

Proposition de meilleure solution la question 2 de l'exercice 3 Auteur : Hassan Saber (non relu en détails par Gilles Stoltz)

* (alcul de inf =
$$\ln(\mathcal{E}^{\alpha} e^{-\beta \mathcal{E}})$$
 pour $\alpha, \beta > 0$

* Ecops

Ave $f(\mathcal{E}) = -\ln(\mathcal{E}^{\alpha} e^{-\beta \mathcal{E}})$ pour $\mathcal{E}(\mathcal{E})$
 $= \alpha(-\ln e) + \beta \mathcal{E}$
 $f(0) = +\infty$, $f(1) = \beta$

Ainsi four bien argmin $f(\mathcal{E}) = 2$ of inf $f(\mathcal{E}) = \beta$
 $\mathcal{E}(\mathcal{E})$

Too him $\mathcal{E}^* = \text{orgain } f(\mathcal{E}) \in (\gamma \mathcal{E})$ et $f'(\mathcal{E}^*) = 0$
 $f'(\mathcal{E}^*) = -\frac{\alpha}{\mathcal{E}^*} + \beta = 0 \in \mathbb{R}$
 $\mathcal{E}^* = \frac{\alpha}{\beta} \mathcal{E}_0$

(A) what possible que so $\frac{\alpha}{\beta} \leq 1$ also $f(\mathcal{E}^*) = \alpha$ ($\frac{\ln(\beta)}{2}$)

 $\leq \alpha$ ($\frac{1}{2}, 1+2$)

 $\leq \beta$

Ainsi, on a membre que

inf $f(\mathcal{E}) = \frac{1}{\beta} > 2$
 $(\frac{1}{2}, \frac{1}{\beta}) = \frac{1}{\beta} > 2$
 $(\frac{1}{2}, \frac{1}{\beta}) = \frac{1}{\beta} > 2$

On chenke in succedenal of juf Q(y)

or Q(y) =
$$\frac{1}{y}$$
 (N-m) $\frac{1}{y}$ \frac

On pose also $g(y) = \frac{1}{2}y + \frac{a^2}{y} \left(\ln(y) + 1\right)$ On encache also sint g(y).

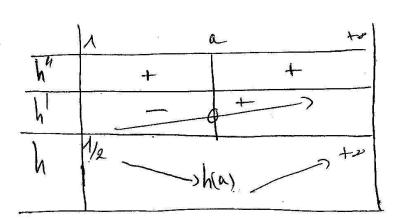
g et
$$\ell^{2}$$
 d $g(\eta) = \frac{1}{2} - \frac{a^{2}}{\eta^{2}} \left(\ln(\eta_{1} + 2) \right) + \frac{a^{2}}{\eta^{2}}$

$$= \frac{1}{2} \eta^{2} - a \ln(\eta)$$

$$= \frac{1}{2} \eta^{2} - a \ln(\eta)$$

On you
$$h(1) = \frac{1}{2}y^2 - ah(1)$$
 par y_{22} .
 $h = 1 = 1 + \frac{a^2}{12} = 0$ $h'(1) = 0$

p_l or

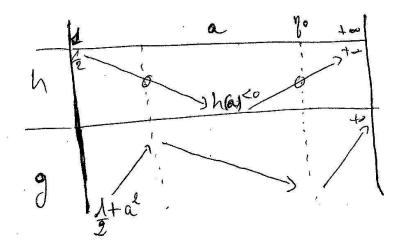


Si
$$h(a) = \frac{1}{2} a^2 (1 - h(a^2)) > 0 \iff a^2 \leq \exp(2)$$

also $h > 0$ et $g > 0$ et inf $g(y) = g(2) = \frac{1}{2} + a^2$

(*)

·Si a2 > exp(2), has < 0 et



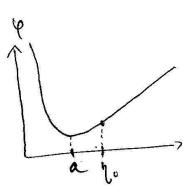
On charche als à estime $g(y_0)$.

$$g'(y_0) = 0$$
 $d'où \frac{1}{2}y_0^2 = a^2 \ln(y_0)$

Et
$$g(\eta_0) = \frac{1}{2} \eta_0 + \frac{\alpha^2 \ln(\eta_0)}{\eta_0} + \frac{\alpha^2}{\eta_0}$$

$$= v_0 + \frac{a}{10}$$

Or over 4: 4 -> 2+ 2 , on a



En regardant (#), on voit que $a < h_0$. Ainsi si on trouve $h_1 > h_0$ on our $g(h_0) = h(h_0) \le h(h_1)$.

d'où
$$\frac{1}{2} \eta_0^2 = a^2 \ln(\gamma_0) = a^2 \ln(a) + \frac{a^2}{2} \ln(2) + \frac{1}{2} a^2 \ln \ln(\gamma_0)$$

et
$$\frac{1}{2}$$
 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

or
$$a \le y_2 \le y_0$$
 donc $(y_1(a) \le y_1(y_2) \le y_1(y_0) = y_1(a)$
 $y_1(y_0) \ge a$ $y_2(y_0) + \frac{a}{y_2(a_1 + h_1(a_2))}$

Brue superious sur
$$g(y_0)$$
. $\varepsilon > 0$

$$h(a^{1+\varepsilon}) = \frac{1}{2}a^{2+2\varepsilon} - a^2 \ln(a^{4\varepsilon})$$

$$= \frac{1}{2}a^2 \left[(a^2)^{\varepsilon} - (4+\varepsilon) \ln(a^2) \right]$$

$$= \frac{1}{2}a^2 \left[e^{\varepsilon \ln(a^{\varepsilon})} - (4+\varepsilon) \ln(a^{\varepsilon}) \right]$$

$$= \frac{1}{2}a^2 \left[1 + \varepsilon \ln(a^{\varepsilon}) + \frac{\varepsilon^{\varepsilon}(\ln(a^{\varepsilon}))^2}{9} - (4+\varepsilon) \ln(a^{\varepsilon}) \right]$$

$$= \frac{1}{2}a^2 \left[1 + \varepsilon \ln(a^{\varepsilon}) + \frac{\varepsilon^{\varepsilon}(\ln(a^{\varepsilon}))^2}{9} - (4+\varepsilon) \ln(a^{\varepsilon}) \right]$$

down hearth
$$= \frac{1}{2} a^{2} \left(1 + \frac{1}{2} h(a^{2}) - 1\right)$$

Ains: $= \frac{1}{2} \left(\frac{e^{2} h(a^{2})}{2} - 1\right)$

Ains: $= \frac{1}{2} \left(\frac{e^{2} h(a^{2})}{2} - 1\right)$

Ains: $= \frac{1}{2} \left(\frac{e^{2} h(a^{2})}{2} - 1\right)$

Course $= \frac{1}{2} \left(\frac{e^{2} h(a^{2})}{2} - 1\right)$

Or $= \frac{1}{2} h^{2} = \frac{1}{2} \left(\frac{1}{2} h(a^{2}) + \frac{1}{2} a^{2} h($

Afas

Min (
$$\frac{1}{4}$$
+ $\frac{1}{4}$, a $\frac{1}{4}(\frac{1}{4}\log \frac{1}{4})$) $\leq \inf_{y>1} g(y) \leq a \frac{1}{4}(\frac{1}{4}\log \frac{1}{4}) + \ln(\ln(\log \frac{1}{4}))$

où $\psi: z \mapsto zz+\frac{1}{2}$.

the remplaçant a par $\sqrt{\frac{4T}{N-2}}$, if wint:

min ($\frac{1}{4}\log \frac{1}{N-2}$) $+ \frac{1}{4}(\frac{1}{4}\log \frac{1}{N-2})$) $\leq \inf_{y>1} Q(y)$

et inf $Q(y) \leq \frac{1}{2}(\frac{1}{N-2}) \cdot \frac{1}{4}(\frac{1}{N-2}) \cdot \frac{1}{4}(\frac{1}{N-2})$

En conclusion, on a done:

min ($\frac{1}{4}(\frac{1}{N-2}) \cdot \frac{1}{4}(\frac{1}{N-2}) \cdot \frac{1}{4}(\frac{1}{N-2}) \cdot \frac{1}{4}(\frac{1}{N-2})$
 $\lim_{y \to 0} \frac{1}{4}(\frac{1}{N-2}) \cdot \frac{1}{4}(\frac{1}{N-2}) \cdot \frac{1}{4}(\frac{1}{N-2}) \cdot \frac{1}{4}(\frac{1}{N-2})$

On a alies inf $Q(y) = \frac{1}{2}(\frac{1}{N-2}) \cdot \frac{1}{4}(\frac{1}{N-2}) \cdot \frac{1}{4}(\frac{1}{N-2})$
 $\lim_{y \to 0} \frac{1}{2}(\frac{1}{N-2}) \cdot \frac{1}{4}(\frac{1}{N-2}) \cdot \frac{1}{4}(\frac{1}{N-2}) \cdot \frac{1}{4}(\frac{1}{N-2})$