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The next theorem is a stronger version of Pinsker’s inequality for Bernoulli distributions, that was
proved? by Ordentlich and Weinberger [2005]. Indeed, note that the function ¢ defined below satisfies
min ¢ = 2, so that the next theorem always yields an improvement over the most classical version of
Pinsker’s inequality: kl(p,q) > 2(p — q)%.

We provide below an alternative elementary proof for Bernoulli distributions of this refined Pinsker’s
inequality. The extension to the case of general distributions, via the contraction-of-entropy property,
is stated at the end of this section.

Theorem 15 (A refined Pinsker’s inequality by Ordentlich and Weinberger [2005]). For allp,q € [0, 1],

In((1-q)/q)

e
1—2q

Kl(p,q) > (r =0 = vla) (0 — ),
where the multiplicative factor o(q) = (1 —2¢)" " In((1 —q)/q) is defined for all q € [0,1] by extending
it by continuity as p(1/2) =2 and ¢(0) = p(1) = 4o0.

The proof shows that ((q) is the optimal multiplicative factor in front of (p — ¢)? when the bounds
needs to hold for all p € [0, 1]; the proof also provides a natural explanation for the value of ¢.

Proof: The stated inequality is satisfied for ¢ € {0,1} as kl(p,q) = 400 in these cases unless p = g.
The special case ¢ = 1/2 is addressed at the end of the proof. We thus fix ¢ € (0,1) \ {1/2} and
set f(p) = kl(p,q)/(p — q)? for p # ¢, with a continuity extension at p = q. We exactly show that f
attains its minimum at p = 1 — ¢, from which the result (and its optimality) follow by noting that

_kKl(1-gq,q) In((1-q)/q)
 (1-29?2  1-2

f(1—q) =(q)-

Given the form of f, it is natural to perform a second-order Taylor expansion of kl(p, ¢) around gq. We
have

9 (PO g 9 _ 1 g
s =n(FED) a0 = s ). (an)

so that Taylor’s formula with integral remainder reveals that for p # ¢,

_kl(pv(Z)_ 1 p@ —_\ar = ' ulp — —u)du
S0 = ol = e | e = [ e up - @) - wau.

This rewriting of f shows that f is strictly convex (as 1 is so). Its global minimum is achieved at the
unique point where its derivative vanishes. But by differentiating under the integral sign, we have, at
p=1-gq

1
f’(l—q):/o ¥ (g + u(l - 20)) (1 - u) du = 0;

the equality to 0 follows from the fact that the function u +— ¢ (g+u(1—2q))u(1—u) is antisymmetric
around u = 1/2 (essentially because v is antisymmetric itself around 1/2). As a consequence, the
convex function f attains its global minimum at 1 — ¢, which concludes the proof for the case where
g€ (0.1)\ {1/2}.

It only remains to deal with ¢ = 1/2: we use the continuity of kl(p, - ) and ¢ to extend the obtained
inequality from ¢ € [0,1]\ {1/2} to ¢ = 1/2. O

We now prove the second inequality of (13). A picture is helpful, see Figure 1.

2We also refer the reader to Kearns and Saul [1998, Lemma 1] and Berend and Kontorovich [2013, Theorem 3.2] for
dual inequalities upper bounding the moment-generating function of the Bernoulli distributions.
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