E 2(It, 3 | (t) -> 6 | a.s. | | | that is, i | of c | - 1 E lt. Jr | | | | The openent player | wants to preu | ent this converg | enc- | | 3hckwell s | condition: | q E 3{1, M} | The of 1, | 1). l(p;q) ∈ 6 | | | (| 2(P,j) = = F, 21 | (ij) 2 (ij) | 1 | | (1) | | Sho | r d | Rot if | ٤ | tackwe | -Q's | condi | tion c | bos no | t hold | , then | | |-----------------------------------|---------|--------|---------|-----------|----------|--------|------------------|--------------------|--------------------|-------------|--------------------|-----------|-----------------| | | | the. | don | ent pl | ayer h | as a | @Aratec | y 8u | in the | + = | 770 | | | | | | | for o | all strai | tegis o | 2F 16 | le doci | S10m - M | riker, | | | | | | | | | as | c.2 | lin
T | 24×0 | | mp
ce E | \ c - | I ST | 인도, | IE) 2 | 7 8 | | | Hints: | | Show | s that | 3 | 9.67 | {I,_M} | in
pe | F
[{1,u} | inf
ce & | \c- | l(p,9) | > 0 | | | | | | | | | | | | i i | | 96) 1 - | > 0 0 | | | | (~ | , A | list of | usef | al res | alls is | s in | appendi | x.) | | | | | (2) | | | | assume. | | 1 1 | | 1 1 1 | ndition | holds | and | design | a | | | | | - | Play | P1 = | (%) | (2) | | | | | | | | | | | 989 | For - | c = 2, 3 | 5, | | | | | | | | | | | | | | - Co | mpute | m _{t-1} | = 1 | t-1
5
-1 5=1 | Q(P | , J) | | | | | | | | | | Spect | onto | 6. | 1 1 1 | 4-1 | TTE(| | | | there u, v 7 E u; v c do Proc | endes t | Re inn | 5
त् | | Ric | ٤ ١ | PL E | arcomio | n wax | | < m _t . | 1 - [-] | Q(pg) | | ho | | 4 11 | | | | | | | | | | | | | | (2.1) | (| Recall | on a | \ \ \ | | who | - | C = 7 | > | ≪ O | | | | | (2.2) | f | Pore | that | | | B(1, M) | Z ₄₋₁ , | | i - Z | | 2(PE, 9) | -2,7 | | | | | | | | 1 | | | | | | | V1 | | | ful reisu
uing A | | requility: | | | | | | a filtra | | | | |--------|---------------------|-----------------|--------------------|-------|------------------|----------------|--------|----------------------|------------------|------------------------------------|------------------|--------| | H-71, | | (at, bt) | - measurale | k., | be a | | ence c | | pled rando | | | h that | | Then | A-6 | SE (0/1), | P\$ | T = 2 | Κ <u>Ε</u> - | 7
- 2
+= | EX | μ \ J ͺͺͺ | \ \langle \int \ | (b ₁ - 0 ₄) | 2 lo 1 8 ~ | } > | | Sion's | | (ca) | Sean in | | | | | | X,Y b | 1 1 1 | Connex
X×J -> | | | 5394 | Concol | y contr
x in | Re Seco | nd , | argum | on | | | | | | | | then | Convex | in the | Fank
Sup
Yes | | mount,
f(z,y) | | = 80 | n q
1x L3 | } | 14). |