Sequential learning, sequential optimisation

Gilles Stoltz

Laboratoire de mathématiques d'Orsay

Note: as I will do in class—lecture notes in English but comments in French

Two models of online learning with much structure → RL not covered

1. Stochastic bandits

Simplest case: K unknown distributions u_1, \dots, ν_K over [0,1]

At each round, pick an arm A_t and get a reward $Y_t \sim
u_{A_t}$

Exploration - exploitation trade-off

2. Individual sequences - Robust aggregation of predictors

Meta-statistical framework: expert predictions $f_{1,t},\ldots,f_{K,t}$ are available

Aggregate them into $\hat{y}_t = \sum_{i \in [K]} p_{j,t} f_{j,t}$

In both cases: control the regret

Computationally efficient algorithms with regret upper bounds

Exhibit lower bounds holding for all algorithms

Focus

Strong emphasis on neat proofs Challenges (\rightarrow bonus points) dedicated to improving current writing of notes 100% theoretical course, no use of a computer

Mathematical tools at hand

No need of a statistics background, but measure/integration theory required

Martingale theory Hoeffding-Azuma, Doob's max. inequalities [both!]

Information theory KL divergences, data-processing inequality, Fano's lemma

 \rightarrow Links with P. Massart's course $\;\;$ but different view on the same objects

Probability students: opportunity to study IA/machine learning!

Practical details

7 or 8 sessions, of 2h30 when not at a distance (shorter otherwise)

One homework due after the winter break

One final exam or a second homework depending on sanitary situation

Webpage with all lecture notes

http://stoltz.perso.math.cnrs.fr/enseignements.html

You can already go there and register

Will use BBB for the 1st session, may change afterwards