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1 Introduction
In this report, we review the proof of Arzuma-Hoeffding inequality, which
is a martingale version of classical Hoeffding inequality.

Theorem 1.1 (Arzuma-Hoeffding). Given probability space (Ω,F , (Fn)n≥0),P),
and a series of adapted random variables (Xn)n≥0 satisfying almost surely
an ≤ Xn ≤ bn, then ∀ε > 0, we have

P
[
n∑
k=1

Xk −
n∑
k=1

E[Xk|Fk−1] > ε

]
≤ exp

(
− 2ε2∑n

k=1(bk − ak)2

)

In the case where (Xn)n≥0 is independent, it becomes a classical Hoeffd-
ing inequality. The proof can be divided generally in three steps

1. Apply Markov inequality to the Laplace transform.

2. Estimate the log-Laplace transform by the Hoeffding lemma.

3. Optimize the parameter.

First and third step is more or less easy, however the second step requires a
little effort which writes

Lemma 1.1 (Hoeffding). For any random variable X satisfying a ≤ X ≤ b,
then ∀λ > 0

logE[eλX ] ≤ λE[X] + λ2

8 (b− a)2
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In the proof of Arzuma-Hoeffding, it requires a conditional version of
this lemma

Lemma 1.2 (Conditional Hoeffding). For any random variable X satisfying
a ≤ X ≤ b, then ∀λ > 0 and σ-algebra G

logE[eλX |G] ≤ λE[X|G] + λ2

8 (b− a)2

During the course, we give three proofs but we would like know if we
can follow the same step as classical Hoeffding lemma.

In the following part, we will prove it by the same strategy applying
change of probability under different σ-algebra. Moreover, we will prove a
stronger version of Arzuma-Hoeffding says

Theorem 1.2 (Bounded difference Arzuma-Hoeffding). Given probability
space (Ω,F , (Fn)n≥0),P), and a series of adapted random variables (Xn)n≥0
satisfying almost surely Gn+an ≤ Xn ≤ Gn+bn where Gn is predicable(Fn−1
adapted), we suppose only L1 condition for (Gn)n≥0, (Xn)n≥0 then ∀ε > 0,
we have

P
[
n∑
k=1

Xk −
n∑
k=1

E[Xk|Fk−1] > ε

]
≤ exp

(
− 2ε2∑n

k=1(bk − ak)2

)

2 Proof of conditional Hoeffding lemma
We recap the proof of classical Hoeffding lemma quickly.

Proof. Classical Hoeffding lemma We denote log-Laplace

ψ(λ) = logE[eλX ]

and a change of probability

dQλ

dP
= eλX

E[eλX ]

, of course this change of probability requires the integrability. Then the
first and second derivative of ψ(λ) has a very impressing interpretation

ψ′(λ) = E[XeλX ]
E[eλX ] = EQλ [X]

ψ′′(λ) = E[X2eλX ]
E[eλX ] − (E[XeλX ]

E[eλX ] )2 = VarQλ [X]
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Therefore,

ψ(λ) = ψ(0) +
∫ λ

0
ψ′(t)dt

= ψ(0) + λψ′(0) +
∫ λ

0

∫ t

0
ψ′′(s)dsdt

= ψ(0) + λψ′(0) +
∫ λ

0

∫ t

0
VarQs [X]dsdt

≤ λE[X] + λ2

8 (b− a)2

In the last step, we use the fact that the variance of X is bounded by (b−a)2

4
under any probability space Q since

VarQ[X] = EQ
[
(X − EQ[X])2

]
≤ EQ

[
(X − (a+ b)

2 )2
]
≤ (b− a)2
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In fact, we can follow the same procedure as above. However, we have
to recall some basic property of conditional expectation and change of prob-
ability under different different σ-algebra.

Proposition 2.1. Given a probability space (Ω,F ,P) and another σ-algebra
G ⊂ F . We also has another probability defined on F such that

dQ
dP

= L

To reduce the notation, we write EQ[·] if we apply expectation under proba-
bility Q while keep E[·] for the expectation under P.We recall the following
properties about the conditional expectation.

1. Conditional expectation E[X|G] is a G-measurable random variable
such that

∀A ∈ G,E[E[X|G]1A] = E[X1A]
. The conditional expectation also follows the monotony i.e if X ≤
Y,P− p.s then E[X|G] ≤ E[Y |G].

2. Change of probability Under another σ-algebra G, we have
dQ
dP
|G = EP[L|G]

3. Bayes formula We can do conditional expectation under probability
Q

EQ = 1
E[L|G]E[LX|G]

(With convention 0
0 = 0)

3



Proof. 1. is just the definition of conditional expectation.

2. ∀A ∈ G,
Q[A] = EQ[1A] = E[L1A] = E[E[L|G]1A]

this implies that dQ
dP |G = EP[L|G].

3. We check the definition of conditional expectation under the probabil-
ity Q applying the second property.

EQ
[ 1
E[L|G]E[LX|G]1A

]
= E[E[LX|G]1A]

= E[LX1A]
= EQ[X1A]

With these propositions, we can prove the conditional Hoeffding lemma
in the same way of classical Hoeffding lemma.

Proof. Conditional Hoeffding lemma We denote now

ψ(λ) = logE[eλX |G]

then we have

ψ′(λ) = E[XeλX |G]
E[eλX |G]

ψ′′(λ) = E[X2eλX |G]
E[eλX |G] −

(
E[XeλX |G]
E[eλX |G]

)2

We have to interpret these derivative. In fact, by defining

dQλ

dP
= Lλ = eλX

E[eλX |G]

we see easily it’s a density since E[Lλ|G] = 1 so E[Lλ] = E[E[Lλ|G]] = 1.
Then we check the third property

EQλ [X|G] = 1
E[Lλ|G]E[LλX|G] = E[XeλX |G]

E[eλX |G]

Therefore, we obtain the same interpretation as change of probability ap-
plying in conditional expectation.

ψ′(λ) = EQλ [X|G]
ψ′′(λ) = EQλ [X2|G]− (EQλ [X|G])2

= EQλ
[
(X − EQλ [X|G])2|G

]
:= VarQλ [X]
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The second one has a similar bound estimation of conditional variance
by applying the bias-mean decomposition, i.e ∀Y a G-measurable and ∀Q a
probability

EQ[(X − Y )2|G] = EQ
[
(X − EQ[X|G])2 + (EQ[X|G]− Y )2 + 2(X − EQ[X|G])× (EQ[X|G]− Y )|G

]
= EQ

[
(X − EQ[X|G])2|G

]
+ (EQ[X|G]− Y )2

≥ EQ
[
(X − EQ[X|G])2|G

]
On apply Y = a+b

2 for Qλ and obtain that

ψ′′(λ) = EQλ [(X − EQλ [X|G])2|G]

≤ EQλ [(X − a+ b

2 )2|G]

≤ EQλ

[(
b− a

2

)2
|G
]

= (b− a)2

4

The rest part is just like the classical Hoeffding lemma.

3 Generalization to bounded difference case
We prove the generalized case. We study a case where G+ a ≤ X ≤ G+ b
where G is G-measurable. Then we apply Hoeffding lemma to X − G and
obtain

logE[eλ(X−G)|G] ≤ λE[X −G|G] + λ2

8 (b− a)2

However, since we don’t know E[eλX ] < ∞, we cannot expect a common
version of conditional Hoeffding lemma. One correct way to see it may be
defining

E[eλ(X−G)|G] = lim
N→∞

e−λGE[eλX1|G|≤N |G] (1)

Since eλX1|G|≤N is always bounded, the definition always makes sense and
the limit is a convergence monotone.(But the limit may not be L1.)

We check this definition. ∀A ∈ G

E
[

lim
N→∞

e−λGE[eλX1|G|≤N |G]1A
]

= E
[

lim
N→∞

E[eλ(X−G)1|G|≤N1A|G]
]

= E
[
E[ lim
N→∞

eλ(X−G)1|G|≤N1A|G]
]
(Monotone convergence)

= E
[
E[eλ(X−G)1A|G]

]
= E

[
eλ(X−G)1A

]
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Therefore, we get an asymptotic conditional Hoeffding lemma

lim
N→∞

logE[eλX1|G|≤N |G] ≤ λE[X|G] + λ2

8 (b− a)2

This is good, but it helps us so little since we could not apply an asymp-
totic version of Hoeffding lemma to the proof. However, this inspires us that
the lemma works once we truncate the random variable. We give two proofs
to the same conclusion by going over the problem of integrability applying
truncation.
Remark. The second comes first after I notice that the above asymptotic
conditional Hoeffding formula helps so little. However, when I review the
note of the course, I believe that Prof.Stoltz may want not only well defined
the conditional expectation, but also a modified Hoeffding lemma that works
in a general case. Thus I revise the formula and follow the same idea but
get another proof.

Proof. (Proof 1 : Truncate the random variable directly) We modify
a little the asymptotic conditional formula and get the following lemma.

Lemma 3.1. We suppose that X,G ∈ L1(Ω) and G is G-measurable and
G+ a ≤ X ≤ G+ b. Then for all λ > 0, we have

E[eλ(X−G)|G] = lim
N→∞

E[eλ(X−G)1|G|≤N |G] (2)

This expression gives us that

lim
N→

logE[eλX1|G|≤N |G] ≤ λE[X|G] + λ2

8 (b− a)2 (3)

This lemma is just a revised version of the previous one. We give its
proof easily.

Proof. ∀A ∈ G, we have

E
[

lim
N→∞

E[eλ(X−G)1|G|≤N |G]1A
]

= E
[

lim
N→∞

E[eλ(X−G)1|G|≤N1A|G]
]

= E
[
E[ lim
N→∞

eλ(X−G)1|G|≤N1A|G]
]

(Dominated convergence theorem)

= E
[
E[eλ(X−G)1|G|≤N1A|G]

]
= E

[
eλ(X−G)1|G|≤N1A

]
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Since E[eλX1|G|≤N |G] is always well defined, we have

logE[eλ(X−G)|G] = lim
N→∞

logE[eλ(X−G)1|G|≤N |G]

= lim
N→∞

E[eλX1|G|≤N |G]− λG1|G|≤N

= lim
N→∞

E[eλX1|G|≤N |G]− λG

Therefore, we get

lim
N→∞

logE[eλX1|G|≤N |G] ≤ λE[X|G] + λ2

8 (b− a)2

We apply this asymptotic conditional inequality to the Arzuma-Hoeffding
inequality.

P[
∑
k≤n

(Xk − E[Xk|Fk−1]) > ε]

= lim
∀k≤n,Nk→∞

P[
∑
k≤n

(Xk1|Gk|≤Nk − E[Xk|Fk−1]) > ε]

= lim
∀k≤n,Nk→∞

e−λεE[eλ
∑

k≤n(Xk1|Gk|≤Nk−E[Xk|Fk−1])]

= lim
∀k≤n,Nk→∞

e−λεE
[
e
λ
∑

k≤n−1(Xk1|Gk|≤Nk−E[Xk|Fk−1])E[eλXn1|Gn|≤Nn−E[Xn|Fn−1]|Fn−1]
]

(Using asymptotic Hoeffding lemma)

= lim
∀k≤n,Nk→∞

e−λεe
λ2
8
∑

k≤n(bk−ak)2+δ(δ → 0)

Then we optimize the parameter and get the desired result.

Proof. (Proof 2 : Truncation by conditional probability)
We denote Ak = {|Gk| ≤ Nk} and Bn =

⋂
k≤nAk and we define a change

of probability
dQ
dP

= 1Bn
P[Bn]

. One may worry the probability of Bn. In fact,

P[Bn] = 1− P[BC
n ],P[BC

n ] = P

⋃
k≤n

ACk

 ≤∑
k≤n

P[|Gk| > Nk]

So we make Nk big enough, we have P[Bn] > 0. Under the probability Q,
(Gk)k≤n are bounded, so are (Xk)k≤n. So, we apply the Arzuma-Hoeffding
inequality under the probability Q and obtain

Q
[
n∑
k=1

Xk −
n∑
k=1

EQ[Xk|Fk−1] > ε

]
≤ exp

(
− 2ε2∑n

k=1(bk − ak)2

)
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This is

P
[{

n∑
k=1

Xk −
n∑
k=1

EQ[Xk|Fk−1] > ε

}
∩Bn

]
≤ P[Bn] exp

(
− 2ε2∑n

k=1(bk − ak)2

)

≤ exp
(
− 2ε2∑n

k=1(bk − ak)2

)

We would like pass to the limit. The dominated function is easy since
function of indicator 1{

∑n

k=1 Xk−
∑n

k=1 EQ[Xk|Fk−1]>ε}1Bn < 1. Observing
that when we pass Nk →∞,∀k ≤ n, we have 1Bn → 1 and

EQ[Xk|Fk−1] = E[1BnXk|Fk−1]
E[1Bn |Fk−1] → E[Xk|Fk−1]

This passage to limit is established by the Bayes formula and the conditional
dominated convergence.

In conclusion, when we pass Nk → ∞, ∀k ≤ n, we obtain the exact
Arzuma-Hoeffding inequality.
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