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Sequential Learning: Homework #2

Same comments as for Homework #1. I care about well-written proofs: with sufficient details, with
calculations worked out and leading to pleasant and readable bounds. I favor quality of the writing over the
quantity of questions answered. I give bonus points for elegant solutions.

Sequential submissions, deadline. Please solve the exercises one by one, in the order indicated below.
After solving an exercise, send me your answer in a single PDF file named in the format HW2-Ex1-YourName.pdf
or HW2-Pb-YourName.pdf. Allow me 2 business days to provide feedback on the exercise: whether I am
satisfied or not with its solution. Only if I am satisfied you can proceed and send your next solution. Dead-
line for your final submission is Wednesday, March 31st, at 8pm. Please start early to allow for the first
iterations, do not wait for the last minute.

Order to be followed: Exercise 1; then, Exercise 2 or Exercise 3; then, the other exercise between Exercise
2 and Exercise 3; then, Exercise 4; finally, the Problem.

The minimal requirement is to submit two and a half exercises (meaning: two exercices that I am satisfied
with, plus something substantial for a third exercise).

Beware: Typos. Most likely the statement comes with typos. This is part of the job. Try to correct
them on your own!
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Exercise 1: Explore then commit

Consider a stochastic bandit setting with K = 2 arms only, each associated with a probability distribution
ν1, ν2 over [0, 1], with respective expectations µ1, µ2. Assume that you have to play for a given horizon
T > 4. Explore each arm by pulling it m times, where 1 6 m 6 T/2. Compute the empirical averages µ̂1,m

and µ̂2,m obtained. For the remaining T − 2m steps, play only the arm j with maximal empirical average
µ̂j,m (ties broken arbitrarily). What is the regret of this strategy (called “explore then commit”)?

For the analysis, we will assume with no loss of generality that arm 1 is the optimal arm and we will
denote by ∆ = µ1 − µ2 the gap between the expectations associated with the two arms.

1. Show that P
{
µ̂1,m < µ̂2,m

}
6 exp

(
−m∆2/c

)
where c is a constant (provide a numerical value).

2. Conclude that the regret is bounded by m∆ + (T − 2m)∆ exp
(
−m∆2/c

)
.

3. Assume that T and the range [0, 1] are known. How should we choose m? Show a distribution-free
bound on the regret that is a o(T ) — but it does not need to be of the typical

√
T order of magnitude,

it can be (much) larger. Reminder: “distribution-free” means that the bound should only depend on T
and on [0, 1], not on the specific bandit problem considered, e.g., not on ∆.
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Exercise 2: Distribution-free lower bound for K–armed bandits

As indicated in class, one of the exercises of the present homework is devoted to proving that in the
stochastic K–armed bandit setting, i.e., when K arms with respective distributions ν1, . . . , νK over [0, 1]
(with expectations denoted by µ1, . . . , µK) are available, no strategy S can have a sharper distribution-free
regret bound than one of the order

√
KT .

More precisely, we denote by Yt the reward obtained at each round, when picking arm It; we recall that
Yt is drawn at random according to νIt conditionally to It. The regret is defined as

RT = T max
k=1,...,K

µk − E

[
T∑
t=1

Yt

]
.

You will prove that for all K > 2 and all T > K/5,

R?T = inf
S

sup
ν
RT >

1

20

√
KT ,

where the defining infimum of R?T is over all strategies S and the supremum is over all K–tuples of distri-
butions ν = (ν1, . . . , νK) over [0, 1].

As the proof will reveal, it actually suffices to consider Bernoulli distributions. Indeed, let ε ∈ (0, 1) and
consider the K–tuples ν(0), ν(1), . . . , ν(K) defined based on the Bernoulli distributions B+ = Ber(1/2 + ε/2)
and B− = Ber(1/2− ε/2) as follows:

– In Model 0, all arms are associated with B−, that is, ν(0) = (B−, . . . ,B−).

– In Model i ∈ {1, . . . ,K}, all arms are associated with B− except the i–th arm, which is associated
with B+.

We denote by Pi the probability induced by Model i, for i ∈ {0, 1, . . . ,K}, and by Ei the corresponding
expectation. We denote by Nk(T ) the number of times arm k was pulled by the considered strategy till
round T included.

1. Explain why

R?T > inf
S

sup
ε∈(0,1)

max
i∈{1,...,K}

ε
(
T − Ei

[
Ni(T )

])
and why there exists k0 such that E0

[
Nk0(T )

]
6 T/K.

2. Use the fundamental inequality for proving lower bounds in stochastic bandit problems and Pinsker’s
inequality to get, for all strategies S,

E0

[
Nk0(T )

]
KL(B−,B+) > 2

(
E0

[
Nk0(T )/T

]
− Ek0

[
Nk0(T )/T

])2
.

3. Combine the results above to derive

R?T > inf
S

sup
ε∈(0,1)

ε T

(
1− 1

K
−
√

T

2K
KL(B−,B+)

)

and conclude to the desired bound. You may use that

ε ∈ (0, 1/2) 7−→ 2.5 ε2 − ε ln
1 + ε

1− ε

takes positive values.
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Exercise 3: The (α, ψ)–UCB algorithm

Let ψ : R→ R be a convex function such that ψ(x) = ψ(−x) for all x ∈ R. Consider a bandit model D such
that for all ν ∈ D, if X denotes a random variable with distribution ν, then

∀λ > 0, max

{
lnEν

[
eλ(X−E[X])

]
, lnEν

[
eλ(E[X]−X)

]}
6 ψ(λ) . (?)

For all x > 0, we define the convex conjugate of ψ,

ψ?(x) = sup
{
λx− ψ(λ) : λ > 0

}
,

and assume that ψ? is invertible, with inverse denoted by (ψ?)−1.

1. Provide such a function ψ for the model D = P
(
[0, 1]

)
of all probability distributions over [0, 1].

Compute ψ? and its inverse.

We generalize the UCB algorithm for stochastic bandits in the following way. We consider the same setting
and use the same notation as the ones used in class and in Exercise 3 of the present statement: a stochastic
bandit problem is formed by K > 2 probability distributions ν1, . . . , νK in D with respective expectations
µk, their maximal expectation is denoted by µ?, the gap of arm k is ∆k = µ? − µk, etc.

(α,ψ)–UCB algorithm

Parameters: α > 0 and ψ : R→ R with ψ(x) = ψ(−x) for all x > 0

Initialization: Play each arm once, i.e., It = t for t ∈ {1, . . . ,K}, get a reward Yt ∼ νt
For t > K + 1,

1. Compute, for all k ∈ {1, . . . ,K},

Nk(t− 1) =

t−1∑
s=1

1{Is=k} and µ̂k,t−1 =
1

Nk(t− 1)

t−1∑
s=1

Ys1{Is=k}

2. Pick an arm (ties broken arbitrarily)

It ∈ argmax
k∈{1,...,K}

{
µ̂k,t−1 + (ψ?)−1

(
α ln t

Nk(t− 1)

)}

3. Get a reward Yt ∼ νIt (conditionally to It)

We want to upper bound the pseudo-regret of the (α,ψ)–UCB algorithm as follows: for α > 2,

RT = Tµ? − E

[
T∑
t=1

Yt

]
6

∑
k:∆k>0

∆k

(
α

ψ?(∆k/2)
lnT +

2α

α− 2

)
. (B)

To that end, we first show that for each arm k and t > K + 1, an upper confidence bound on µk is given by

µ̂k,t−1 + (ψ?)−1

(
α ln t

Nk(t− 1)

)
.

2. Prove that for all t > 1 and all λ > 0,

E
[
exp
(
−λ(Yt − µk)1{It=k}

) ∣∣∣∣Ft−1

]
6 exp

(
ψ(λ)1{It=k}

)
for a filtration F = (Ft)t>0 to specify explicitly.

Construct an F–adapted supermartingale (Mt)t>0 based on this inequality.
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3. Prove that for all t > K + 1, all ` > 1, and all ε > 0,

P
{
µ̂k,t−1 + ε 6 µk and Nk(t− 1) = `

}
6 exp

(
−` ψ?(ε)

)
.

4. Provide a bound, for t > K + 1, on

P

{
µ̂k,t−1 + (ψ?)−1

(
α ln t

Nk(t− 1)

)
6 µk

}
.

5. Briefly indicate how to bound, for t > K + 1,

P

{
µ̂k,t−1 − (ψ?)−1

(
α ln t

Nk(t− 1)

)
> µk

}
.

To establish the regret bound, we first fix a suboptimal arm j and an optimal arm a?.

6. Explain why It = j for t > K + 1 entails one of the following events:

µ̂a?,t−1 + (ψ?)−1

(
α ln t

Na?(t− 1)

)
6 µ? ,

or µ̂j,t−1 − (ψ?)−1

(
α ln t

Nj(t− 1)

)
> µj ,

or Nj(t− 1) <
α ln t

ψ?(∆j/2)
.

7. Establish the regret bound (B).

We conclude this exercice with a discussion of the bound for the model D = P
(
[0, 1]

)
.

8. Provide also a distribution-free bound for (α,ψ)–UCB on this model, i.e., a bound over all distributions
satisfying (?). You need first to think of a suitable value for α.
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Exercise 4: Stochastic bandits with a continuum of arms

Consider the setting of stochastic bandits with a continuum of arms indexed by A = [0, 1]. A bandit problem
is given by a mean-payoff function f , which we assume to be continuous, thus bounded; for simplicity we
consider f : [0, 1] → [0, 1]. When the player picks arm Xt ∈ [0, 1] at round t, she gets a payoff Yt ∈ [0, 1]
drawn at random according to a distribution with expectation f(Xt), conditionally to Xt. The question is
to upper bound the regret defined as

RT = T max
[0,1]

f − E

[
T∑
t=1

Yt

]
.

Consider the following two-stage methodology. We divide [0, 1] into the K > 2 regular intervals [(i −
1)/K, i/K], for i ∈ {1, . . . ,K}. An auxiliary algorithm picks an interval index It ∈ {1, . . . ,K}. An arm Xt

is then drawn at random within bin It and a payoff Yt is obtained.
We already considered this setting and strategy in an exercise in the lecture notes, with Lipschitz mean-

payoff functions and the UCB algorithm.
In the present exercise, we rather assume that the mean-payoff function f is α–Hölder, for some α > 0:

there exists L > 0 such that for all x, x′ ∈ [0, 1],∣∣f(x)− f(x′)
∣∣ 6 L|x− x′|α .

Also, we rather consider MOSS as the auxiliary algorithm; we recall that its distribution-free regret bound
is K + 45

√
KT against K–tuples of probability distributions over [0, 1].

1. Show that for a fixed number of bins K > 2 and a fixed horizon T > 2, the regret of the two-stage
strategy above is upper bounded by K + 45

√
KT + TL/Kα.

2. Explain how to pick K and which regret bound is obtained when T and α are known.

3. What could we do when α is known but T is unknown? Provide the (order of magnitude of the)
corresponding regret bound.

Dealing with an unknown α is much more challenging, but was optimally solved by Hédi Hadiji in his PhD
thesis, which he defended in December 2020.
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Problem: Adaptation to the range for K–armed bandits

So far we only considered K–armed bandit problems ν1, . . . , νK with distributions over a known interval,
typically set to [0, 1] with no loss of generality. Can the player learn the range? I.e., minimize the regret
when the distributions ν1, . . . , νK are supported on a bounded range [m,M ] but the player ignores m and
M? The answer is “Yes” and a strategy to do so can be based on the fully adaptive version of the exponen-
tially weighted average strategy studied in class. We will refer to this strategy as FA-EWA in the sequel.

We use our typical notation: at each round, the player picks an arm It, a payoff Yt is drawn at random
according to νIt given this choice It; expectations are denoted by µ1, . . . , µK , with maximal value µ?; etc.

First case: an element C ∈ [m,M ] is known

We consider an auxiliary strategy outputting probability distributions pt = (p1,t, . . . , pK,t) over the arms,
at round t > 1. We also consider a non-increasing sequence γt ∈ (0, 1/2]. We draw the arm It at random
according to the probability distribution qt defined by

qj,t = (1− γt)pj,t +
γt
K
.

The auxiliary strategy is actually given by FA-EWA run on the losses

`j,t =
−(Yt − C)1{It=k}

qj,t
+ C .

This strategy indeed has no knowledge of m and M (but requires an element C ∈ [m,M ]).

Some useful (in)equalities. First prove the following statements.

1. For all j ∈ {1, . . . ,K} and all t > 1,

|`j,t − C| 6
M −m
γt/K

.

2. Define a filtration F such that for all j ∈ {1, . . . ,K} and all t > 1,

E[`j,t | Ft−1] = µj .

3. For all j ∈ {1, . . . ,K} and all t > 1, we have γt 6 1/2 thus pj,t 6 2qj,t and

E
[
pj,t(`j,t − C)2

]
6 2(M −m)2 .

Recall that FA-EWA guarantees that for all ranges [a, b], for all sequences of losses Lj,t ∈ [a, b], for all T > 1,

RT 6 2

√√√√ T∑
t=1

vt lnN + 4(b− a) lnN ,

where RT is some regret and where the vt are some variance factors.

4. Recall how RT and vt are defined; also pin point the slight simplification performed for the sake of
readability in the second-order term 4(b− a) lnN compared to what we proved in class.

Substituting the regret bound of FA-EWA

5. Substitute the regret bound of FA-EWA and some of the useful (in)equalities proved above to get

T∑
t=1

∑
j∈{1,...,K}

pj,t`j,t − min
k∈{1,...,K}

`k,t 6 2

√√√√ T∑
t=1

∑
j∈{1,...,K}

pj,t(`j,t − C)2 +
4(M −m) lnN

γT /K
.
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6. Note that ∑
j∈{1,...,K}

qj,t`j,t = −Yt

and deduce from the previous question a bound on

−
T∑
t=1

Yt − min
k∈{1,...,K}

`k,t .

7. Take expectations in the inequality obtained to prove

Tµ? − E

[
T∑
t=1

Yt

]
6 3(M −m)

√
KT lnK + 10(M −m)

K lnK

γT
+ (M −m)

T∑
t=1

γt .

8. Provide a final regret bound of order
√
T .

Second case: getting rid of the knowledge of C

9. How can the strategy above be adapted so that no knowledge of an element C ∈ [m,M ] is required,
without degradating too much the regret bound?
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