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Exercise 3: The (α, ψ)–UCB algorithm (can be solved after Course #4)

Let ψ : R → R be a convex function such that ψ(x) = ψ(−x) for all x ∈ R. Consider a bandit model D such
that for all ν ∈ D, if X denotes a random variable with distribution ν, then

∀λ ⩾ 0, max

{
lnEν

[
eλ(X−E[X])

]
, lnEν

[
eλ(E[X]−X)

]}
⩽ ψ(λ) . (⋆)

For all x ⩾ 0, we define the convex conjugate of ψ,

ψ⋆(x) = sup
{
λx− ψ(λ) : λ ⩾ 0

}
,

and assume that ψ⋆ is invertible, with inverse denoted by (ψ⋆)−1.

1. Provide such a function ψ for the model D = P
(
[0, 1]

)
of all probability distributions over [0, 1].

Compute ψ⋆ and its inverse.

We generalize the UCB algorithm for stochastic bandits in the following way. We consider the same setting
and use the same notation as the ones used in class and in Exercise 3 of the present statement: a stochastic
bandit problem is formed by K ⩾ 2 probability distributions ν1, . . . , νK in D with respective expectations
µk, their maximal expectation is denoted by µ⋆, the gap of arm k is ∆k = µ⋆ − µk, etc.

(α,ψ)–UCB algorithm

Parameters: α > 0 and ψ : R → R with ψ(x) = ψ(−x) for all x ⩾ 0

Initialization: Play each arm once, i.e., It = t for t ∈ {1, . . . ,K}, get a reward Yt ∼ νt

For t ⩾ K + 1,
1. Compute, for all k ∈ {1, . . . ,K},

Nk(t− 1) =

t−1∑
s=1

1{Is=k} and µ̂k,t−1 =
1

Nk(t− 1)

t−1∑
s=1

Ys1{Is=k}

2. Pick an arm (ties broken arbitrarily)

It ∈ argmax
k∈{1,...,K}

{
µ̂k,t−1 + (ψ⋆)−1

(
α ln t

Nk(t− 1)

)}

3. Get a reward Yt ∼ νIt (conditionally to It)

We want to upper bound the pseudo-regret of the (α,ψ)–UCB algorithm as follows: for α > 2,

RT = Tµ⋆ − E

[
T∑
t=1

Yt

]
⩽

∑
k:∆k>0

∆k

(
α

ψ⋆(∆k/2)
lnT +

2α

α− 2

)
. (B)

To that end, we first show that for each arm k and t ⩾ K +1, an upper confidence bound on µk is given by

µ̂k,t−1 + (ψ⋆)−1

(
α ln t

Nk(t− 1)

)
.

2. Prove that for all t ⩾ 1 and all λ ⩾ 0,

E
[
exp
(
−λ(Yt − µk)1{It=k}

) ∣∣∣∣Ft−1

]
⩽ exp

(
ψ(λ)1{It=k}

)
for a filtration F = (Ft)t⩾0 to specify explicitly.

Construct an F–adapted supermartingale (Mt)t⩾0 based on this inequality.
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3. Prove that for all t ⩾ K + 1, all ℓ ⩾ 1, and all ε > 0,

P
{
µ̂k,t−1 + ε ⩽ µk and Nk(t− 1) = ℓ

}
⩽ exp

(
−ℓ ψ⋆(ε)

)
.

4. Provide a bound, for t ⩾ K + 1, on

P

{
µ̂k,t−1 + (ψ⋆)−1

(
α ln t

Nk(t− 1)

)
⩽ µk

}
.

5. Briefly indicate how to bound, for t ⩾ K + 1,

P

{
µ̂k,t−1 − (ψ⋆)−1

(
α ln t

Nk(t− 1)

)
> µk

}
.

To establish the regret bound, we first fix a suboptimal arm j and an optimal arm a⋆.

6. Explain why It = j for t ⩾ K + 1 entails one of the following events:

µ̂a⋆,t−1 + (ψ⋆)−1

(
α ln t

Na⋆(t− 1)

)
⩽ µ⋆ ,

or µ̂j,t−1 − (ψ⋆)−1

(
α ln t

Nj(t− 1)

)
> µj ,

or Nj(t− 1) <
α ln t

ψ⋆(∆j/2)
.

7. Establish the regret bound (B).

We conclude this exercice with a discussion of the bound for the model D = P
(
[0, 1]

)
.

8. Provide also a distribution-free bound for (α,ψ)–UCB on this model, i.e., a bound over all distributions
satisfying (⋆). You need first to think of a suitable value for α.
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