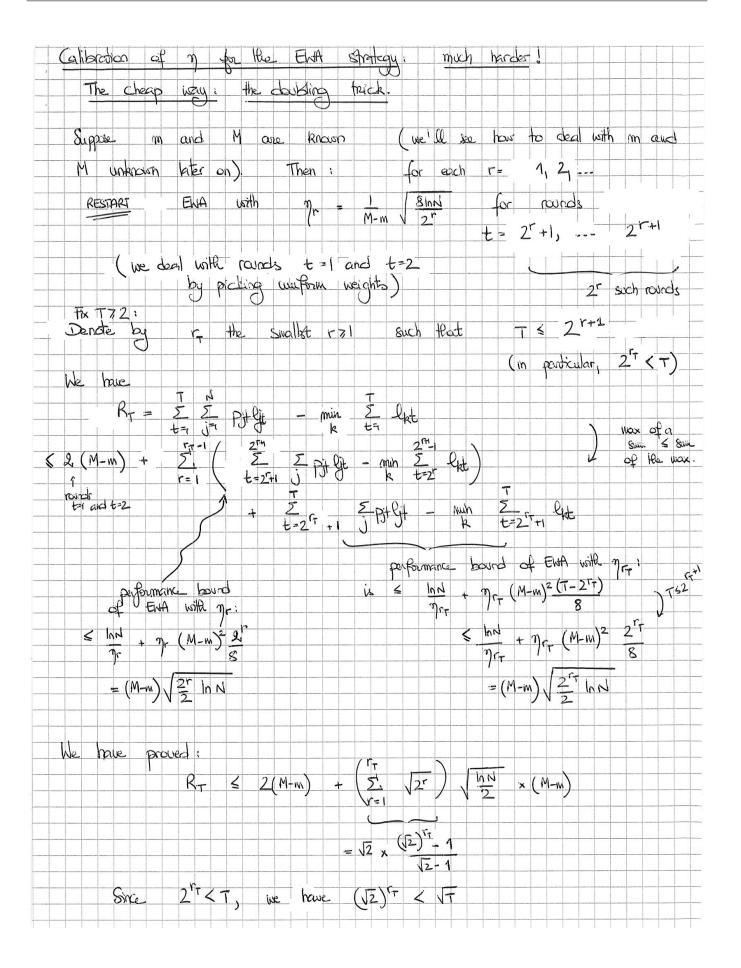
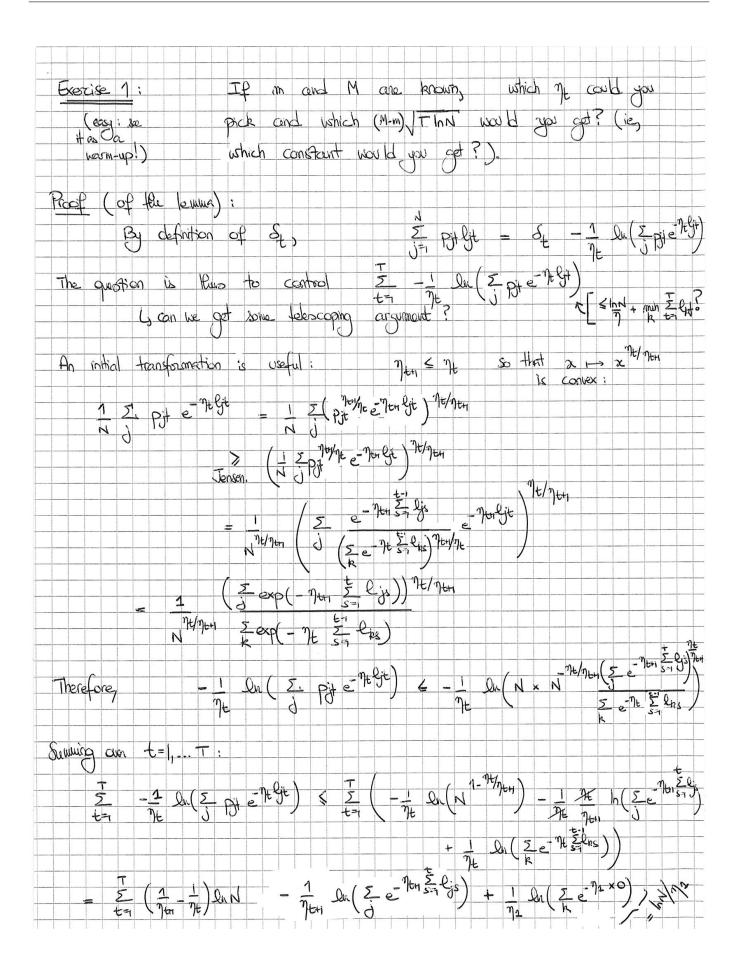
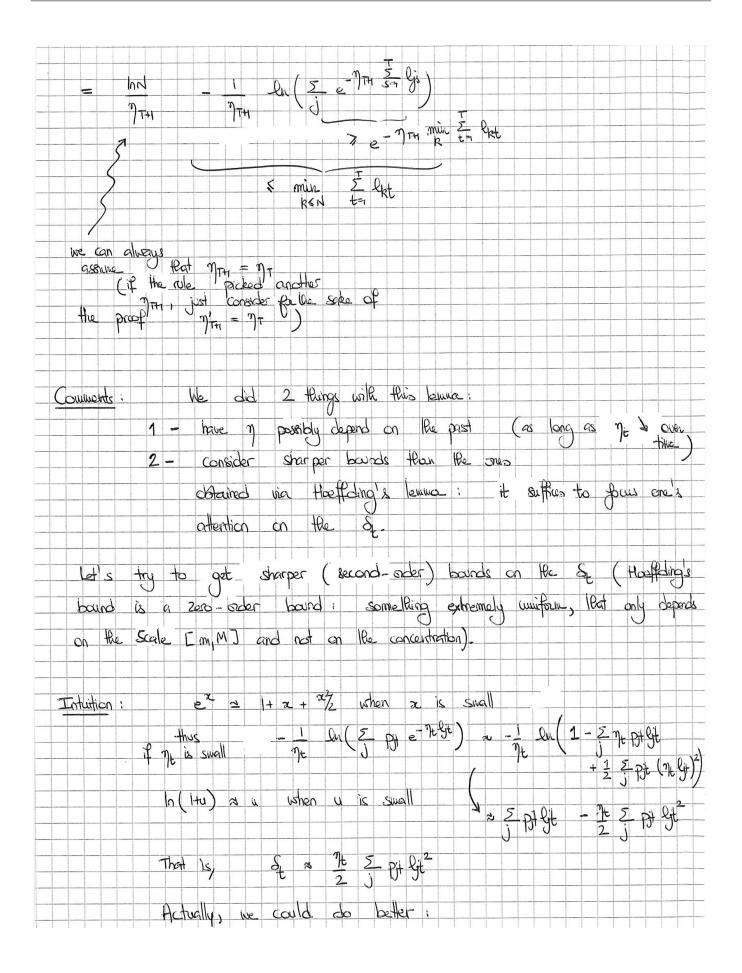
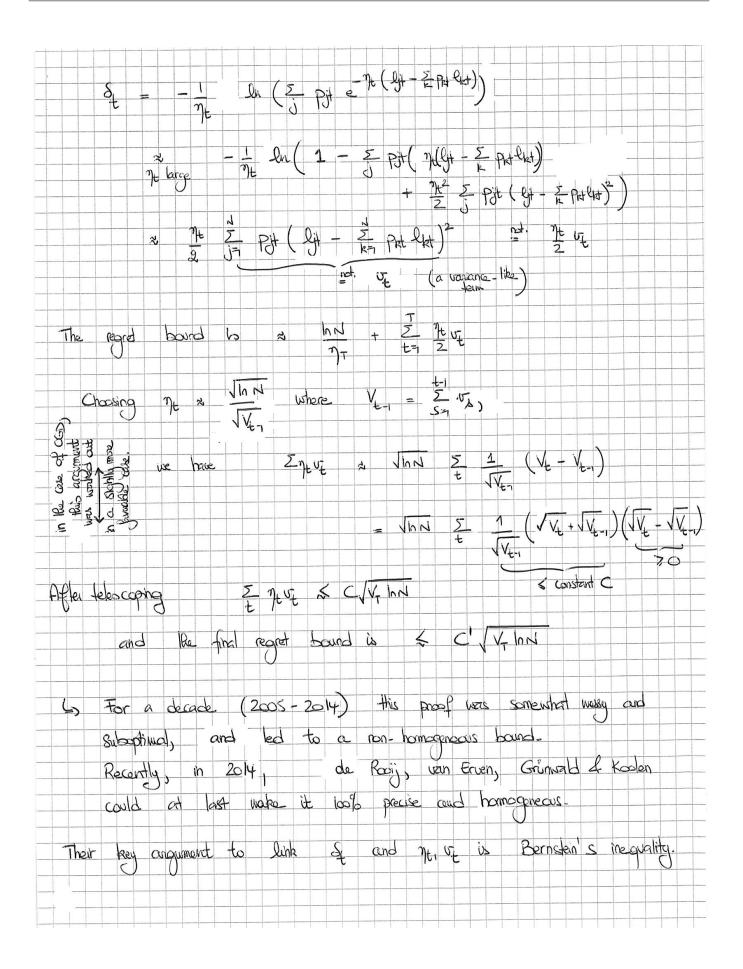

	We	50 (or f	aused	ave	ortentic	20 00	1940	Siluplex			
		<u> </u>							and	50=	= 12	C R
	let's	naus	deal	with	More	general) conv	ex set	s E Assume	$C R^{N}$, to be	which i	NEL.
Prote	>col:		At									
				de L L	1. (9 A			while		1.	_
	picks	Simu	Haneous				DiFER	ENTIABLE	Junction	L:	6->	R
		2.	بحيل	and	lį	ane	neveal	ed				
<u>Atim :</u>		Cont	rol	R _T =	T 5 t=1	24 (x4)) -	inf ze 6	T Z lt(t7	x)	(ive) inf mim	is 9 here
Alga	àllere :	Online	grad	iient d	boxent		stra	fixed	learnin	g rate	J7 0	
	1		-	- Plai	y any	x ₁	еĈ	•	<)		
	$\sum_{n=1}^{n}$		-			-2131-						
led OG					×į	32	The	(x _t .	, - ŋ s	rl _{t-1} (22	.))	
ll is the	DRM_			where					u projec j becaus			
Theore		As	Bulle	Rot	wax tst	Sup ze C	11 - 4	4(2)	ξG	ĹŁ	ourded graidie	nts]
d that	E is	Compa	ct,'	ie.,	84p 242	:6E	x-=	x' ≤	Ð	ĹЬ	anded diametr	er]
Then	CGX)) Ùs	Such	flot	Σ t	T = 40x	ŧ) -	min ze C	T Z & (2) t=	$) \leq \frac{D^2}{2\eta}$	7 G ² T 2	
							mf	achieved continuity	+ compactnes	3		
In part	icular,	for 1)= I G		1 Re	bound	eque		JGJF.			+

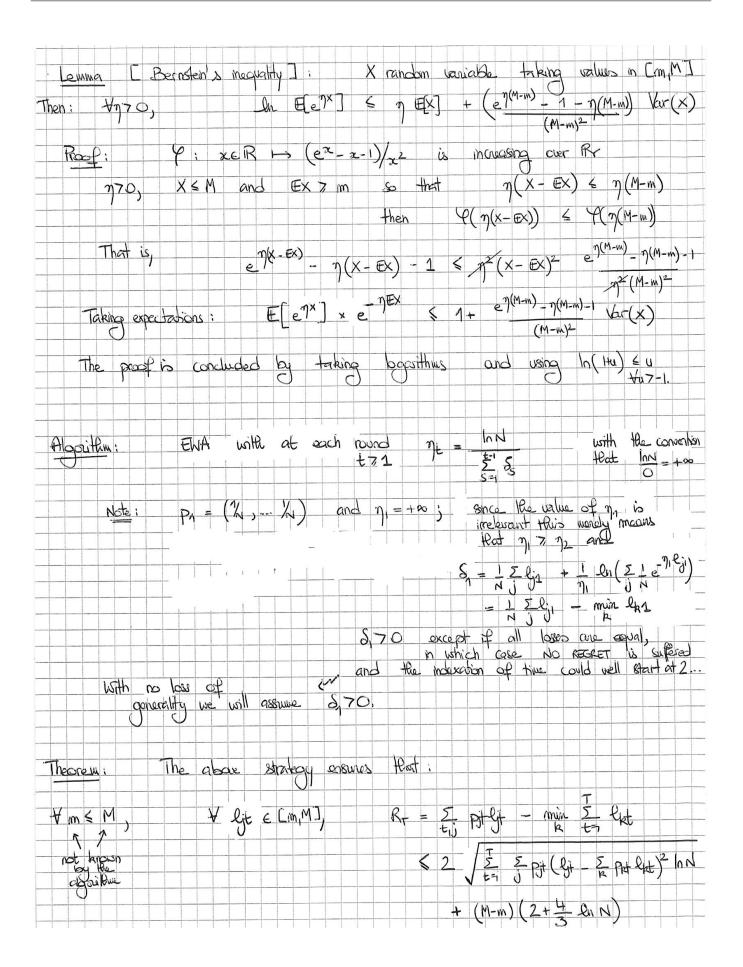


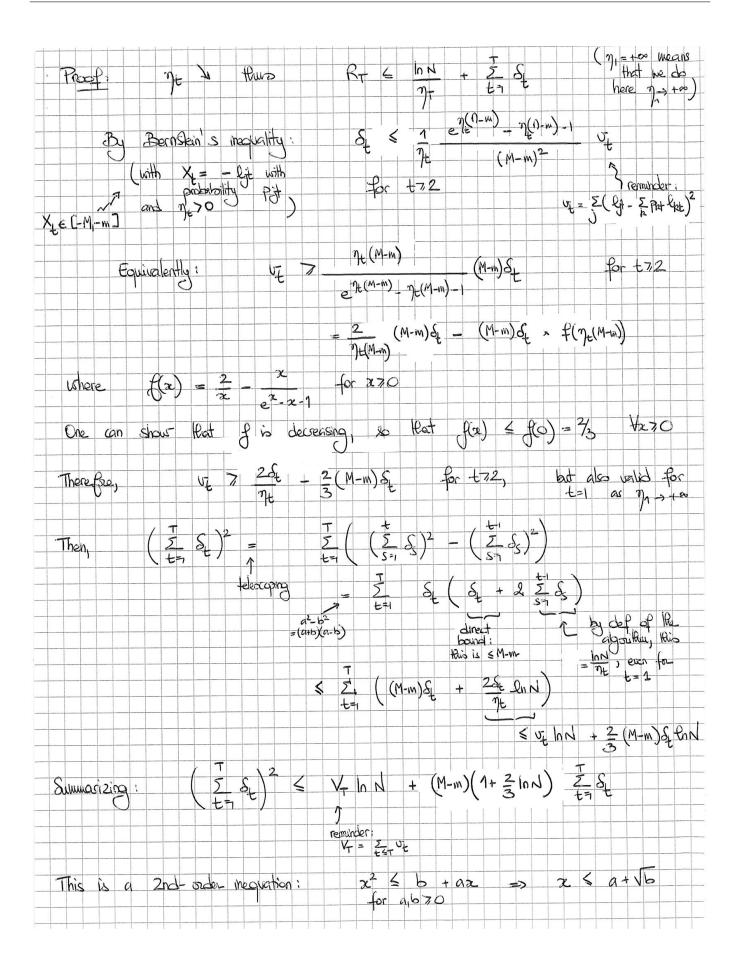
Adaptatio	n to	time	T _	(an	d	oller	pearz	nweter	s)	/	f	br	ŒD	oin	5 EW
The	algorithm		liscused		1										
	ENA		sith -f with -	fred	kar S	ning ra es s	te no	0 70							
required	s the		enourled												
	He IPe	range	Em,M bound] at G	? He	le 108 Re	gradi	òr E ieits c	ewa Sf 1	Re la	3 <u>8</u> 83	for	0 <u>G</u> r	>	
He n	sis Sta	de c	daptasi	on	to	Bose	pare	ineters							
There detail	exists									Bing	trict	y ust	nich	he	<i>will</i>
Anolter past	popul	lar tions:	hery of	2 6	eing	adop	hive	is te	5 4	une n	9	a((0)	iding	tol	le
	A	daptive	OGD												
		-				rary .	x e C	, ,	pic	k ni	70				
		+	For	172)	play			: 1(& (x	 -)t-1	√l _{t-1} (<u>×{-</u>))	
						Pick	Ne	78						_	
Theorem :	I	-+	Haptive	0	Œ	picks	a T	non- 14	Scraft	ing s	equeri	ند (nt)t	is-	th nt 70
-then:			R _T ≤	277	+	1		η _t		(24)	2-		notati Heor	sith t ion c en	he san is in le for Ogi
orollary;	Pic	king)	e =)]]			4 = f	+ 57	vlg		12	< D ²		
						NV+		+				17			
Adaptive	QGD	oc	ieves	the	bour	d		Wax	5 2	5,	3 D 2		. 1\√le	(æ _t)	¶² }
	withou	t an neither		ir k	nousk	edge							= 0(.	DG	<u>।</u> च्
	of co	urse,	E Ru	t a) ai	e kra	istn).								

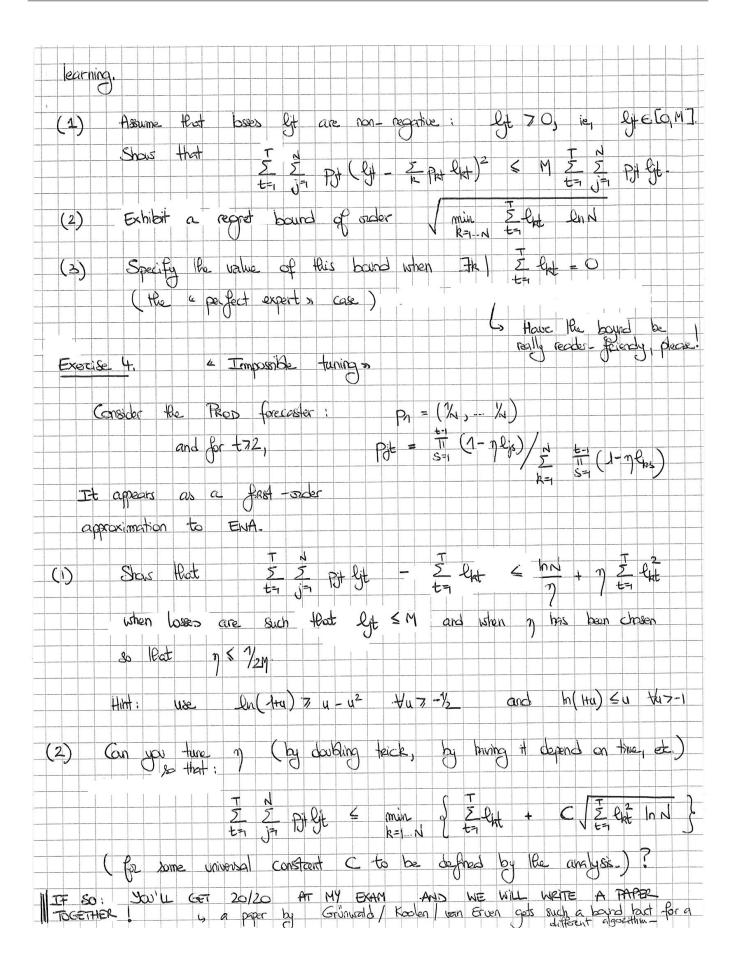





Calibration of	n for the EWA 15	megy.	
Reminder :	by considering subgr	adients and pseudo-losses,	
	the Case of Convex	losses to the one of 1	near laises. It the
	suffices to explain h	ow to sequentially calibr	ate of in the latter
	Case.		
Setting	At each round t=	= 1 ₁ 2 ₁ T,	
	· The Statistician	and the opponent simul	taneously pick
	p _t ∈ X airc		$) \in [m,M]^{N}$
	• Pt and ft		
Aimi	Control the regret	$R_{T} = \sum_{t=1}^{T} \sum_{j=1}^{J} f_{j}$	$\sum_{i=1}^{T} \frac{1}{i} - \min_{i \in I_{i} - N} \frac{1}{i}$
			J' () R=1,-N t=1
Algorithu:	ENA with fixed	learning rate 170	
		+-1	
	¥71, p	$(\eta) = \exp(-\eta \frac{z}{k})$)/ $\frac{1}{2}$ exp $\left(-\eta \sum_{k=1}^{k-1} \ell_{ks}\right)$
			k-1 1 / 5-1 1-5
Performiance bound	: R⊤ ≤	$\frac{\ln N}{n} + \frac{\eta}{8} \frac{(M-m)^2}{8} T$	
		η 18	
For	the choice $\eta^* = \frac{1}{M_{-m}}$	Slow we get R	$r \leq \sqrt{\frac{1}{2} \ln N}$
	/ M-m /	T U	¥ 2
but th	ere are two issues	with this choice:	
1.	T, m and M	are not always known	m galvance-
2.		sten a par performance in	practice.
Solutions fo	R 1. :	a doubling telck »	and pe(ne)
		ushere. M	1 varies over time
	2. 1	pt(nt) again, but	
			11-11-11-11-11-11-11-11-11-11-11-11-11-




<i>i</i>	The	<u> </u>	bound rea		RT	$\leq (M-m) \sqrt{T}$	Inn + 2(M-m)
			masures for the colopition	the price	,> (the main diff shan T is known $\frac{12}{\sqrt{3}}$ $\frac{12}{\sqrt{3}}$ $\frac{12}{\sqrt{3}}$	erence w.R.t. baund why is an additional
N		111 6	Atension of the	aroue an	junear vs	partice will	mub nac nas
						> whenever	
						m and M an is daubled).	
							to you as an
		 	ie berause	I would	need to	weite the :	sclution !
He	re's	a more	elegant way	to cope	usith the	- problem, as w	e did for OGD:
						adaptive choice	
			+ $+$ $+$ $+$ $+$				ended by ENA with fix
<u>)</u>	>0	t and	+		t	0,)/2 000	
ston 1	1	We now	consider	a rule to	o select	nt 70 bred	on the prist
Kine Index	<u>18</u>	in Formation (Note H	lijs, sst- neit the choice	1, jei1. 13, 2 of m i	and use s actually	- the weights	on the point $p_{\pm}(\eta_{\pm})$ at round t
	.mma ;	IP			U		for all lyteR
			R _T =	TN	Qiji —	min Z lif k ti	(not recessivity bounded);
					-+	$\partial_t = \sum_{j=1}^{n} \beta_j \xi_j^{*}$	$\frac{1}{n} \ln \left(\sum_{j=1}^{N} p_{j} e^{-\eta} e^{jt} \right)$
	Note	: 8	- WERS USW	ally bourder	d via		republity:
		ţ.	lit € [m,M.] ¥j,	tleu	$S_{L} \leq \frac{\gamma_{L}}{8}$	1 () but we -m) ² → will also consider here other bounds.



	[indeed,	æ is	then	swaller	than the	. brges	root	of the	- 2nd- oc	ber
	polyrow	u h			, that	-				
	10		x ś	$a + \sqrt{a^2}$	+ 46 5	a+15		grievi	t+t' SI	t + Vt
				2				C		
We	thus get :		T	<u> </u>		1/1-2				
	Ų		T 5 t=1	of	≤ (M-m	八"玉	דעייח	V VT		
On	the other	hand:		hN	< hN	**	T Z S t=7			
				<u></u> т	ĴŤĦ		t= t			
		1	0		225 ti					
	Final bour	3 !	R		4 2 0	-				
Xercise								Ξd	o not really	J De
	fle_	link -	to IR:	2 intui	hion I (Gave yo	ха.			
>	If you can	find a	more	- ratur	al expo	sition	(Still	starti	ng from,	Bernstein's
1. 1	t. () nequality),	100 (j)	cet	bonus	points	of the	akahu	1	0.	
N	, aprilig),	doc van	0							
Coroll	ary: Th	algo	ithm	above	is suc	n that				
¥⊤,	J .∀iu≤M,	\cup		€ [m, M		5 tij k	+ 8:1 -	min.	F E Pil	
R	nat knavsti		- Je							
	by the cit	sithu			≦ (M	-m) JT	InN	+ (M	-m) (2+ 4	$\ln N$
4	The algorit	ham is	adaptiv	: to	T and	to the	bound	mi z	and M.	
				0		5	(M-m	y2-		
oof:	υĘ	= lon ranc	le varie Lom var	ance of suicide e	e E Cim,MJ		4	<u> </u>	as in the proof	of
			_						Hoeffding	s lemma.
xercise	3	Improve	mort	fr so	uall losses					
	This exercise	Show	s H	Rat 18	e VT	order oj	t mag	itude	fr the	regret
	can be nons	xoled (on eas	sy prot	Janis.	The	results	below		d -
		Similar					results	ín	Chissi ficatio	and statisc
	a nature	sinuca	- U	- we	- fest le	102	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Criss pour	

How	do	We	pick	the r	e in	Prac	tice	for	ENA :				
	What	my	PhD	Stude	nto c	end	T	do :					
			t (ŋ)		t 2 57		ۇرىكەن	lji		Cumu ENA On R	lative la with ands	ss of fixed 770 L to t	
	then		relect		e ar	jmi'm 170	Ê,	-1(7)		► Ext	ibits of) d eilipinin (much tared as si theory)	ial be
	rade.	- not	bertweer overfit	hing	(8)	El	i At	xedictic	m)			<u> </u>	+
		- fit	ting 7 data	accor	ding	to	the	true	Stock	sticity / n	an- Sto	chasticity at	
			versarial,							3 3			
Op	en c	quation	ns ×2	(would	s be	Grace ()	1 topi	cs for	PhD v	; (Aa		
1.	One	Can	show	flat	m	general	5	le reg	ret of	the at	pue x	strategy	-
	Can practic	e and	linear. I in the	ory fo	you or Ew	A ?	<u>d</u> a	Calibran	On Stretter	gy theit wo	#S WC4]		
2.		yas asticity	quantif of	y ho Re da	,	5	<u>)</u>	depend	sing or	Be de (gree of		
													-
Note :		Se	hour	differ	ent	the	ab			n Strate		froni, e.g.	>
		Cross	s-valid	ation		->	We	. really	exploi	here 1	le se	quential	+