## Exercise 4: Approachability of a closed convex set $\mathcal{C}$

A statistician plays against an opponent; the statistician wants her average loss to approach (converge to) a given closed convex set $\mathcal{C} \subseteq \mathbb{R}^{d}$, while the opponent aims to prevent this convergence. Formally, the statistician and the opponent have respective action sets $\{1, \ldots, N\}$ and $\{1, \ldots, M\}$ and a loss function

$$
\ell:\{1, \ldots, N\} \times\{1, \ldots, M\} \longrightarrow \mathbb{R}^{d}
$$

is given and known by both players. The learning protocol is the following.
Protocol: For all rounds $t=1,2, \ldots$,

- the statistician and the opponent simultaneously and independently pick actions $I_{t} \in\{1, \ldots, N\}$ and $J_{t} \in\{1, \ldots, M\}$, possibly at random, according to distributions denoted by $\boldsymbol{p}_{t}$ and $\boldsymbol{q}_{t}$, respectively;
- the statistician suffers the loss $\ell\left(I_{t}, J_{t}\right)$;
- both players observe $I_{t}$ and $J_{t}$.

Respective aims: The statistician wants to ensure that

$$
\begin{equation*}
\frac{1}{T} \sum_{t=1}^{T} \ell\left(I_{t}, J_{t}\right) \longrightarrow \mathcal{C} \quad \text { a.s., } \quad \text { that is, } \quad \min _{c \in \mathcal{C}}\left\|c-\frac{1}{T} \sum_{t=1}^{T} \ell\left(I_{t}, J_{t}\right)\right\| \longrightarrow 0 \quad \text { a.s., } \tag{1}
\end{equation*}
$$

while the opponent wants to prevent this convergence, i.e., ensure that

$$
\begin{equation*}
\mathbb{P}\left\{\limsup _{T \rightarrow \infty} \min _{c \in \mathcal{C}}\left\|c-\frac{1}{T} \sum_{t=1}^{T} \ell\left(I_{t}, J_{t}\right)\right\|>0\right\}>0 \tag{2}
\end{equation*}
$$

A set $\mathcal{C}$ such that the statistician has a strategy ensuring (1) is called approachable by the statistician. Otherwise, in the case (2), we say that it is not approachable.

Blackwell's condition: We denote by $\mathcal{P}_{N}$ and $\mathcal{P}_{M}$ the sets of probability distributions over $\{1, \ldots, N\}$ and $\{1, \ldots, M\}$, respectively. We (bi-)linearly extend $\ell$ by defining, for all $\boldsymbol{p}=\left(p_{1}, \ldots, p_{N}\right) \in \mathcal{P}_{N}$, all $j \in\{1, \ldots, M\}$, and all $\boldsymbol{q}=\left(q_{1}, \ldots, q_{M}\right) \in \mathcal{P}_{M}$,

$$
\ell(\boldsymbol{p}, j)=\sum_{i=1}^{N} p_{i} \ell(i, j) \quad \text { and } \quad \ell(\boldsymbol{p}, \boldsymbol{q})=\sum_{i=1}^{N} \sum_{j=1}^{M} p_{i} q_{j} \ell(i, j)
$$

We consider Blackwell's condition:

$$
\forall \boldsymbol{q} \in \mathcal{P}_{M}, \quad \exists \boldsymbol{p} \in \mathcal{P}_{N} \mid \quad \ell(\boldsymbol{p}, \boldsymbol{q}) \in \mathcal{C},
$$

and will show that it is a necessary and sufficient condition for approachability.

## Necessity (requires only Lecture \#2)

1. Show that when Blackwell's condition does not hold, then not only is $\mathcal{C}$ not approachable by the statistician, but we even have that there exists $\gamma>0$ such that for all strategies of the statistician,

$$
\liminf _{T \rightarrow \infty} \min _{c \in \mathcal{C}}\left\|c-\frac{1}{T} \sum_{t=1}^{T} \ell\left(I_{t}, J_{t}\right)\right\| \geqslant \gamma \quad \text { a.s. }
$$

2. Rephrase the previous result in terms of approachability of some set for the opponent.

Hints: For Question 1, show that there exists $\boldsymbol{q}_{0} \in \mathcal{P}_{M}$ such that

$$
\min _{\boldsymbol{p} \in \mathcal{P}_{N}} \min _{c \in \mathcal{C}}\|c-\ell(\boldsymbol{p}, \boldsymbol{q})\|>0
$$

and carefully also explain why, for all strategies of the statistician and of the opponent,

$$
\left\|\frac{1}{T} \sum_{t=1}^{T} \ell\left(I_{t}, J_{t}\right)-\frac{1}{T} \sum_{t=1}^{T} \ell\left(\boldsymbol{p}_{t}, \boldsymbol{q}_{t}\right)\right\| \longrightarrow 0 \quad \text { a.s. }
$$

## Sufficiency (requires Lecture \#3)

We henceforth assume that Blackwell's condition holds and consider the following strategy for the statistician, where we denote by $\langle\cdot, \cdot\rangle$ the inner product in $\mathbb{R}^{d}$.

Strategy for the statistician:

- Play $\boldsymbol{p}_{1}=(1 / N, \ldots, 1 / N)$
- For $t \geqslant 2$,
- Compute the current average loss $\bar{m}_{t-1}=\frac{1}{t-1} \sum_{s=1}^{t-1} \ell\left(\boldsymbol{p}_{s}, J_{s}\right)$
- Project it onto $\mathcal{C}$ as $\bar{c}_{t-1}=\Pi_{\mathcal{C}}\left(\bar{m}_{t-1}\right)$
- Pick $p_{t} \in \underset{p \in \mathcal{P}_{N}}{\arg \min } \max _{\boldsymbol{q} \in \mathcal{P}_{M}}\left\langle\bar{m}_{t-1}-\bar{c}_{t-1}, \ell(\boldsymbol{p}, \boldsymbol{q})\right\rangle$
- Draw $I_{t}$ at random according to $\boldsymbol{p}_{t}$

We then analyze this strategy; we denote $L=\max _{i, j}|\ell(i, j)|$.
3. Recall thanks to a picture (no formal proof required) why for all $t \geqslant 2$,

$$
\forall c \in \mathcal{C}, \quad\left\langle\bar{m}_{t-1}-\bar{c}_{t-1}, c-\bar{c}_{t-1}\right\rangle \leqslant 0
$$

4. Deduce from this and from Sion's lemma (the fact that under some conditions, an inf sup equals a sup inf) that

$$
\forall \boldsymbol{q} \in \mathcal{P}_{M}, \quad\left\langle\bar{m}_{t-1}-\bar{c}_{t-1}, \ell\left(\boldsymbol{p}_{t}, \boldsymbol{q}\right)-\bar{c}_{t-1}\right\rangle \leqslant 0
$$

5. Show that the distance to $\mathcal{C}$ at round $t$, namely, $d_{t}=\inf _{c \in \mathcal{C}}\left\|\bar{m}_{t}-c\right\|$, satisfies, for all $t \geqslant 1$,

$$
d_{t+1}^{2} \leqslant\left(1-\frac{1}{t+1}\right)^{2} d_{t}^{2}+\frac{4 L^{2}}{(t+1)^{2}}
$$

Hint: consider $c=\bar{c}_{t}$ and upper bound $d_{t+1}$ by $\left\|\bar{m}_{t+1}-\bar{c}_{t}\right\|$. Then "decompose" $\bar{m}_{t+1}$ into $\bar{m}_{t}$ and $\ell\left(\boldsymbol{p}_{t+1}, J_{t+1}\right)$.
6. Prove that for all $T \geqslant 1$,

$$
\min _{c \in \mathcal{C}}\left\|c-\frac{1}{T} \sum_{t=1}^{T} \ell\left(\boldsymbol{p}_{t}, J_{t}\right)\right\| \leqslant \frac{2 L}{\sqrt{T}} .
$$

7. Conclude. (Yes, there is a simple but final step to deal with.)
