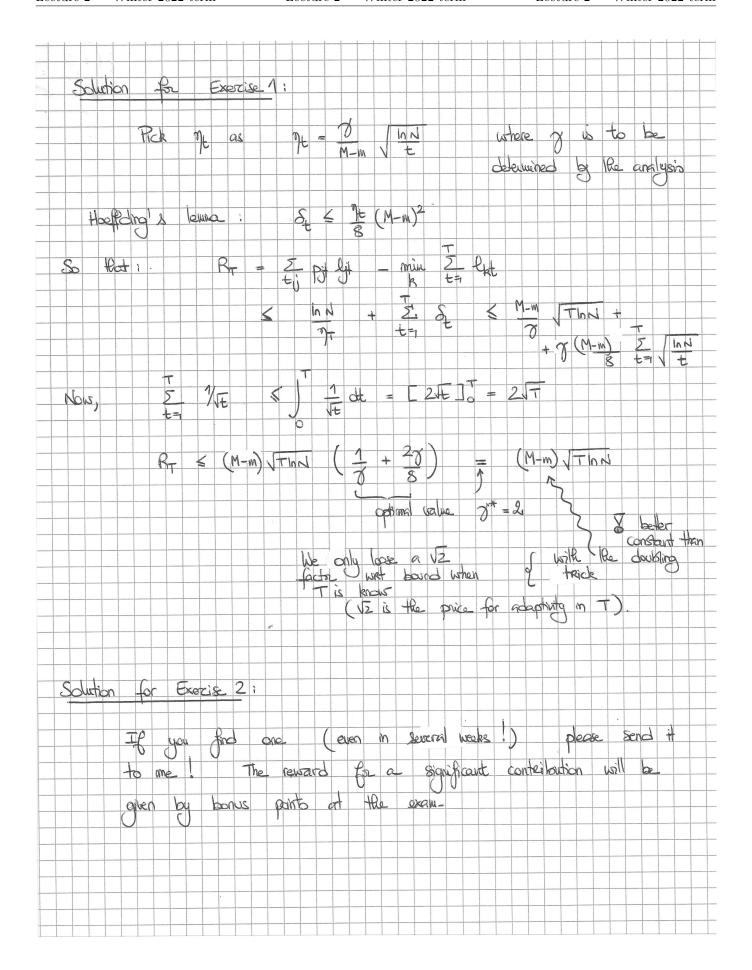
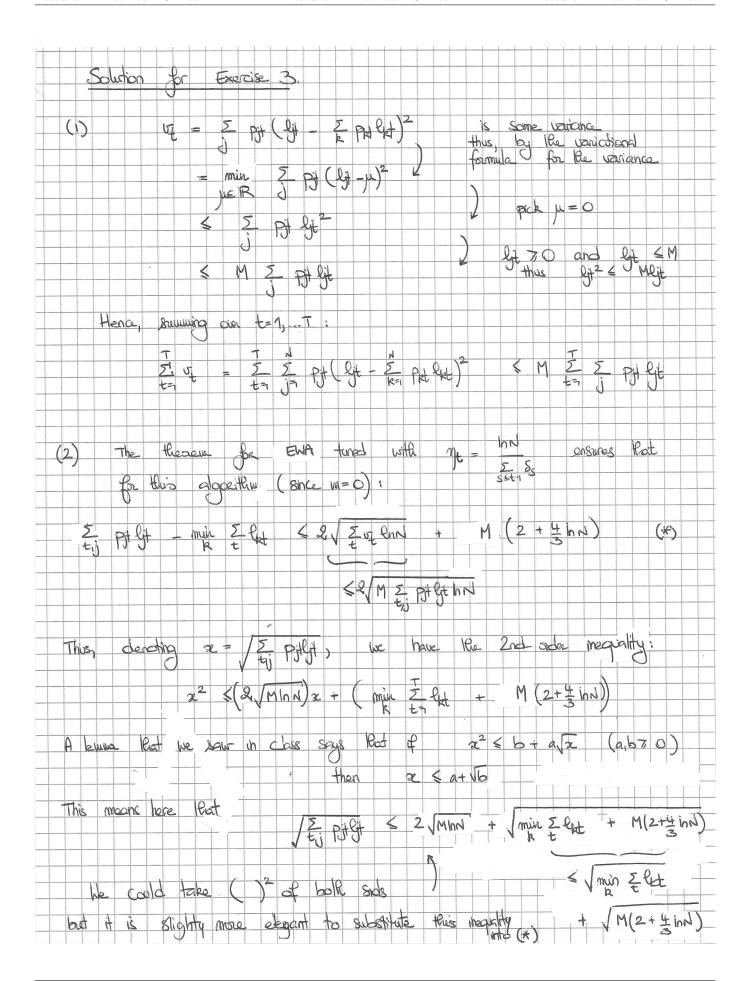
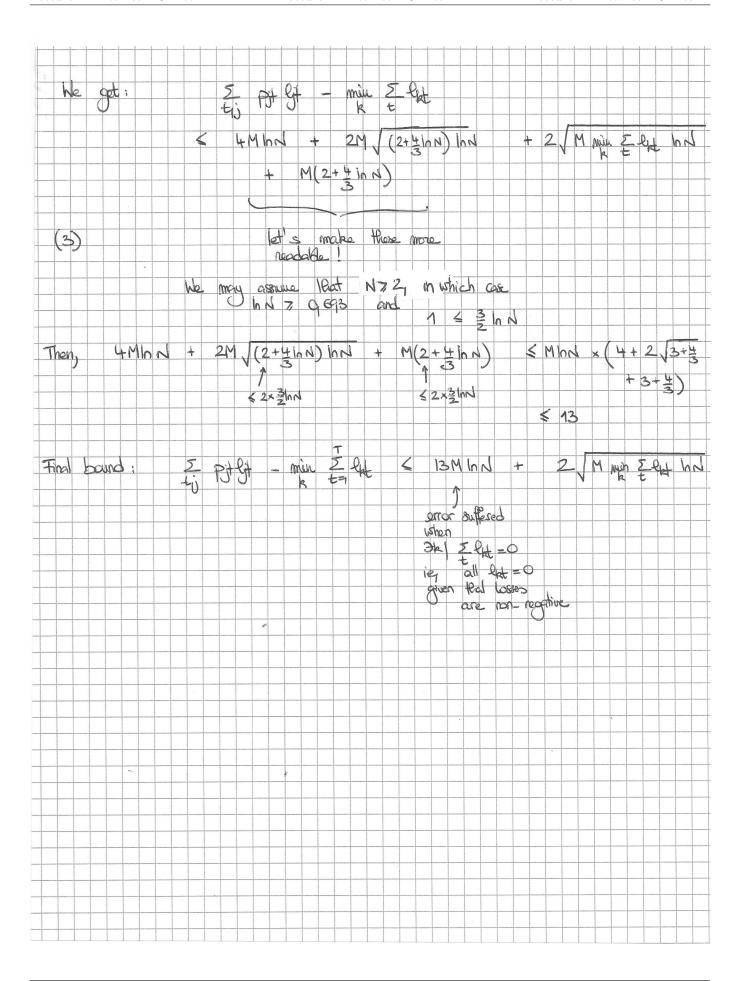
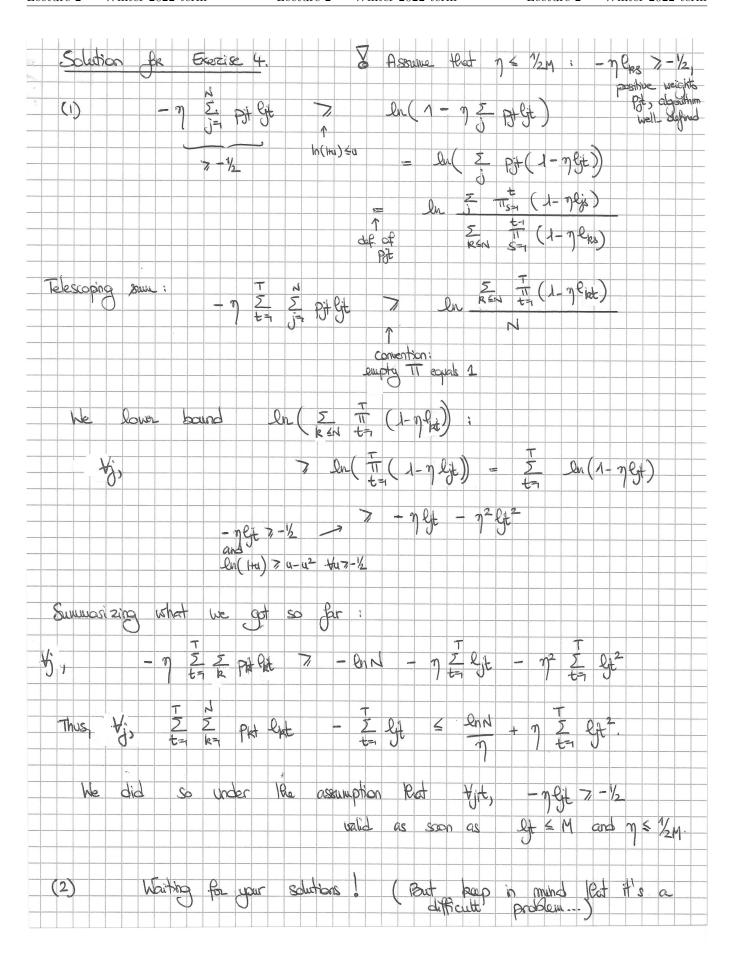
Correction of the four exercises around calibration of EWA

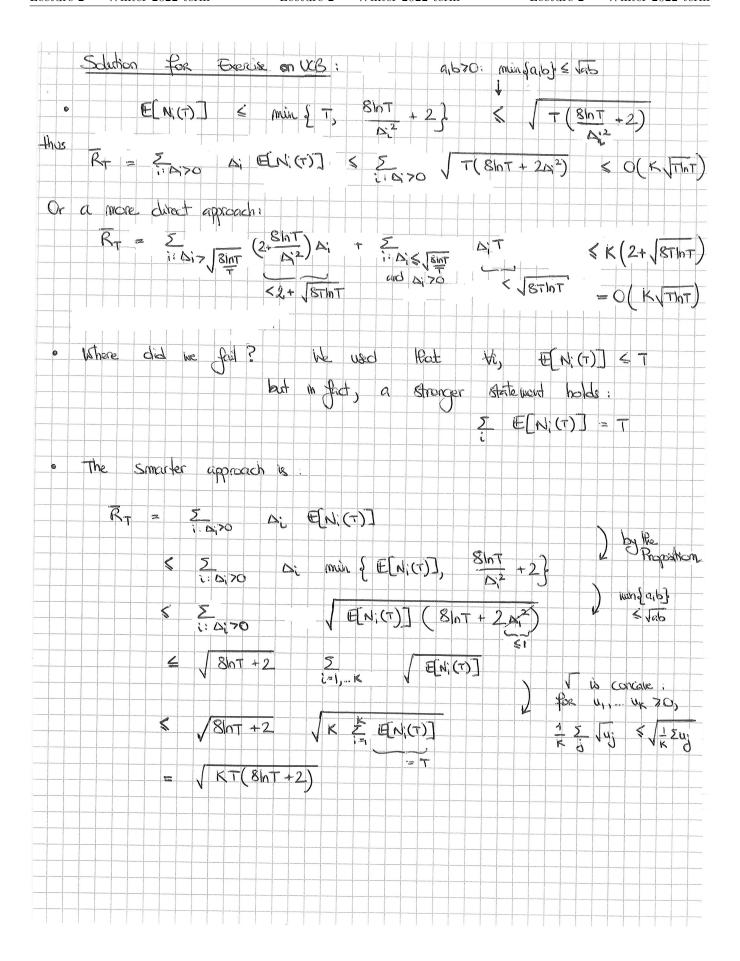


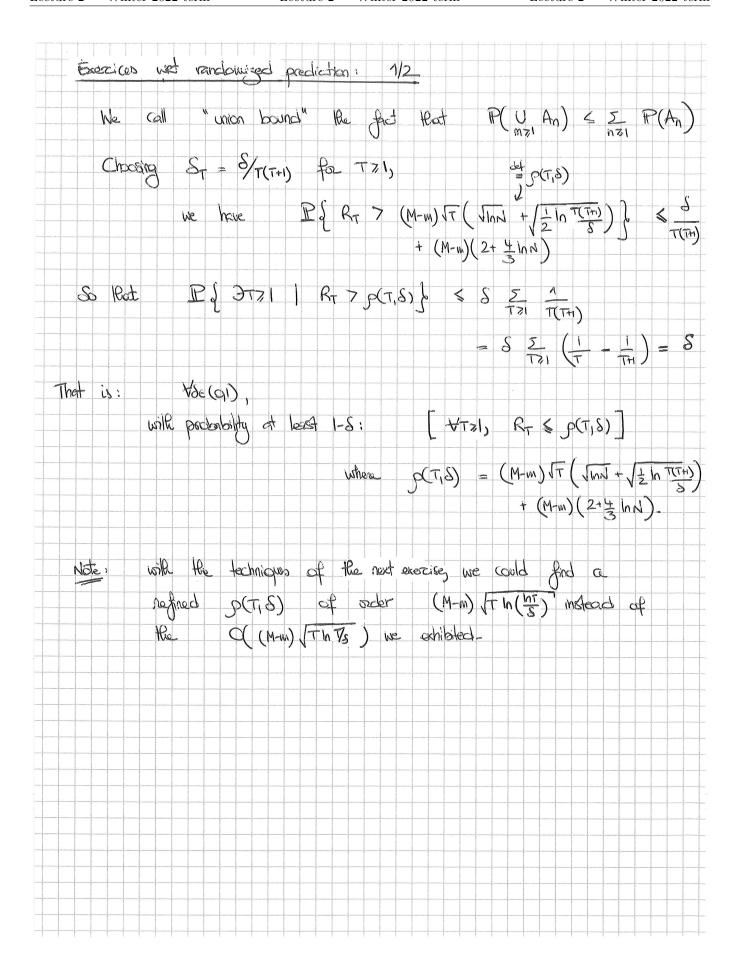




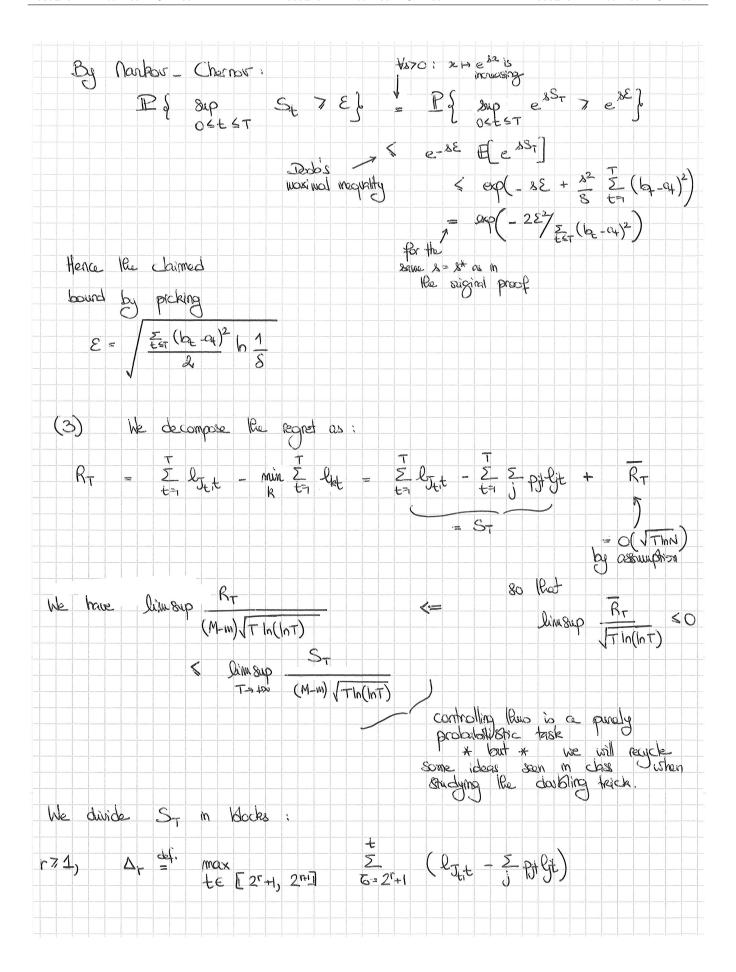


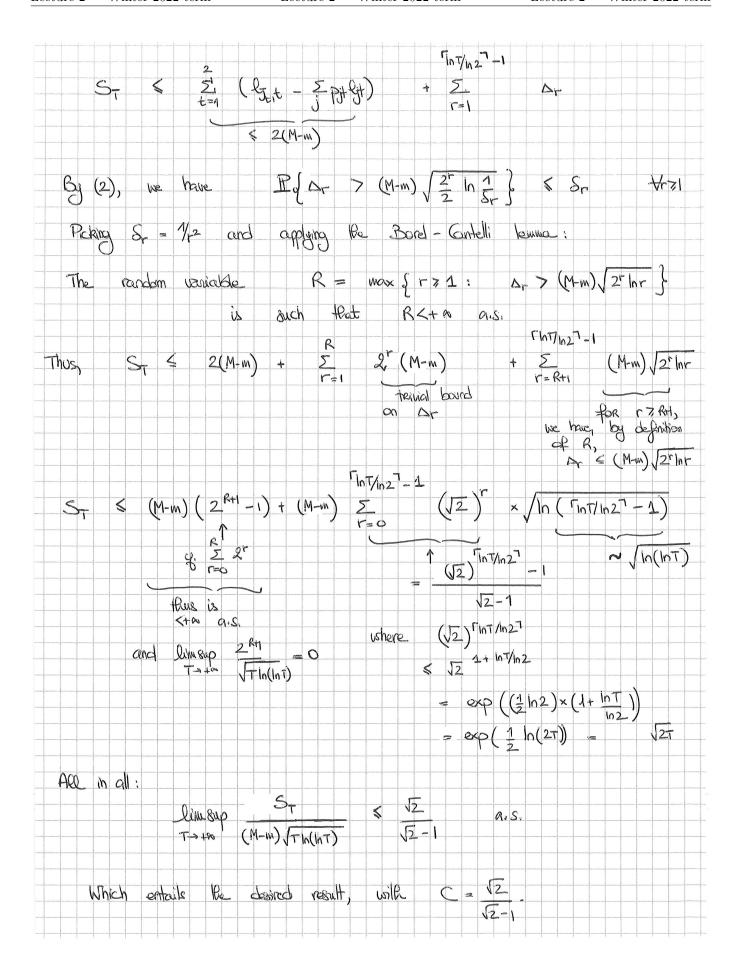
Correction of exercises around randomized prediction





Exect les	wet randomize	d prediction:	2/2		
(1)		guen a 8 (St.)(70)			n (24)
- (St) + 70 is a	mantingle who	eh ¥0<6	. <τ, X _t =	EX, IF.
	St) + 70 is a	Submantingale	when	X,L s	SE[XT FE]
1000	St) + 70 is (a Supermorbingal	<u>ishen</u>	X _E 3	$\mathbb{E}(x_1 \mathcal{F}_{\mathbf{t}})$
	ditional Jensen!. Submoutingale.				
<u>6x</u> :	if (St)tro	is a massin	gle thour subm	mantrigile, fe	n all seR.
Dab's a	naximal inequality	for non-no	phile Submouti	ngals (St)tza	
	4770, YC>	0,	Pf sup Off < T	St 7 Cf	< E[S,]
- 08 - ton A	Rodera culomb				70 exists:
	¥c70,	P{ 840 + 70	St 7 C}	(ES.]	
(2) W	the the notation	1 1	U	G55 ;	t
ù	s a martingale	co where	S _t =	2 X = 2	t
29 as	t tse R,	(e sst) +70	s is a ma	on-nagotive su	omostingle.
We s	enoused in class (by induction)	Pot E	ess,] < exp($\frac{3^2}{8}$ $\sum_{t=1}^{7} (b_t - a_t)^2$



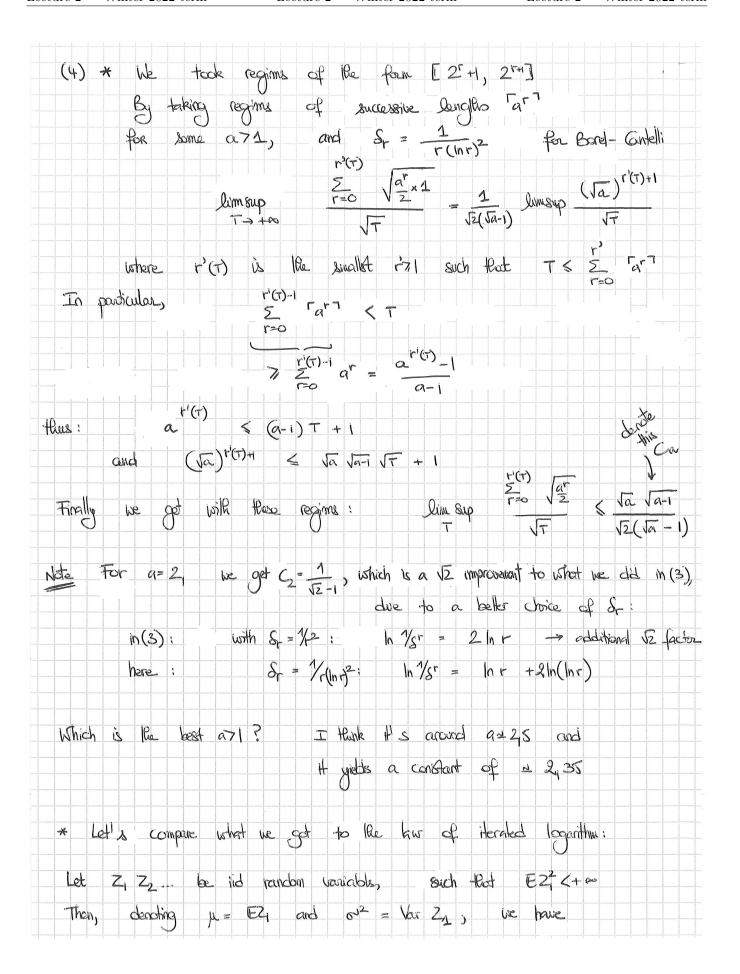


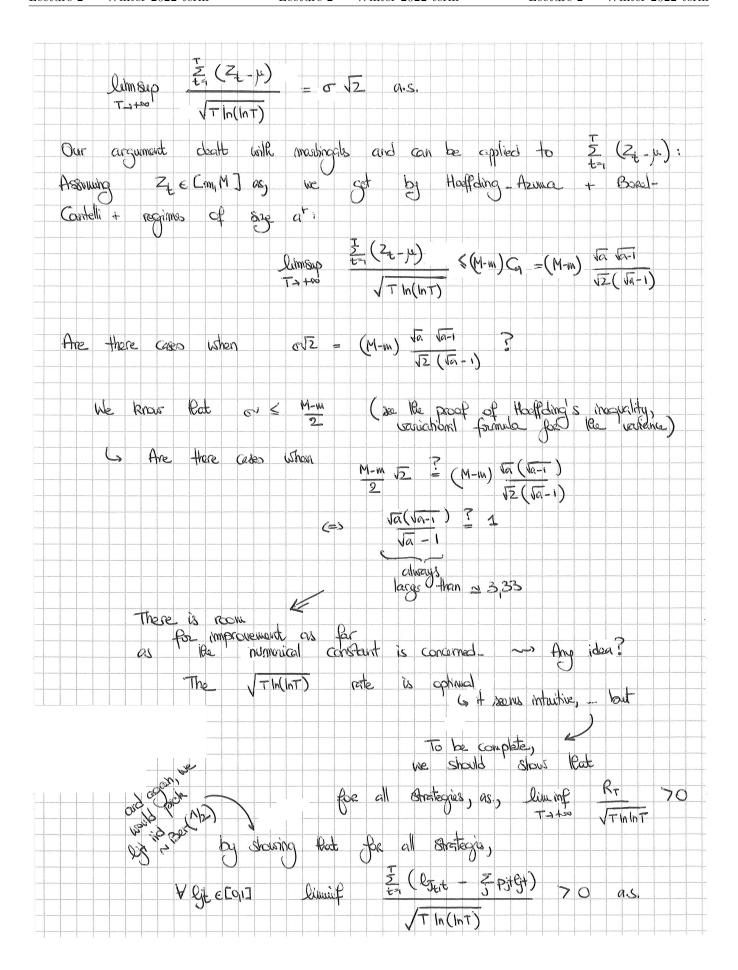
For question (4) I provide two answers:

- My original answer, where I perform a doubling trick with regimes of lengths given by the integer part of a^r instead of 2^r; the constant may be improved but I explain why we still have a gap w.r.t. law of the iterated logarithm
- An answer by Dau Hai Dang (a student who took the course in Spring 2019), where he explains how a modification of the Borel-Cantelli lemma, based on a doubling trick (!), does the job

This all should be some food for thought!

And maybe a clearer summary can be written (also with lower bounds). Please send me your notes if they are worth it!





Constante optimale pour la borne du regret

\2

SPDG, supposons que M-m = 1 et on souhaite controler demantrer que

$$\lim_{t\to +\infty} \frac{St}{\sqrt{t \log \log t}} \leq C = : \frac{1}{\sqrt{2}} \text{ p.s.} \quad (1)$$
où $St = \sum_{s=2}^{t} \left(\ell_{J_{s,s}} - \mathbb{E}[\ell_{J_{s,s}} | \mathcal{F}_{s-4}] \right).$

Rappelons que par l'inégolité de Port, on a

$$\mathbb{P}\left(\sup_{t\leq T} S_{t} \geq \varepsilon\right) \leq \exp\left(-\frac{2\varepsilon^{2}}{T}\right). \tag{2}$$

Maintenant, fixons un E > 0 et posons Vt l'évenement suivant

$$Vt = \left\{ S_t \leq (C+E) \sqrt{t \log \log t} \right\}.$$

Lemme (Borel-Cartelli modifié) Pour démontrer (1), il suffit de démontrer que,

pour tout £70 et pour un a>1 quelconque, on a

Où BC signifie le complément de l'évenement B.

Preure du lemme (exactement comme la preuve de Borel-Contelli).

Retour à la preuve de (1)

$$\begin{aligned} & \mathbb{P}\left[\left(Y_{|a^{1}+1}\right) \cap V_{|a^{1}+2}\right) \cap \dots \cap V_{|a^{1}+1}\right]^{c}\right] \\ & = \mathbb{P}\left[\left(\exists t: |a^{r}+1| \le t \le |a^{r+1}| \right) tq \mid S_{t} > (c+\epsilon)\sqrt{t \log \log \left(a^{n}\right)}\right) \\ & \leq \mathbb{P}\left(\left(\exists t: |a^{r}+1| \le t \le |a^{r+1}| \right) tq \mid S_{t} > (c+\epsilon)\sqrt{a^{r} \log \log \left(a^{n}\right)}\right) \\ & \leq \mathbb{P}\left(\left(\exists t: |a^{r}+1| \le t \le |a^{r+1}| \right) tq \mid S_{t} > (c+\epsilon)\sqrt{a^{r} \log \log \left(a^{n}\right)}\right) \\ & \stackrel{(2)}{\leq} \exp\left(-\frac{2(c+\epsilon)^{2} a^{r} \log \log \left(a^{r}\right)}{|a^{r}+1|}\right) \leq \exp\left(-\frac{2(c+\epsilon)^{2} a^{r} \log \log \left(a^{n}\right)}{a^{n+1}}\right) \end{aligned}$$

 \Box

$$\leq \exp\left(-\frac{2((t+\epsilon)^2\log(n\log a)}{a}\right) = \exp\left(-\frac{2((t+\epsilon)^2\log\log a)}{a}\right) \frac{-2((t+\epsilon)^2}{a}$$

Il suffit danc de choisir a > 1 tel que

$$\sum_{\lambda} x^{-2(C+\epsilon)^2} < +\infty.$$

Or, comme
$$C = \frac{1}{\sqrt{2}}$$
, un tel a existe toujours

Remarque. La constante $C = \frac{1}{\sqrt{2}}$ est optimale, comme vous avez dit dans le corrigé.