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Problem: Adaptation to the range for K–armed bandits

So far we only considered K–armed bandit problems ν1, . . . , νK with distributions over a known interval,
typically set to [0, 1] with no loss of generality. Can the player learn the range? I.e., minimize the regret
when the distributions ν1, . . . , νK are supported on a bounded range [m,M ] but the player ignores m and
M? The answer is “Yes” and a strategy to do so can be based on the fully adaptive version of the exponen-
tially weighted average strategy studied in class. We will refer to this strategy as FA-EWA in the sequel.

We use our typical notation: at each round, the player picks an arm It, a payoff Yt is drawn at random
according to νIt given this choice It; expectations are denoted by µ1, . . . , µK , with maximal value µ⋆; etc.

First case: an element C ∈ [m,M ] is known

We consider an auxiliary strategy outputting probability distributions pt = (p1,t, . . . , pK,t) over the arms,
at round t ⩾ 1. We also consider a non-increasing sequence γt ∈ (0, 1/2]. We draw the arm It at random
according to the probability distribution qt defined by

qj,t = (1− γt)pj,t +
γt
K
.

The auxiliary strategy is actually given by FA-EWA run on the losses

ℓj,t =
−(Yt − C)1{It=k}

qj,t
− C .

This strategy indeed has no knowledge of m and M (but requires an element C ∈ [m,M ]).

Some useful (in)equalities. First prove the following statements.

1. For all j ∈ {1, . . . ,K} and all t ⩾ 1,

|ℓj,t + C| ⩽ M −m

γt/K
.

2. Define a filtration F such that for all j ∈ {1, . . . ,K} and all t ⩾ 1,

E[ℓj,t | Ft−1] = µj .

3. For all j ∈ {1, . . . ,K} and all t ⩾ 1, we have γt ⩽ 1/2 thus pj,t ⩽ 2qj,t and

E
[
pj,t(ℓj,t + C)2

]
⩽ 2(M −m)2 .

Recall that FA-EWA guarantees that for all ranges [a, b], for all sequences of losses Lj,t ∈ [a, b], for all T ⩾ 1,

RT ⩽ 2

√√√√ T∑
t=1

vt lnN + 5(b− a) lnN ,

where RT is some regret and where the vt are some variance factors.

4. Recall how RT and vt are defined; also pin point the slight simplification performed for the sake of
readability in the second-order term 4(b− a) lnN compared to what we proved in class.

Substituting the regret bound of FA-EWA

5. Substitute the regret bound of FA-EWA and some of the useful (in)equalities proved above to get

T∑
t=1

∑
j∈{1,...,K}

pj,tℓj,t − min
k∈{1,...,K}

T∑
t=1

ℓk,t ⩽ 2

√√√√ T∑
t=1

∑
j∈{1,...,K}

pj,t(ℓj,t − C)2 lnN +
8(M −m) lnN

γT /K
.
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6. Note that ∑
j∈{1,...,K}

qj,tℓj,t = −Yt

and deduce from the previous question a bound on

−
T∑
t=1

Yt − min
k∈{1,...,K}

ℓk,t .

7. Take expectations in the inequality obtained to prove

Tµ⋆ − E

[
T∑
t=1

Yt

]
⩽ 3(M −m)

√
KT lnK + 10(M −m)

K lnK

γT
+ (M −m)

T∑
t=1

γt .

8. Provide a final regret bound of order
√
T .

Second case: getting rid of the knowledge of C

9. How can the strategy above be adapted so that no knowledge of an element C ∈ [m,M ] is required,
without degradating too much the regret bound?
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