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Abstract. This work studies external regret in sequential prediction games with
both positive and negative payoffs. External regret measures the difference between
the payoff obtained by the forecasting strategy and the payoff of the best action.
In this setting, we derive new and sharper regret bounds for the well-known expo-
nentially weighted average forecaster and for a second forecaster with a different
multiplicative update rule. Our analysis has two main advantages: first, no prelim-
inary knowledge about the payoff sequence is needed, not even its range; second,
our bounds are expressed in terms of sums of squared payoffs, replacing larger first-
order quantities appearing in previous bounds. In addition, our most refined bounds
have the natural and desirable property of being stable under rescalings and general
translations of the payoff sequence.

1. Introduction

The study of online forecasting strategies in adversarial settings has
received considerable attention in the last few years. One of the goals
of the research in this area is the design of randomized online algorithms
that achieve a low external regret; i.e., algorithms able to minimize the
difference between their expected cumulative payoff and the cumula-
tive payoff achievable using the single best action (or, equivalently, the
single best strategy in a given class).

If the payoffs are uniformly bounded, and there are finitely many
actions, then there exist simple forecasting strategies whose external
regret per time step vanishes irrespective to the choice of the payoff
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sequence. In particular, under the assumption that all payoffs have
the same sign (say positive), the best achieved rates for the regret
are of the order of

√
X∗/n, where X∗/n is the highest average payoff

among all actions after n time steps. If the payoffs were generated by an
independent stochastic process, however, the tightest rate for the regret
with respect to a fixed action should depend on the variance (rather
than the average) of the observed payoffs for that action. Proving such
a rate in a fully adversarial setting would be a fundamental result,
and in this paper we propose new forecasting strategies that make a
significant step towards this goal.

Generally speaking, one normally would expect any performance
bound to be maintained under scaling and translation, since the units
of measurement should not make a difference (for example, predicting
the temperature should give similar performances irrespective to the
scale, Celsius, Fahrenheit or Kelvin, on which the temperature is mea-
sured). However, in many computational settings this does not hold, for
example in many domains there is a considerable difference between ap-
proximating a reward problem or its dual cost problem (although they
have an identical optimal solution). Most of our bounds also assume no
knowledge of the sequence of the ranges of the payoffs. For this reason it
is important for us to stress that our bounds are stable under rescalings
of the payoff sequence, even in the most general case of payoffs with
arbitrary signs. The issues of invariance by translations and rescalings,
discussed more in depth in Section 5.3, show that—in some sense—the
bounds introduced in this paper are more “fundamental” than previous
results. In order to describe our results we first set up our model and
notations, and then we review previous related works.

In this paper we consider the following decision-theoretic variant
proposed by Freund and Schapire (1997) of the framework of predic-
tion with expert advice introduced by Littlestone and Warmuth (1994)
and Vovk (1998). A forecaster repeatedly assigns probabilities to a fixed
set of actions. After each assignment, the actual payoff associated to
each action is revealed and new payoffs are set for the next round. The
forecaster’s reward on each round is the average payoff of actions for
that round, where the average is computed according to the forecaster’s
current probability assignment. The goal of the forecaster is to achieve,
on any sequence of payoffs, a cumulative reward close to X∗, the high-
est cumulative payoff among all actions. We call regret the difference
between X∗ and the cumulative reward achieved by the forecaster on
the same payoff sequence.

In Section 2 we review the previously known bounds on the regret.
The most basic one, obtained via the exponentially weighted average
forecaster of Littlestone and Warmuth (1994) and Vovk (1998), bounds
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the regret by a quantity of the order of M
√

n lnN , where N is the
number of actions and M is a known upper bound on the magnitude
of payoffs.

In the special case of “one-sided games”, when all payoffs have the
same sign (they are either always nonpositive or always nonnegative),
Freund and Schapire (1997) showed that Littlestone and Warmuth’s
weighted majority algorithm (1994) can be used to obtain a regret of
the order of

√
M |X∗| lnN +M lnN . (If all payoffs are nonpositive, then

the absolute value of each payoff is called loss and |X∗| is the cumulative
loss of the best action.) By a simple rescaling and translation of payoffs,
it is possible to reduce the more general “signed game”, in which each
payoff might have an arbitrary sign, to either one of the one-sided
games, and thus, bounds can be derived using this reduction. However
the transformation also maps |X∗| to either Mn + X∗ or Mn − X∗

n,
thus significantly weakening the attractiveness of such a bound.

Recently, Allenberg-Neeman and Neeman (2004) proposed a direct
analysis of the signed game avoiding this reduction. They proved that
weighted majority (used in conjunction with a doubling trick) achieves
the following: on any sequence of payoffs there exists an action j (which
might be different from the optimal action achieving X∗

n) such that the
regret is at most of order

√
M(lnN)

∑n
t=1 |xj,t|, where xj,t is the payoff

obtained by action j at round t, and M = maxi,t |xi,t| is a known upper
bound on the magnitude of payoffs. Note that this bound does not relate
the regret to the sum A∗

n = |xj∗,1| + · · · + |xj∗,n| of payoff magnitudes
for the optimal action j∗ (i.e., the one achieving X∗

n). In particular,
the bound of order

√
MA∗

n lnN + M lnN for one-sided games is only
obtained if an estimate of A∗

n is available in advance.
In this paper we show new regret bounds for signed games. Our

analysis has two main advantages: first, no preliminary knowledge about
the payoff magnitude M or about the best cumulative payoff X∗ is
needed; second, our bounds are expressed in terms of sums of squared
payoffs, such as x2

j,1 + · · · + x2
j,n and related forms. These quantities

replace the larger terms M(|xj,1|+· · ·+|xj,n|) appearing in the previous
bounds. As an application of our results we obtain, without any pre-
liminary knowledge on the payoff sequence, an improved regret bound
for one-sided games of the order of

√
(Mn− |X∗|)(|X∗|/n)(lnN).

Some of our bounds are achieved using forecasters based on weighted
majority run with a dynamic learning rate. However, we are able to
obtain second-order bounds of a different flavor using a forecaster that
does not use the exponential probability assignments of weighted ma-
jority. In particular, unlike virtually all previously known forecasting
schemes, the weights of this forecaster cannot be represented as the
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gradient of an additive potential (see the monograph by Cesa-Bianchi
and Lugosi, 2006, for an introduction to potential-based forecasters).

2. An overview of our results

We classify the existing regret bounds as zero-, first-, and second-order
bounds. A zero-order regret bound depends on the number of time
steps and on upper bounds on the individual payoffs. In a first-order
bound the dependence on the number of time steps is replaced by a
dependence on a sum of payoffs. Finally, the main term of a second
order bound depends only on a sum of squares of the payoffs. In this
section we will also briefly discuss the information which the algorithms
require in order to achieve the bounds.

We first introduce some notation and terminology. Our forecasting
game is played in rounds. At each time step t = 1, 2, . . . the forecaster
computes an assignment pt = (p1,t, . . . , pN,t) of probabilities over the
N actions. Then the payoff vector xt = (x1,t, . . . , xN,t) ∈ RN for time t
is revealed and the forecaster’s reward is x̂t = x1,tp1,t + · · ·+ xN,tpN,t.
We define the cumulative reward of the forecaster by X̂n = x̂1+· · ·+x̂n

and the cumulative payoff of action i by Xi,n = xi,1 + · · · + xi,n. For
all n, let X∗

n = maxi=1,...,N Xi,n be the cumulative payoff of the best
action up to time n. The forecaster’s goal is to keep the regret X∗

n− X̂n

as small as possible uniformly over n.
The one-sided games mentioned in the introduction are the loss

game, where xi,t ≤ 0 for all i and t, and the gain game, where xi,t ≥ 0
for all i and t. We call signed game the setup in which no assumptions
are made on the sign of the payoffs.

2.1. Zero-order bounds

We say that a bound is of order zero whenever it only depends on
bounds on the payoffs (or on the payoff ranges) and on the number of
time steps n. The basic version of the exponentially weighted average
forecaster of Littlestone and Warmuth (1994) ensures that the order
of magnitude of the regret is M

√
n lnN where M is a bound on the

payoffs: |xi,t| ≤ M for all t ≥ 1 and i = 1, . . . , N . (Actually, the factor
M may be replaced by a bound E on the effective ranges of the payoffs,
defined by |xi,t − xj,t| ≤ E for all t ≥ 1 and i, j = 1, . . . , N .) This basic
version of this regret bound assumes that we have prior knowledge of
both n and M (or E).

In the case when n is not known in advance one can use a doubling
trick (that is, restart the algorithm at times n = 2k for k ≥ lnN)
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and achieve a regret bound of the same order, M
√

n lnN (only the
constant factor increases). Similarly, if M is not known in advance,
one can restart the algorithm every time the maximum observed payoff
exceeds the current estimate, and take the double of the old estimate
as the new current estimate. Again, this influences the regret bound by
only a constant factor. (The initial value of the estimate of M can be
set to the maximal value in the first time step, see the techniques used
in Section 3.)

A more elegant alternative, rather than the restarting the algorithm
from scratch, is proposed by Auer, Cesa-Bianchi, and Gentile (2002)
who consider a time-varying tuning parameter ηt ∼ (1/M)

√
(lnN)/t.

They also derive a regret bound of the order of M
√

n lnN uniformly
over the number n of steps. Their method can be adapted along the
lines of the techniques of Section 4.2 to deal with the case when M (or
E) is also unknown.

The results for the forecaster of Section 4 imply a zero-order bound
sharper than E

√
n lnN . This is presented in Corollary 1 and basically

replaces E
√

n by
√

E2
1 + · · ·+ E2

n, where Et is the effective range of
the payoffs at round t,

Et = max
i=1,...,N

xi,t − min
j=1,...,N

xj,t . (1)

2.2. One-sided games: first-order regret bounds

We say that a regret bound is first-order whenever its main term de-
pends on a sum of payoffs. Since the payoff of any action is at most
Mn, these bounds are usually sharper than zero-order bounds. More
specifically, they have the potential of a huge improvement (when,
for instance, the payoff of the best action is much smaller than Mn)
while they are at most worse by a constant factor with respect to their
zero-order counterparts.

When all payoffs have the same sign Freund and Schapire (1997)
first showed that Littlestone and Warmuth’s weighted majority algo-
rithm (1994) can be used as a basic ingredient to construct a forecasting
strategy achieving a regret of order

√
M |X∗

n| lnN +M lnN where |X∗
n|

is the absolute value of the cumulative payoff of the best action (i.e.,
the largest cumulative payoff in a gain game or the smallest cumulative
loss in a loss game).

In order to achieve the above regret bound, the weighted majority
algorithm needs prior knowledge of |X∗

n| (or a bound on it) and of the
payoff magnitude M . As usual one can overcome this by a doubling
trick. Doubling in this case is slightly more delicate, and would re-
sult in a bound of the order of

√
M |X∗

n| lnN + M(lnMn) ln N . Here
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again, the techniques of Auer, Cesa-Bianchi, and Gentile (2002) could
be adapted along the lines of the techniques of Section 4 to get a
forecaster that, without restarting and without previous knowledge of
M and X∗

n, achieves a regret bounded by a quantity of the order of√
M |X∗

n| lnN + M lnN .

2.3. Signed games: first-order regret bounds

As mentioned in the introduction, one can translate a signed game
to a one-sided game as follows. Consider a signed game with payoffs
xi,t ∈ [−M,M ]. Provided that M is known to the forecaster, he may
use the translation x′i,t = xi,t+M to convert the signed game into a gain
game. For the resulting gain game, by using the techniques described
above, one can derive a regret bound of the order of√

M (lnN) (Mn + X∗
n) + M lnN . (2)

Similarly, using the translation x′i,t = xi,t −M , we get a loss game, for
which one can derive the similar regret bound√

M (lnN) (Mn−X∗
n) + M lnN . (3)

The main weakness of the transformation is that the bounds (2) and (3)
are essentially zero-order bounds, though this depends on the precise
value of X∗

n. (Note that when M is unknown, or to get tighter bounds,
one may use the translation x′i,t = xi,t − minj=1,...,N xj,t from signed
games to gain games, or the translation x′i,t = xi,t − maxj=1,...,N xj,t

from signed games to loss games.)
Recently, Allenberg-Neeman and Neeman (2004) proposed a direct

analysis of the signed game avoiding this reduction. They give a simple
algorithm whose regret is of the order of

√
MA∗

n lnN + M lnN where
A∗

n = |xk∗n,1| + · · · + |xk∗n,n| is the sum of the absolute values of the
payoffs of the best expert k∗n for the rounds 1, . . . , n. Since A∗

n = |X∗
n|

in case of a one-sided game, this is indeed a generalization to signed
games of Freund and Schapire’s first-order bound for one-sided games.
Though Allenberg-Neeman and Neeman need prior knowledge of both
M and A∗

n to tune the parameters of the algorithm, a direct extension
of their results along the lines of Section 3.1 gives the first-order bound√

M(lnN) max
t=1,...,n

A∗
t + M lnN

=

√√√√M(lnN) max
t=1,...,n

t∑
s=1

|xk∗t ,s|+ M lnN (4)
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which holds when only M is known.

2.4. Second-order bounds on the regret

A regret bound is second-order whenever its main term is a function
of a sum of squared payoffs (or on a quantity that is homogeneous in
such a sum). Ideally, they are a function of

Q∗
n =

n∑
t=1

x2
k∗n,t .

Expressions involving squared payoffs are at the core of many analy-
ses in the framework of prediction with expert advice, especially in the
presence of limited feedback. (See, for instance, the bandit problem,
studied by Auer et al., 2002, and more generally prediction under par-
tial monitoring and the work of Cesa-Bianchi, Lugosi, and Stoltz, 2005,
Cesa-Bianchi, Lugosi, and Stoltz, 2004, Piccolboni and Schindelhauer,
2001.) However, to the best of our knowledge, the bounds presented
here are the first ones to explicitly include second-order information
extracted from the payoff sequence.

In Section 3 we give a very simple algorithm whose regret is of the
order of

√
Q∗

n lnN + M lnN . Since Q∗
n ≤ MA∗

n, this bound improves
on the first-order bounds. Even though our basic algorithm needs prior
knowledge of both M and Q∗

n to tune its parameters, we are able to
extend it (essentially by using various doubling tricks) and achieve a
bound of the order of

√
(lnN) max

t=1,...,n
Q∗

t + M lnN =

√√√√(lnN) max
t=1,...,n

t∑
s=1

x2
k∗t ,s + M lnN (5)

without using any prior knowledge about Q∗
n. (The extension is not as

straightforward as one would expect, since the quantities Q∗
t are not

necessarily monotone over time.)
Note that this bound is less sensitive to extreme values. For instance,

in case of a loss game (i.e., all payoffs are nonpositive), Q∗
t ≤ ML∗

t ,
where L∗

t is the cumulative loss of the best action up to time t. There-
fore, maxs≤n Q∗

s ≤ ML∗
n and the bound (5) is at least as good as

the family of bounds called “improvements for small losses” (or first-
order bounds) presented in Section 2.2. However, it is easy to exhibit
examples where the new bound is far better by considering sequences of
outcomes where there are some “outliers” among the xi,t. These outliers
may raise the maximum M significantly, whereas they have only little
impact on the maxs≤n Q∗

s.
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We also analyze the weighted majority algorithm in Section 4, and
show how exponential weights with a time varying parameter can be
used to derive a regret bound of the order of

√
Vn lnN + E lnN where

Vn is the cumulative variance of the forecaster’s rewards on the given
sequence and E is the range of the payoffs. (Again, we derive first the
bound in the case where the payoff range is known, and then extend
it to the case where the payoff range is unknown.) The above bound
is somewhat different from standard regret bounds because it depends
on the predictions of the forecaster. In Sections 4.4 and 5 we show how
one can use such a bound to derive regret bounds which only depend
on the sequence of payoffs.

3. Forecasting strategies and their second-order bounds

In this section we introduce a new family of forecasting strategies.
These strategies use probability assignments pt = (p1,t, . . . , pN,t) that
are recursively defined via the update pi,t+1 = (1 + ηxi,t)pi,t/Wt+1,
where η > 0 is a parameter and Wt+1 is a normalization constant.
For small η, 1 + ηx is close (up to second-order quantities) to eηx,
the exponential update used by the weighted majority forecasters of
Littlestone and Warmuth (1994). This new family of forecasters might
thus be viewed as a first-order approximation to weighted majority. Not
surprisingly, similar zero-order and first-order bounds can be derived for
both updates. However, the second-order bounds derived in this paper
(which are the main focus of our research) will look quite different.

Remark 1. Updates of the form 1 + ηx have been considered earlier.
Indeed, equivalent zero-order bounds for any multiplicative update in
the interval [1 + ηx, eηx] were first shown for the forecaster P(β) intro-
duced in Cesa-Bianchi et al. (1997, Section 4). Note, however, that the
analysis of P(β) developed in that paper is not shown to work with
the linear predictions x1,tp1,t + · · ·+xN,tpN,t, which are essential to the
setup considered here.

In Theorem 4, the main result of this section, we show that, without any
preliminary knowledge of the sequence of payoffs, the regret of a variant
of our basic strategy is bounded by a quantity defined in terms of the
sums Qi,n = x2

i,1 + · · ·+ x2
i,n. Since Qi,n ≤ M(|xi,1|+ · · ·+ |xi,n|), such

second-order bounds are generally better than all previously known
bounds (see Section 2).

Our basic forecasting strategy, which we call prod(η), has an input
parameter η > 0 and maintains a set of N weights. At time t = 1
the weights are initialized with wi,1 = 1 for i = 1, . . . , N . At each
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time t = 1, 2, . . ., prod(η) computes the probability assignment pt =
(p1,t, . . . , pN,t), where pi,t = wi,t/Wt and Wt = w1,t + · · ·+ wN,t. After
the payoff vector xt is revealed, the weights are updated using the rule
wi,t+1 = wi,t(1 + ηxi,t). The following simple fact plays a key role in
our analysis.

Lemma 1. For all z ≥ −1/2, ln(1 + z) ≥ z − z2.

Proof. Let f(z) = ln(1 + z)− z + z2. Note that

f ′(z) =
1

1 + z
− 1 + 2z =

z(1 + 2z)
1 + z

so that f ′(z) ≤ 0 for −1/2 ≤ z ≤ 0 and f ′(z) ≥ 0 for z ≥ 0. Hence the
minimum of f is achieved in 0 and equals 0, concluding the proof. 2

We are now ready to state a lower bound on the cumulative reward of
prod(η) in terms of the quantities Qk,n.

Lemma 2. Assume there exists M > 0 such that the payoffs satisfy
xi,t ≥ −M for t = 1, . . . , n and i = 1, . . . , N . For any sequence of
payoffs, for any action k, for any η ≤ 1/(2M), and for any n ≥ 1, the
cumulative reward of prod(η) is lower bounded as

X̂n ≥ Xk,n −
lnN

η
− η Qk,n .

Proof. For any k = 1, . . . , N , note that xk,t ≥ −M and η ≤ 1/(2M)
imply ηxk,t ≥ −1/2. Hence, we can apply Lemma 1 to ηxk,t and get

ln
Wn+1

W1

≥ ln
wk,n+1

W1
= − lnN + ln

n∏
t=1

(1 + ηxk,t) = − lnN +
n∑

t=1

ln(1 + ηxk,t)

≥ − lnN +
n∑

t=1

(
ηxk,t − η2x2

k,t

)
= − lnN + ηXk,n − η2Qk,n . (6)

On the other hand,

ln
Wn+1

W1
=

n∑
t=1

ln
Wt+1

Wt
=

n∑
t=1

ln

(
N∑

i=1

pi,t (1 + ηxi,t)

)

=
n∑

t=1

ln

(
1 + η

N∑
i=1

xi,tpi,t

)
≤ ηX̂n (7)
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where in the last step we used ln(1+zt) ≤ zt for all zt = η
∑N

i=1 xi,tpi,t ≥
−1/2. Combining (6) and (7), and dividing by η > 0, we get the desired
bound. 2

By choosing η appropriately, we can optimize the bound as follows.

Theorem 1. Assume there exists M > 0 such that the payoffs satisfy
xi,t ≥ −M for t = 1, . . . , n and i = 1, . . . , N . For any Q > 0, if prod(η)
is run with

η = min
{

1/(2M),
√

(lnN)/Q

}
(8)

then for any sequence of payoffs, for any action k, and for any n ≥ 1
such that Qk,n ≤ Q,

X̂n ≥ Xk,n −max
{
2
√

Q lnN , 4M lnN
}

.

3.1. Unknown bound on quadratic variation (Q)

To achieve the bound stated in Theorem 1, the parameter η must be
tuned using preliminary knowledge of a lower bound on the payoffs
and an upper bound on the quantities Qk,n. In this and the following
sections we remove these requirements one by one. We start by intro-
ducing a new algorithm that, using a doubling trick over prod, avoids
any preliminary knowledge of an upper bound on the Qk,n.

Let k∗t be the index of the best action up to time t; that is, k∗t ∈
argmaxk Xk,t (ties are broken by choosing the action k with minimal
associated Qk,t). We denote the associated quadratic penalty by

Q∗
t = Q∗

k∗t
=

t∑
s=1

x2
k∗t ,s .

Ideally, our regret bound should depend on Q∗
n and be of the form√

Q∗
n lnN +M lnN . However, note that the sequence Q∗

1, Q
∗
2, . . . is not

necessarily monotone, since if at time t+1 the best action changes, then
Q∗

t and Q∗
t+1 are not related. Therefore, we cannot use a straightforward

doubling trick, as this only applies to monotone sequences. Our solution
is to express the bound in terms of the smallest nondecreasing sequence
that upper bounds the original sequence (Q∗

t )t≥1. This is a general trick
to handle situations where the penalty terms are not monotone.

Let prod-Q(M) be the prediction algorithm that receives a quantity
M > 0 as input parameter and repeatedly runs prod(ηr), where ηr is
defined below. The parameter M is a bound on the payoffs, such that
for all i = 1, . . . , N and t = 1, . . . , n, we have |xi,t| ≤ M . The r-th
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parameter ηr corresponds to the parameter η defined in (8) for M and
Q = 4rM2. Namely, we choose

ηr = min
{
1/(2M),

√
lnN/(2rM)

}
.

We call epoch r, r = 0, 1, . . ., the sequence of time steps when prod-Q
is running prod(ηr). The last step of epoch r ≥ 0 is the time step t = tr
when Q∗

t > 4rM2 happens for the first time. When a new epoch r + 1
begins, prod is restarted with parameter ηr+1.

Theorem 2. Given M > 0, for all n ≥ 1 and all sequences of payoffs
bounded by M , i.e., max1≤i≤N max1≤t≤n |xi,t| ≤ M , the cumulative
reward of algorithm prod-Q(M) satisfies

X̂n ≥ X∗
n − 8

√
(lnN) maxs≤n Q∗

s

− 2 M
(
1 + log4 n + 2(1 + b(log2 lnN)/2c) ln N

)
= X∗

n − O
(√

(lnN) maxs≤n Q∗
s + M lnn + M lnN ln lnN

)
.

Proof. We denote by R the index of the last epoch and let tR = n.
If we have only one epoch, then the theorem follows from Theorem 1
applied with a bound of Q = M2 on the squared payoffs of the best
expert. Therefore, for the rest of the proof we assume R ≥ 1. Let

X
(r)
k =

tr−1∑
s=tr−1+1

xk,s , Q
(r)
k =

tr−1∑
s=tr−1+1

x2
k,s , X̂(r) =

tr−1∑
s=tr−1+1

x̂s

where the sums are over all the time steps s in epoch r except the last
one, tr. (Here t−1 is conventionally set to 0.) We also denote kr = k∗tr−1

the index of the best overall expert up to time tr − 1 (one time step
before the end of epoch r). We have that Q

(r)
kr

≤ Qkr,tr−1 = Q∗
tr−1. Now,

by definition of the algorithm, Q∗
tr−1 ≤ 4rM2. Theorem 1 (applied to

time steps tr−1 + 1, . . . , tr − 1) shows that

X̂(r) ≥ X
(r)
kr

−max
{
2
√

4rM2 lnN , 4M lnN
}

.

The maximum in the right-hand side equals 2r+1M
√

lnN when r >
r0 = 1 + b(log2 lnN)/2c. Summing over r = 0, . . . , R we get

X̂n =
R∑

r=0

(
X̂(r) + x̂kr,tr

)

≥
R∑

r=0

(
x̂kr,tr + X

(r)
kr

)
− 4(1 + r0)M lnN −

R∑
r=r0+1

2
√

4rM2 lnN
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≥
R∑

r=0

(
x̂kr,tr + X

(r)
kr

)
− 4(1 + r0)M lnN − 2R+2M

√
lnN

≥
R∑

r=0

X
(r)
kr

− (R + 1)M − 4(1 + r0)M lnN − 2R+2M
√

lnN . (9)

Now, since k0 is the index of the expert with largest payoff up to time
t0−1, we have that Xk1,t1−1 = X

(0)
k1

+xk1,t0 +X
(1)
k1

≤ X
(0)
k0

+X
(1)
k1

+M .
By a simple induction, we in fact get

XkR,tR−1 ≤
R−1∑
r=0

(
X

(r)
kr

+ M
)

+ X
(R)
kR

. (10)

As, in addition, XkR,tR−1 = Xk∗n−1,n−1 and Xk∗n,n may only differ by at
most M , combining (9) and (10) we have indeed proven that

X̂n ≥ Xk∗n,n −
(
2(R + 1)M + 4M(1 + r0) ln N + 2R+2M

√
lnN

)
.

The proof is concluded by noting first, that R ≤ log4 n, and second that,
as R ≥ 1, maxs≤n Q∗

s ≥ 4R−1M2 by definition of the algorithm. 2

3.2. Unknown bound on payoffs (M)

In this section we show how one can overcome the case when there is
no a priori bound on the payoffs. In the next section we combine the
techniques of this section and Section 3.1 to deal with the case when
both parameters are unknown

Let prod-M(Q) be the prediction algorithm that receives a number
Q > 0 as input parameter and repeatedly runs prod(ηr), where the ηr,
r = 0, 1, . . ., are defined below. We call epoch r the sequence of time
steps when prod-M is running prod(ηr). At the beginning, r = 0 and
prod-M(Q) runs prod(η0), where

M0 =
√

Q/(4 ln N) and η0 = 1/(2M0) =
√

(lnN)/Q .

For all t ≥ 1, we denote

Mt = max
s=1,...,t

max
i=1,...,N

2dlog2 |xi,s|e .

The last step of epoch r ≥ 0 is the time step t = tr when Mt > Mtr−1

happens for the first time (conventionally, we set Mt−1 = M0). When
a new epoch r + 1 begins, prod is restarted with parameter ηr+1 =
1/(2Mtr).

Note that η0 = 1/(2M0) in round 0 and ηr = 1/(2Mtr−1) in any
round r ≥ 1, where Mt0 > M0 and Mtr ≥ 2Mtr−1 for each r ≥ 1.

CesaBianchi-Mansour-Stoltz.tex; 25/09/2006; 15:34; p.12
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Theorem 3. For any sequence of payoffs, for any action k, and for
any n ≥ 1 such that Qk,n ≤ Q, the cumulative reward of algorithm
prod-M(Q) is lower bounded as

X̂n ≥ Xk,n − 2
√

Q lnN − 12 M(1 + lnN)

where M = max1≤i≤N max1≤t≤n |xi,t|.

Proof. As in the proof of Theorem 2, we denote by R the index of the
last epoch and let tR = n. We assume R ≥ 1 (otherwise, the theorem
follows directly from Theorem 1 applied with a lower bound of −M0 on
the payoffs). Note that at time n we have either Mn ≤ MtR−1 , implying
Mn = MtR = MtR−1 , or Mn > MtR−1 , implying Mn = MtR = 2MtR−1 .
In both cases, MtR ≥ MtR−1 . In addition, since R ≥ 1, we also have
MtR ≤ 2M .

Similarly to the proof of Theorem 2, for all epochs r and actions k
introduce

X
(r)
k =

tr−1∑
s=tr−1+1

xk,s , Q
(r)
k =

tr−1∑
s=tr−1+1

x2
k,s , X̂(r) =

tr−1∑
s=tr−1+1

x̂s

where, as before, we set t−1 = 0. Applying Lemma 2 to each epoch
r = 0, . . . , R we get that X̂n −Xk,n is equal to

X̂n −Xk,n =
R∑

r=0

(
X̂(r) −X

(r)
k

)
+

R∑
r=0

(x̂tr − xk,tr)

≥ −
R∑

r=0

lnN

ηr
−

R∑
r=0

ηrQ
(r)
k +

R∑
r=0

(x̂tr − xk,tr) .

We bound each sum separately. For the first sum, since Mts ≥ 2s−rMtr

for each 0 ≤ r ≤ s ≤ R− 1, we have for s ≤ R− 1,
s∑

r=0

Mtr ≤
s∑

r=0

2r−sMts ≤ 2Mts . (11)

Thus,

R∑
r=0

lnN

ηr
=

R∑
r=0

2Mtr−1 lnN ≤ 2
(
Mt−1 + 2MtR−1

)
lnN ≤ 6MtR lnN

where we used (11) and Mt−1 = M0 ≤ MtR−1 ≤ MtR . For the second
sum, using the fact that ηr decreases with r, we have

R∑
r=0

ηrQ
(r)
k ≤ η0

R∑
r=0

Q
(r)
k ≤ η0Qk,n ≤

√
lnN

Q
Q =

√
Q lnN .
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Finally, using (11) again,

R∑
r=0

|x̂tr − xk,tr | ≤
R∑

r=0

2 Mtr ≤ 2
(
2 MtR−1 + MtR

)
≤ 6 MtR .

The resulting lower bound 6MtR(1 + lnN) +
√

Q lnN implies the one
stated in the theorem by recalling that, when R ≥ 1, MtR ≤ 2 M . 2

3.3. Unknown bounds on both payoffs (M) and quadratic
variation (Q)

We now show a regret bound for the case when M and the Qk,n are
both unknown. We consider again the notation of the beginning of
Section 3.1. The quantities of interest for the doubling trick of Sec-
tion 3.1 were the homogeneous quantities (1/M2) maxs≤t Q∗

s. Here we
assume no knowledge of M . We propose a doubling trick on the only
homogeneous quantities we have access to, that is, maxs≤t (Q∗

s/M
2
s ),

where Mt is defined in Section 3.2 and the maximum is needed for the
same reasons of monotonicity as in Section 3.1.

We define the new (parameterless) prediction algorithm prod-MQ.
Intuitively, the algorithm can be thought as running, at the low level,
the algorithm prod-Q(Mt). When the value of Mt changes, we restart
prod-Q(Mt), with the new value but keep track of Q∗

t .
Formally, we define the prediction algorithm prod-MQ in the follow-

ing way. Epochs are indexed by pairs (r, s). At the beginning of each
epoch (r, s), the algorithm takes a fresh start and runs prod(η(r,s)),
where η(r,s), for r = 0, 1, . . . and s = 0, 1, . . ., is defined by

η(r,s) = min
{
1
/(

2M (r)
)
,
√

lnN
/(

2Sr−1+sM (r)
)}

and M (r), Sr are defined below.
At the beginning, r = 0, s = 0, and since prod(η) always sets p1

to be the uniform distribution irrespective to the choice of η, without
loss of generality we assume that prod is started at epoch (0, 0) with
M (0) = M1 and S−1 = 0.

The last step of epoch (r, s) is the time step t = t(r,s) when either:

(C1) Q∗
t > 4Sr−1+sM2

t happens for the first time

or

(C2) Mt > M (r) happens for the first time.
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If epoch (r, s) ends because of (C1), the next epoch is (r, s + 1), and
the value of M (r) is unchanged. If epoch (r, s) ends because of (C2),
the next epoch is (r + 1, 0), Sr = Sr−1 + s, and M (r+1) = Mt.

Note that within epochs indexed by the same r, the payoffs in all
steps but the last one are bounded by M (r). Note also that the quan-
tities Sr count the number of times an epoch ended because of (C1).
Finally, note that there are Sr−Sr−1 +1 epochs (r, s) for a given r ≥ 0,
indexed by s = 0, . . . , Sr − Sr−1.

Theorem 4. For any sequence of payoffs and for any n ≥ 1, the
cumulative reward of algorithm prod-MQ satisfies

X̂n ≥ X∗
n − 32M

√
q lnN

− 22M (1 + lnN)− 2M log2 n− 4M(lnN)d(log2 lnN)/2e
= X∗

n − O
(
M
√

q lnN + M lnn + M(lnN)(ln lnN)
)

where M = max1≤i≤N max1≤t≤n |xi,t| and q = max
{

1, max
s≤n

Q∗
s

M2
s

}
.

The proof is in the Appendix.

4. Second-order bounds for weighted majority

In this section we derive new regret bounds for the weighted major-
ity forecaster of Littlestone and Warmuth (1994) using a time-varying
learning rate. This allows us to avoid the doubling tricks of Section 3
and keep the assumption that no knowledge on the payoff sequence is
available to the forecaster beforehand.

Similarly to the results of Section 3, the main term in the new
bounds depends on second-order quantities associated to the sequence
of payoffs. However, the precise definition of these quantities makes the
bounds of this section generally not comparable to the bounds obtained
in Section 3. (One would prefer, for instance, the bounds of this section
in case of randomized prediction, see Section 4.3, whereas the bounds
of the previous section are more explicit in terms of the payoff sequence
as they do not involve the way the algorithm predicts.)

The weighted majority forecaster using the sequence η2, η3, . . . > 0
of learning rates assigns at time t a probability distribution pt over the
N experts defined by p1 = (1/N, . . . , 1/N) and

pi,t =
eηtXi,t−1∑N

j=1 eηtXj,t−1
for i = 1, . . . , N and t ≥ 2. (12)
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Note that the quantities ηt > 0 may depend on the past payoffs xi,s,
i = 1, . . . , N and s = 1, . . . , t− 1.

The analysis of Auer, Cesa-Bianchi, and Gentile (2002), for a related
variant of weighted majority, is at the core of the proof of the following
lemma (proof in Appendix).

Lemma 3. Consider any nonincreasing sequence η2, η3, . . . of positive
learning rates and any sequence x1,x2, . . . ∈ RN of payoff vectors.
Define the nonnegative function Φ by

Φ(pt, ηt, xt) = −
N∑

i=1

pi,txi,t +
1
ηt

ln
N∑

i=1

pi,te
ηtxi,t

=
1
ηt

ln

(
N∑

i=1

pi,te
ηt(xi,t−x̂t)

)
.

Then the weighted majority forecaster (12) run with the sequence η2,
η3, . . . satisfies, for any n ≥ 1 and for any η1 ≥ η2,

X̂n −X∗
n ≥ −

(
2

ηn+1
− 1

η1

)
lnN −

n∑
t=1

Φ(pt, ηt, xt) .

Let Zt be the random variable with range {x1,t, . . . , xN,t} and distribu-
tion pt. Note that EZt is the expected payoff x̂t of the forecaster using
distribution pt at time t. Introduce

VarZt = EZ2
t − E2Zt =

N∑
i=1

pi,tx
2
i,t −

(
N∑

i=1

pi,txi,t

)2

.

Hence VarZt is the variance of the payoffs at time t under the distri-
bution pt and the cumulative variance Vn = Var Z1 + · · · + Var Zn is
the main second-order quantity used in this section. The next result
bounds Φ(pt, ηt, xt) in terms of VarZt.

Lemma 4. For all payoff vectors xt = (x1,t, . . . , xN,t), all probability
distributions pt = (p1,t, . . . , pN,t), and all learning rates ηt ≥ 0, we have

Φ(pt, ηt, xt) ≤ E

where E is such that |xi,t − xj,t| ≤ E for all i, j = 1, . . . , N . If, in
addition, 0 ≤ ηt|xi,t − xj,t| ≤ 1 for all i, j = 1, . . . , N , then

Φ(pt, ηt, xt) ≤ (e− 2)ηt VarZt .
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Proof. The first inequality is straightforward. To prove the second
one we use ea ≤ 1+a+(e−2) a2 for |a| ≤ 1. Consequently, noting that
ηt|xi,t − x̂t| ≤ 1 for all i by assumption, we have that

Φ(pt, ηt, xt)

=
1
ηt

ln

(
N∑

i=1

pi,te
ηt(xi,t−x̂t)

)

≤ 1
ηt

ln

(
N∑

i=1

pi,t

(
1 + ηt(xi,t − x̂t) + (e− 2)η2

t (xi,t − x̂t)2
))

.

Using ln(1 + a) ≤ a for all a > −1 and some simple algebra concludes
the proof of the second inequality. 2

In Auer et al. (2002, proof of Theorem 2.1) a very similar result is
proven, except that there the variance is further bounded (up to a
multiplicative factor) by the expectation x̂t of Zt.

4.1. Known bound on the payoff ranges (E)

We now introduce a time-varying learning rate based on Vn. For sim-
plicity, we assume in a first time that a bound E on the payoff ranges
Et, defined in (1), is known beforehand and turn back to the general
case in Theorem 6. The sequence η2, η3, . . . is defined as

ηt = min

{
1
E

, C

√
lnN

Vt−1

}
(13)

for t ≥ 2, with C =
√

2
(√

2− 1
)

/(e− 2) ≈ 1.07.

Note that ηt depends on the forecaster’s past predictions. This is in
the same spirit as the self-confident learning rates considered in Auer,
Cesa-Bianchi, and Gentile (2002).

Theorem 5. Provided a bound E on the payoff ranges is known be-
forehand, i.e., maxt=1,...,n maxi,j=1,...,N |xi,t − xj,t| ≤ E, the weighted
majority forecaster using the time-varying learning rate (13) achieves,
for all sequences of payoffs and for all n ≥ 1,

X̂n −X∗
n ≥ −4

√
Vn lnN − 2E lnN − E/2 .

Proof. We start by applying Lemma 3 using the learning rate (13),
and setting η1 = η2 for the analysis,

X̂n −X∗
n
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≥ −
(

2
ηn+1

− 1
η1

)
lnN −

n∑
t=1

Φ(pt, ηt, xt)

≥ −2 max
{
E lnN, (1/C)

√
Vn lnN

}
− (e− 2)

n∑
t=1

ηt VarZt

where C is defined in (13) and the second inequality follows from the
second bound of Lemma 4. We now denote by T the first time step t
when Vt > E2/4. Using that ηt ≤ 1/E for all t and VT ≤ E2/2, we get

n∑
t=1

ηt VarZt ≤
E

2
+

n∑
t=T+1

ηt VarZt . (14)

We bound the last sum using ηt ≤ C
√

(lnN)/Vt−1 for t ≥ T + 1 (note
that, for t ≥ T + 1, Vt−1 ≥ VT > E2/4 > 0). This yields

n∑
t=T+1

ηt VarZt ≤ C
√

lnN
n∑

t=T+1

Vt − Vt−1√
Vt−1

.

Since Vt ≤ Vt−1 + E2/4 and Vt−1 ≥ E2/4 for t ≥ T + 1, we have

Vt − Vt−1√
Vt−1

=
√

Vt +
√

Vt−1√
Vt−1

(√
Vt −

√
Vt−1

)
≤ (

√
2 + 1)

(√
Vt −

√
Vt−1

)
=
√

Vt −
√

Vt−1√
2− 1

.

Therefore, by a telescoping argument,

n∑
t=T+1

ηt VarZt ≤ C
√

lnN√
2− 1

(√
Vn −

√
VT

)
(15)

≤ C√
2− 1

√
Vn lnN .

Putting things together, we have already proved that

X̂n −X∗
n ≥ −2 max

{
E lnN, (1/C)

√
Vn lnN

}
−e− 2

2
E − C(e− 2)√

2− 1

√
Vn lnN .

In the case when
√

Vn ≥ CE
√

lnN , the (negative) regret X̂n − X∗
n is

bounded from below by

−
(

2
C

+
C(e− 2)√

2− 1

)√
Vn lnN − e− 2

2
E ≥ −4

√
Vn lnN − E/2 ,
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where we substituted the value of C and obtained a constant for the
leading term equal to 2

√
2(e− 2)/

√√
2− 1 ≤ 3.75. When

√
Vn ≤

CE
√

lnN , the lower bound is more than

−2E lnN − C(e− 2)√
2− 1

√
Vn lnN − e− 2

2
E

≥ −2E lnN − 2
√

Vn lnN − E/2 .

This concludes the proof. 2

4.2. Unknown bound on the payoff ranges (E)

We present the adaptation needed when no bound on the real-valued
payoff range is known beforehand. For any sequence of payoff vectors
x1, x2, . . . and for all t = 1, 2, . . ., we define, similarly to Section 3.2,
a quantity that keeps track of the payoff ranges seen so far. More
precisely, Et = 2k, where k ∈ Z is the smallest integer such that
maxs=1,...,t maxi,j=1,...,N |xi,s−xj,s| ≤ 2k. Now let the sequence η2, η3, . . .
be defined as

ηt = min

{
1

Et−1
, C

√
lnN

Vt−1

}
(16)

for t ≥ 2, with C =
√

2
(√

2− 1
)

/(e− 2).

We are now ready to state and prove the main result of this section,
which bounds the regret in terms of the variance of the predictions. We
show in the next section how this bound leads to more intrinsic bounds
on the regret.

Theorem 6. Consider the weighted majority forecaster using the time
varying learning rate (16). Then, for all sequences of payoffs and for all
n ≥ 1,

X̂n −X∗
n ≥ −4

√
Vn lnN − 4E lnN − 6E

where E = maxt=1,...,n maxi,j=1,...,N |xi,t − xj,t|.

Proof. The proof is similar to the one of Theorem 5, we only have to
deal with the estimation of the payoff ranges. We apply again Lemma 3,

X̂n −X∗
n ≥ −

(
2

ηn+1
− 1

η1

)
lnN −

n∑
t=1

Φ(pt, ηt, xt)

≥ −2 max
{
En lnN, (1/C)

√
Vn lnN

}
−

n∑
t=1

Φ(pt, ηt, xt)
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= −2 max
{
En lnN, (1/C)

√
Vn lnN

}
−
∑
t∈T

Φ(pt, ηt, xt)−
∑
t6∈T

Φ(pt, ηt, xt)

where C is defined in (16), and T is the set of time steps t ≥ 2 when
Et = Et−1 (note that 1 6∈ T by definition). Thus T is a finite union of
intervals of integers, T = J1, nK \ {t1, . . . , tR}, where we denote t1 = 1
and let t2, . . . , tR be the time rounds t ≥ 2 such that Et 6= Et−1.

Using the second bound of Lemma 4 on t ∈ T (since, for t ∈ T ,
ηtEt ≤ Et/Et−1 = 1) and the first bound of Lemma 4 on t 6∈ T , which
in this case reads Φ(pt, ηt, xt) ≤ Et, we get

X̂n −X∗
n ≥ −2 max

{
En lnN, (1/C)

√
Vn lnN

}
−(e− 2)

∑
t∈T

ηt VarZt −
∑
t6∈T

Et . (17)

We consider the r-th regime, r = 1, . . . , R, that is, the time steps s
between tr+1 and tr+1−1 (with tR+1 = n by convention whenever tR <
n). For all these time steps s, Es = Etr . We use the same arguments
that led to (14) and (15): denote by Tr the first time step s ≥ tr + 1
when Vs > E2

tr/4. Then,

tr+1−1∑
s=tr+1

ηt VarZt ≤
Etr

2
+

C
√

lnN√
2− 1

(√
Vtr+1−1 −

√
VTr

)
.

Summing over r = 1, . . . , R and noting that a telescoping argument is
given by Vtr ≤ VTr ,

∑
t∈T

ηt VarZt ≤
C
√

lnN√
2− 1

√
Vn +

1
2

R∑
r=1

Etr .

We deal with the last sum (also present in (17)) by noting that

∑
t6∈T

Et =
R∑

r=1

Etr ≤
dlog2 Ee∑
r=−∞

2r ≤ 21+dlog2 Ee ≤ 4E .

Putting things together,

X̂n −X∗
n ≥ −2 max

{
En lnN, (1/C)

√
Vn lnN

}
−(e− 2)C

√
lnN√

2− 1

√
Vn − 2eE .

The proof is concluded, as the previous one, by noting that En ≤ 2E. 2
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4.3. Randomized prediction and actual regret

In this paper, the focus is on improved bounds for the expected re-
gret. After choosing a probability distribution pt on the actions, the
forecaster gets x̂t = x1,tp1,t + · · · + xN,tpN,t as a reward. In case ran-
domized prediction is considered, after choosing pt, the forecaster draws
an action It at random according to pt and gets the reward xIt,t, whose
conditional expectation is x̂t. In this version of the game of prediction,
the aim is now to minimize the (actual) regret, defined as the difference
between xI1,1 + · · ·+ xIn,n and X∗

n.
Bernstein’s inequality for martingales (see, e.g., Freedman, 1975)

shows however that the actual regret of any forecaster is bounded by
the expected regret with probability 1 − δ up to deviations of the
order of

√
Vn ln(n/δ) + M ln(n/δ). These deviations are of the same

order of magnitude as the bound of Theorem 6. Unless we are able
to apply a sharper concentration result than Bernstein’s inequality, no
further refinement of the above bounds is worthwhile. In particular, in
view of the deviations from the expectations, as far as actual regret is
concerned, we may prefer the results of Section 4 to those of Section 3.
The next section, as well as Section 5, explain how bounds in terms of√

Vn lead to many interesting bounds on the regret that do not depend
on quantities related to the forecaster’s rewards.

4.4. Bounds on the forecaster’s cumulative variance

In this section we show a first way to deal with the dependency of
the bound on Vn, the forecaster’s cumulative variance. Section 5 will
illustrate this further.

Recall that Zt is the random variable which takes the value xi,t with
probability pi,t, for i = 1, . . . , N . The main term of the bound stated
in Theorem 6 contains Vn = VarZ1 + · · · + VarZn. Note that Vn is
therefore smaller than all quantities of the form

n∑
t=1

N∑
i=1

pi,t (xi,t − µt)
2

where (µt)t≥1 is any sequence of real numbers which may be chosen in
hindsight, as it is not required for the definition of the forecaster. (The
minimal value of the expression is obtained for µt = x̂t.) This gives us
a whole family of upper bounds, and we may choose for the analysis
the most convenient sequence of µt.

To provide a concrete example, recall the definition (1) of payoff
effective range Et and consider the choice µt = minj=1,...,N xj,t + Et/2.
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Corollary 1. The regret of the weighted majority forecaster with vari-
able learning rate (16) satisfies

X̂n −X∗
n ≥ −2

√√√√(lnN)
n∑

t=1

E2
t − 4E lnN − 6E

where E is a bound on the payoff ranges, E = maxt=1,...,n Et.

The bound proposed by Corollary 1 shows that for an effective range
of E, say if the payoffs all fall in [0, E], the regret is lower bounded by a
quantity equal to −2E

√
n lnN (a closer look at the proof of Theorem 6

shows that this constant factor is less than 1.9, and could be made
as close to 2

√
(e− 2) =

√
2
√

2 (e− 2) as desired). The best leading
constant for such bounds is, to our knowledge,

√
2 (see Cesa-Bianchi

and Lugosi, 2006). This shows that the improved dependence in the
bound does not come at a significant increase in the magnitude of the
leading coefficient. When the actual ranges are small, these bounds give
a considerable advantage. Such a situation arises, for instance, in the
setting of on-line portfolio selection, when we use linear upper bound
on the regrets (see, e.g., the eg strategy by Helmbold et al., 1998).
Moreover, we note that Corollary 1 improves on a result of Allenberg-
Neeman and Neeman (2004), who show a regret bound, in terms of the
cumulative effective range, whose main term is 5.7

√
2M(lnN)

∑n
t=1 Et,

for a given bound M over the payoffs.
Finally, we note that using translations of payoffs for prod-type

algorithms, as suggested by Section 5.1, may be worthwhile as well,
see Corollary 4 below. However, unlike the approach presented here
for the weighted majority based forecaster, there the payoffs have to
be translated explicitly and on-line by the forecaster, and thus, each
translation rule corresponds to a different forecaster.

4.5. Extension to problems with incomplete information

An interesting issue is how the second-order bounds of this section ex-
tend to incomplete information problems. In the literature of this area,
exponentially weighted averages of estimated cumulative payoffs play a
key role (see, for instance, Auer et al., 2002 for the multiarmed bandit
problem, Cesa-Bianchi, Lugosi, and Stoltz, 2005 for label-efficient pre-
diction, and Piccolboni and Schindelhauer, 2001, Cesa-Bianchi, Lugosi,
and Stoltz, 2004 for prediction under partial monitoring).

A careful analysis of the proofs therein shows that the order of
magnitude of the bound on the regret is given by the root of the sum
of the conditional variances of the estimates of the payoffs used for
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prediction,√√√√√(lnN)
n∑

t=1

Et

 N∑
i=1

pi,t (x̃i,t)
2 −

(
N∑

i=1

pi,tx̃i,t

)2
 .

Here we denote by x̃i,t the (unbiased) estimate available for xi,t (whose
form varies depending on the precise setup and the considered strat-
egy), by pt = (p1,t, . . . , pN,t) the probability distributions over the
actions, and by Et the conditional expectation with respect to the
information available up to round t (for instance, in multiarmed bandit
problems, this information is the past payoffs). Note that the condi-
tioning in Et determines the values of the payoffs xt = (x1,t, . . . , xN,t)
and of pt.

In setups with full monitoring, that is, for the setups considered in
this paper, no estimation is needed, x̃i,t = xi,t, and the bound is exactly
that of Theorem 6.

In multiarmed bandit problems (with payoffs in, say, [−M,M ]), the
estimators are given by x̃i,t = (xi,t/pi,t)I[It=i] where It is the index of
the chosen component of the payoff vector. Now,

Et

[
pi,t x̃2

i,t

]
= x2

i,t ≤ M2 . (18)

Summing over i = 1, . . . , N and t = 1, . . . , n the bound M
√

nN lnN of
Auer et al. (2002) is recovered.

In label-efficient prediction problems, x̃i,t = (xi,t/ε)Zt, where the Zt

are i.i.d. random variables distributed according to a Bernoulli distri-
bution with parameter ε ∼ m/n. Then,

Et

[
pi,t x̃2

i,t

]
= pi,t

x2
i,t

ε
≤ pi,t

M2

ε
.

Summing over i = 1, . . . , N and t = 1, . . . , n we recover the bound
M
√

(n/ε) ln N ∼ Mn
√

(lnN)/m of Cesa-Bianchi, Lugosi, and Stoltz
(2005).

Finally, in games with partial monitoring, the quantity (18) is less
than M2t−1/3N2/3(lnN)−1/3, at least for the estimators proposed by
Cesa-Bianchi, Lugosi, and Stoltz (2004). Summing over i = 1, . . . , N
and t = 1, . . . , n we recover the Mn2/3N2/3(lnN)1/3 bound of the
mentioned article.

In conclusion, the smaller
√

n (order of magnitude for the regret in
bandit problems), as opposed to the n2/3 (order in problems of predic-
tion under partial monitoring), is due to better statistical performances
(i.e., smaller conditional variance) of the available estimators.
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5. Using translations of the payoffs

We now consider the bounds derived from those of Sections 3 and 4 in
the case when translations are performed on the payoffs (Section 5.1).
We show that they lead to several improvements or extensions of earlier
results (Section 5.2) and also relieve the forecaster from the need of any
preliminary manipulation on the payoffs (Section 5.3).

5.1. On-line translations of the payoffs

Note that any on-line forecasting strategy may be used by a meta-
forecaster which, before applying the given strategy, may first translate
the payoffs according to a prescribed rule that may depend on the past.
More formally, the meta-forecaster runs the strategy with the payoffs
rk,t = xk,t − µt, where µt is any quantity possibly based on the past
payoffs xi,s, for i = 1, . . . , N and s = 1, . . . , t.

The forecasting strategies of Section 4 (and the obtained bounds)
are invariant by such translations. This is however not the case for
the prod-type algorithms of Section 3. An interesting application is
obtained in Section 5.2 by considering µt = x̂t where we recall that
x̂t = x1,tp1,t + · · ·+xN,tpN,t is the forecaster’s reward at time t. As the
sums µ1 + · · ·+µn cancel out in the difference X̂n−Xk,n, we obtain the
following corollary of Theorem 2. Note that the remainder term here is
now expressed in terms of the effective ranges (1) of the payoffs.

Corollary 2. Given E > 0, for all n ≥ 1 and all sequences of pay-
offs with effective ranges Et bounded by E, the cumulative reward of
algorithm prod-Q(E) run using translated payoffs xk,t − x̂t satisfies

X̂n ≥ X∗
n − 8

√
(lnN) max

s≤n
R∗

s

− 2 E
(
1 + log4 n + 2(1 + b(log2 lnN)/2c) ln N

)
.

where the R∗
s are defined as follows. For 1 ≤ t ≤ n and k = 1, . . . , N ,

Rk,t = (xk,1 − x̂1)2 + · · ·+ (xk,t − x̂t)2 and R∗
t = Rk∗t ,t, where k∗t is the

index of the action achieving the best cumulative payoff at round t (ties
are broken by choosing the action k with smallest associated Rk,t).

Remark 2. In one-sided games, for instance in gain games, the fore-
caster has always an incentive to translate the payoffs by the minimal
payoff µt obtained at each round t,

µt = min
j=1,...,N

xk,t .
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This is since for all j and t, (xj,t−µt)2 ≤ x2
j,t in a gain game. The issue

is not so clear however for signed games, and it may be a delicate issue
to determine beforehand if the payoffs should be translated, and if so,
which translation rule should be used. See also Section 4.4, as well as
Section 5.2.

5.2. Improvements for small or large payoffs

As recalled in Section 2.2, when all payoffs have the same sign Fre-
und and Schapire (1997) first showed that Littlestone and Warmuth’s
weighted majority algorithm (1994) can be used to construct a fore-
casting strategy achieving a regret of order

√
M |X∗

n| lnN + M lnN ,
where N is the number of actions, M is a known upper bound on
the magnitude of payoffs (|xi,t| ≤ M for all t and i), and |X∗

n| is the
absolute value of the cumulative payoff of the best action (i.e., the
largest cumulative payoff in a gain game or the smallest cumulative
loss in a loss game), see also Auer, Cesa-Bianchi, and Gentile (2002).

This bound is good when |X∗
n| is small in the one-sided game; that

is, when the best action has a small gain (in a gain game) or a small
loss (in a loss game). However, one often expects the best expert to
be effective (for instance, because we have many experts and at least
one of them is accurate). An effective expert in a loss game suffers a
small cumulative loss, but in a gain game, such an expert should get a
large cumulative payoff X∗

n. To obtain a bound that is good when |X∗
n|

is large one could apply the translation x′i,t = xi,t − M (from gains to
losses) or the translation x′i,t = xi,t +M (from losses to gains). In both
cases one would obtain a bound of the form

√
M(Mn− |X∗

n|) ln N ,
which is now suited for effective experts in gain games and poor experts
in loss games, but not for effective experts in loss games and poor
experts in gain games. Since the original bound is not stable under
the operation of conversion from one type of one-sided game into the
other, the forecaster has to guess whether to play the original game
or its translated version, depending on his beliefs on the quality of the
experts and on the nature of the game (losses or gains).

In Corollary 4 we use the sharper bound of Corollary 2 to prove a
(first-order) bound of the form√

M min{|X∗
n|, Mn− |X∗

n|} lnN .

This is indeed an improvement for small losses or large gains, though it
requires knowledge of M . However, in Remark 3 we will indicate how
to extend this result to the case when M is not known beforehand.
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Note that the (second-order) bound of Corollary 3 also yields the same
result without any preliminary knowledge of M .

We thus recover an earlier result by Allenberg-Neeman and Neeman
(2004). They proved, in a gain game, for a related algorithm, and
with the previous knowledge of a bound M on the payoffs, a bound
whose main term is 11.4

√
M min

{√
X∗

n,
√

Mn−X∗
n

}
. That algorithm

was specifically designed to ensure a regret bound of this form, and
is different from the algorithm whose performance we discussed before
the statement of Corollary 1, whereas we obtain the improvements for
small losses or large gains as corollaries of much more general bounds
that have other consequences.

5.2.1. Analysis for exponentially weighted forecasters
The main drawback of Vn, used in Theorem 6, is that it is defined
directly in terms of the forecaster’s distributions pt. We now show how
this dependence could be removed.

Corollary 3. Consider the weighted majority forecaster run with the
time-varying learning rate (16). Then, for all sequences of payoffs in a
one-sided game (i.e., payoffs are all nonpositive or all nonnegative),

X̂n ≥ X∗
n − 4

√
|X∗

n|
(

M − |X∗
n|

n

)
lnN − 39 M max {1, lnN}

where M = maxt=1,...,n maxi=1,...,N |xi,t|.

Proof. We give the proof for a gain game. Since the payoffs are in
[0,M ], we can write

Vn ≤
n∑

t=1

M
N∑

i=1

pi,txi,t −
(

N∑
i=1

pi,txi,t

)2
 =

n∑
t=1

(M − x̂t)x̂t

≤ n

MX̂n

n
−
(

X̂n

n

)2
 = X̂n

(
M − X̂n

n

)

where we used the concavity of x 7→ Mx− x2. Assume that X̂n ≤ X∗
n

(otherwise the result is trivial). Then, Theorem 6 ensures that

X̂n −X∗
n ≥ −4

√√√√X∗
n

(
M − X̂n

n

)
lnN − κ

where κ = 4M lnN + 6M . We solve for X̂n obtaining

X̂n −X∗
n ≥ −4

√
X∗

n

(
M − X∗

n

n
+

κ

n

)
lnN − κ− 16

X∗
n

n
lnN .
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Using the crude upper bound X∗
n/n ≤ M and performing some simple

algebra, we get the desired result. 2

Similarly to the remark about constant factors in Section 4.4 the fac-
tor 4 in Corollary 3 can be made as close as desired to 4

√
e− 2 =

2
√

2
√

2 (e− 2), which is not much larger than the best known lead-
ing constant for improvements for small losses, 2

√
2, see Auer, Cesa-

Bianchi, and Gentile (2002). But here, we have in addition an improve-
ment for large losses, and deal with unknown ranges M . (Note, similarly
to the discussion in Section 4.4, the presence of the same small factor√

2 (e− 2) ≈ 1.2.)

5.2.2. Analysis for prod-type forecasters
Quite surprisingly, a bound of the same form as the one shown in
Corollary 3 can be derived from Corollary 2.

Corollary 4. Given M > 0, for all n ≥ 1 and all sequences of payoffs
bounded by M , i.e., max1≤i≤N max1≤t≤n |xi,t| ≤ M , the cumulative
reward of algorithm prod-Q(2M), run using translated payoffs xk,t− x̂t

in a one-sided game, is larger than

X̂n ≥ X∗
n − 8

√
2M min {X∗

n, Mn−X∗
n} lnN

− 128 M lnN − κ− 8
√

2M(lnN)κ

where

κ = 4M
(
1 + log4 n + 2(1 + b(log2 lnN)/2c) ln N

)
= Θ

(
M(lnn) + M(lnN)(ln lnN)

)
.

Proof. As in the proof of Corollary 3, it suffices to give the proof for
a gain game. In fact, we apply below the bound of Corollary 2, which is
invariant under the change `i,t = M −xi,t that converts bounded losses
into bounded nonnegative payoffs.

The main term in the bound of Corollary 2, with the notations
therein, involves

max
s≤n

R∗
s ≤ min

{
M
(
X∗

n + X̂n

)
, M

(
2 Mn−X∗

n − X̂n

)}
. (19)

Indeed, using that (a − b)2 ≤ a2 + b2 for a, b ≥ 0, we get on the one
hand, for all 1 ≤ s ≤ n,

R∗
s ≤

s∑
t=1

x2
k∗s ,t + x̂2

s ≤ M
(
Xk∗s ,s + X̂s

)
≤ M

(
X∗

n + X̂n

)
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whereas on the other hand, the same techniques yield

R∗
s =

s∑
t=1

((
M − xk∗s ,t

)
−
(
M − x̂2

s

))2

≤ M
((

Ms−X∗
s

)
+
(
Ms− X̂s

))
.

Now, we note that for all s, X∗
s+1 ≤ X∗

s + M , and similarly, X̂s+1 ≤
X̂s + M . Thus we also have maxs≤n R∗

s ≤ M (2Mn−X∗
n − X̂n).

Corollary 2, combined with (19), yields

X̂n ≥ X̂∗
n − 8

√
M(lnN) min

{(
X∗

n + X̂n

)
,
(
2 Mn−X∗

n − X̂n

)}
− κ

where κ = 4M
(
1 + log4 n + 2(1 + b(log2 lnN)/2c) ln N

)
. Without loss

of generality, we may assume that X̂n ≤ X∗
n and get

X̂n ≥ X̂∗
n − 8

√
2M(lnN) min

{
X∗

n,
(
Mn− X̂n

)}
− κ .

Solving for X̂n and performing simple algebra in case the minimum is
achieved by the term containing X̂n concludes the proof. 2

Remark 3. The forecasting strategy of Theorem 4, when used by a
meta-forecaster translating the payoffs by x̂t, achieves an improvement
for small or large payoffs of the form

M

√
min

{
max
s≤n

X∗
s

Ms
, max

s≤n

sMs −X∗
s

Ms

}
without previous knowledge of M .

5.2.3. The case of signed games
The proofs of Corollaries 3 and 4 reveal that the assumption of one-
sidedness cannot be relaxed. However, we may also prove a version of
the improvement for small losses or for large gains suited to signed
games. Remember that, as explained in Section 2.3, a meta-forecaster
may always convert a signed game into a one-sided game by performing
a suitable translation on the payoffs, and then apply a strategy for
one-sided games. Since Corollary 2 and Theorem 6 are stable under
general translations, applying them to the payoffs xi,t or to a translated
version of them x′i,t results in the same bounds. If the translated version
x′i,t correspond to a one-sided game, then the bounds of Corollaries 3
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and 4 may be applied. Using x′i,t = xi,t − minj=1,...,N xj,t ≥ 0 and
x′i,t = xi,t − maxj=1,...,N xj,t ≤ 0 for the analysis, we may show, for
instance, that for any signed game the forecaster of Theorem 6 ensures
that the regret is bounded by a quantity whose main term is less than

min


√√√√E (lnN) max

j=1,...,N

(
n∑

t=1

(
xj,t − min

i=1,...,N
xi,t

))
,

√√√√E (lnN) min
j=1,...,N

(
n∑

t=1

(
max

i=1,...,N
xi,t − xj,t

))  .

This bound is obtained without any previous knowledge of a bound
E on the effective ranges of the payoffs, and is sharper than both
bounds (2) and (3). It may be interpreted as an improvement for small
or large cumulative payoffs.

5.3. What is a “fundamental” bound?

Most of the known regret bounds are not stable under natural trans-
formations of the payoffs, such as translations and rescalings.1 If a
regret bound is not stable, then a (meta-)prediction algorithm might
be willing to manipulate the payoffs in order to achieve a better regret.
However, in general it is hard to choose the payoff transformation that
is best for a given and unknown sequence of payoffs. For this reason, we
argue that regret bounds that are stable under payoff transformations
are, in some sense, more fundamental than others. The bounds that
we have derived in this paper are based on sums of squared payoffs.
They are not only generally tighter than the previously known bounds,
but also stable under different transformations, such as those described
below (in what follows, we use x′i,t to indicate a transformed payoff).

Additive translations: x′i,t = xi,t − µt.
Note that the regret (of playing a fixed sequence p1, p2, . . .) is not
affected by this transformation. Hence, stable bounds should not change
when payoffs are translated. As already explained in Section 5.2, trans-
lations can be used to turn a gain game into a loss game and vice
versa.

The invariance by general translations is the hardest to obtain, and
this paper is the first one to show tight translation-invariant bounds

1 Here we do not distinguish between stable bounds and stable algorithms because
all the stability properties we consider for the bounds are due to a corresponding
stability of the prediction scheme they are derived from. When a stable algorithm
does not achieve a stable bound, it suffices to optimize the bound in hindsight,
thanks to the stability properties of the prediction scheme.
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that depend on the specific sequence of payoffs rather than just on its
length (see Corollary 2, Theorem 6 and some of their corollaries, e.g.,
Corollary 1). It is also important to remark that, in a stable bound,
not only the leading term, but also the smaller order terms, have to
be stable under translations. This is why the smaller order terms of
Corollary 2 and Theorem 6 involve bounds on the payoff ranges xi,t−xj,t

rather than just on the payoffs xi,t.

Rescalings: x′i,t = α xi,t, α > 0.
As this transformation causes the regret to be multiplied by a factor of
α, stable bounds should only change by the same factor α. Obtaining
bounds that are stable under rescalings is not always easy when the
payoff ranges are not known beforehand, or when we try to get bounds
sharper than the basic zero-order bounds discussed in Section 2.1. For
instance, the application of a doubling trick on the magnitude of the
payoffs, or even the use of more sophisticated incremental techniques,
may lead to small but undesirable M ln(Mn) terms, which behave badly
upon rescalings. This was the case with the remainder term M ln(1 +
|X∗

n|) in Theorem 2.1 by Auer, Cesa-Bianchi, and Gentile (2002) where
they assume knowledge of the payoff range but seek sharper bounds.

Note also that forecasters with scaling-invariant bounds should re-
quire no previous knowledge on the payoff sequence (such as the payoff
range) as this information is scale-sensitive. This is why, for instance,
the bounds of Theorems 2 and 5 cannot be considered scaling-invariant.
However, modifications of these forecasters that increase their adaptive-
ness lead to Theorems 4 and 6. There we could derive scaling-invariant
bounds by using forecasters based on updates which are defined in
terms of quantities that already have this type of invariance.

Whereas translation-invariant bounds that are also sharp are gen-
erally hard to obtain, we feel that any bound can be made stable with
respect to rescalings via a reasonably accurate analysis.

Unstable bounds can lead the meta-forecaster to Cornelian dilem-
mas. Consider for the instance the bound (4) by Allenberg-Neeman and
Neeman (2004). If we use a meta-forecaster that translates payoffs by a
quantity µt (possibly depending on past observations), then the bound
takes the form√√√√M(lnN) max

t=1,...,n

t∑
s=1

|xk∗t ,s − µs|+ M lnN .

Note that the choice µt = −M (or µt = minj=1,...,N xj,t) yields the
improvement for small payoffs (2) and the choice µt = M (or µt =
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maxj=1,...,N xj,t) yields the improvement for large payoffs (3). In gen-
eral, the above bound is tight if, for a large number of rounds, all
payoffs xj,t at a given round t are close to a common value, and we
may guess this value to choose µt accordingly. In Section 5.2.3, on the
other hand, we show that Corollaries 3 and 4 propose bounds that need
no preliminary choices of µt and are better than both (2) and (3).

6. Discussion and open problems

We have analyzed forecasting algorithms that work indifferently in loss
games, gain games, and signed games. In Corollary 2 and Theorem 6 we
have shown, for these forecasters, sharp regret bounds that are stable
under rescalings and general translations. These bounds lead to im-
provements for small or large payoffs in one-sided games (Corollaries 3
and 4) and do not assume any preliminary information about the payoff
sequence.2

A practical advantage of the weighted majority forecaster is that
its update rule is completely incremental and never needs to reset the
weights. This in contrast to the forecaster prod-MQ of Theorem 4 that
uses a nested doubling trick. On the other hand, the bound proposed in
Theorem 6 is not in closed form, as it still explicitly depends through
Vn on the forecaster’s rewards x̂t. We therefore need to solve for the
regrets as we did, for instance, in Sections 4.4 and 5.2. Finally, it was
also noted in Section 4.4 that the weighted majority forecaster update
is invariant under translations of the payoffs. This is not the case for
the prod-type forecasters, which need to perform translations explicitly.
Though in general it may be difficult to determine beforehand what a
good translation could be, Corollaries 2 and 4, as well as Remark 2,
indicate some general effective translation rules.

Several issues are left open:

– Design and analyze incremental updates for the prod-type fore-
casters of Section 3.

– Obtain second-order bounds with updates that are not multiplica-
tive; for instance, updates based on the polynomial potentials (see
Cesa-Bianchi and Lugosi, 2003). These updates could be used as
basic ingredients to derive forecasters achieving optimal orders of
magnitude on the regret when applied to problems such as nonsto-
chastic multiarmed bandits, label-efficient prediction, and partial

2 Whereas the bound of Theorem 6 is already stated this way, we recall that it
is easy to modify the forecaster used to prove Corollary 2 in order to dispense with
the need of any preliminary knowledge of a bound E on the payoff ranges.
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monitoring. Note that, to the best of our knowledge, in the liter-
ature about incomplete information problems only exponentially
weighted averages have been able to achieve these optimal rates
(see Section 4.5 and the references therein).

– Extend the analysis of prod-type algorithms to obtain an oracle
inequality of the form

X̂n ≥ max
k=1,...,N

(
Xk,n − γ1

√
Qk,n lnN

)
− γ2M lnN

where γ1 and γ2 are absolute constants. Inequalities of this form
can be viewed as game-theoretic versions of the model selection
bounds in statistical learning theory.
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Appendix

Proof of Theorem 4

We use some additional notation for the proof: (r, s) − 1 denotes the
epoch right before (r, s); that is, (r, s−1) when s > 0, and (r−1, Sr−1−
Sr−2) when s = 0. For notational convenience, t(0,0)−1 is conventionally
set to 0.

Proof. The proof combines the techniques from Theorems 2 and 3.
As in the proof of Theorem 3, we denote by (R,SR − SR−1) the index
of the last epoch and let t(R,SR−SR−1) = n.

We assume R ≥ 1 and SR ≥ 1. Otherwise, if R = 0, this means that
Mt = M (0) for all t ≤ n − 1, and the strategy, and thus the proposed
bound, reduces to the one of Theorem 2. The case SR = 0 is dealt with
at the end of the proof. In particular, SR ≥ 1 implies that some epoch
ended at time t when Q∗

t > 4SR−1M2
t . This implies that q ≥ 4SR−1(≥

1), which in turn implies 2SR ≤ 2
√

q and SR ≤ 1 + (log2 q)/2.
Denote M (R+1) = Mn. Note that at time n we have either Mn ≤

M (R), implying Mn = M (R+1) = M (R), or we have Mn > M (R), im-
plying Mn = M (R+1) = 2M (R). In both cases, M (R) ≤ M (R+1) ≤ 2M .
Furthermore, M (s) ≥ 2s−rM (r) for each 0 ≤ r ≤ s ≤ R, and thus (11)
holds for s ≤ R with Mtr replaced by M (r).

Similar to the proof of Theorem 2, for each epoch (r, s), let

X
(r,s)
k =

t(r,s)−1∑
t=t(r,s)−1+1

xk,t , Q
(r,s)
k =

t(r,s)−1∑
t=t(r,s)−1+1

x2
k,t , X̂(r,s) =

t(r,s)−1∑
t=t(r,s)−1+1̂

xt

where the sums are over all the time steps t in epoch (r, s) except the
last one, t(r,s). We also denote k(r,s) = k∗t(r,s)−1 the index of the best
overall expert up to time t(r,s) − 1 (one time step before the end of
epoch (r, s)).

We upper bound the cumulative payoff of the best action as

X∗
n ≤

R∑
r=0

M (r+1) + (Sr − Sr−1)M (r) +
Sr−Sr−1∑

s=0

X
(r,s)
k(r,s)

 (20)
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by using the same argument by induction as in (10). More precisely,
we write, for each (s, r),

Xk(r,s),t(r,s)−1 = X
(r,s)
k(r,s)

+ Mt(r,s)−1
+ Xk(r,s)−1,t(r,s)−1−1

≤ X
(r,s)
k(r,s)

+ Mt(r,s)−1
+ Xk(r,s)−1,t(r,s)−1−1 .

We note that Mt(r,s)−1
= M (r) whenever 0 ≤ s < Sr − Sr−1 and

Mt(r,s)−1
= M (r+1) otherwise. This and

X∗
n ≤ X∗

n−1 + M (R+1) = Xk(R,SR),t(R,SR)−1 + M (R+1)

show (20) by induction.
Let

κ =
R∑

r=0

(
M (r+1) + (Sr − Sr−1)M (r)

)
.

To show a bound on κ note that (11) implies

R∑
r=0

M (r+1) ≤ 2M (R) + M (R+1) ≤ 3M (R+1) ≤ 6M (21)

and
R∑

r=0

(Sr − Sr−1)M (r) ≤ 2MSR ≤ M (2 + log2 q) .

Thus, κ ≤ (8 + log2 q)M .
Now, similarly to the above bound on X∗

n,

X̂n ≥ −κ +
R∑

r=0

Sr−Sr−1∑
s=0

X̂(r,s)

so that the regret X̂n −X∗
n is larger than

X̂n −X∗
n ≥ −2κ +

R∑
r=0

Sr−Sr−1∑
s=0

(
X̂(r,s) −X

(r,s)
k(r,s)

)
.

Now note that each time step t (but the last one) of epoch (r, s) satisfies
Mt ≤ M (r) and η(r,s) ≤ 1/2M (r). Therefore, we can apply Lemma 2 to

X̂(r,s) −X
(r,s)
k(r,s)

for each epoch (r, s). This gives

X̂n −X∗
n ≥ −2κ−

R∑
r=0

Sr−Sr−1∑
s=0

(
lnN

η(r,s)
+ η(r,s)Q

(r,s)
k(r,s)

)
.
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By definition of the algorithm, for all epochs (r, s),

Q
(r,s)
k(r,s)

≤ Qk(r,s),t(r,s)−1 = Q∗
t(r,s)−1 ≤ 4Sr−1+s

(
M (r)

)2

and
η(r,s) ≤

√
lnN

/(
2Sr−1+sM (r)

)
.

Therefore,

R∑
r=0

Sr−Sr−1∑
s=0

η(r,s)Q
(r,s)
k(r,s)

≤
R∑

r=0

Sr−Sr−1∑
s=0

2Sr−1+sM (r)
√

lnN

≤
R∑

r=0

Sr−Sr−1∑
s=1

2Sr−1+s(2M)
√

lnN +
R∑

r=0

2Sr−1M (r)
√

lnN

≤ (2M)
SR∑
s=1

2s
√

lnN + 2SR

R∑
r=0

M (r)
√

lnN

≤ (2M)2SR+1
√

lnN + 2SR(4M)
√

lnN (22)
(using (11) and M (R) ≤ 2M)

≤ (16M)
√

q lnN

since q ≥ 4SR−1 implies 2SR ≤ 2
√

q.
We now turn our attention to the remaining sum

R∑
r=0

Sr−Sr−1∑
s=0

lnN

η(r,s)
.

By definition of the algorithm,

η(r,s) =

{
1/(2M (r)) if Sr−1 + s ≤ d(log2 lnN)/2e√

lnN/
(
2Sr−1+sM (r)

)
otherwise.

We denote by (r∗, s∗) the last couple (r, s) for which ηr,s = 1/(2M (r)).
With obvious notation, a crude overapproximation leads to

R∑
r=0

Sr−Sr−1∑
s=0

lnN

η(r,s)

≤
∑

(r,s)≤(r∗,s∗)

2M (r) lnN +
R∑

r=0

Sr−Sr−1∑
s=0

2Sr−1+sM (r)
√

lnN .
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We already have the upper bound (16M)
√

q lnN for the second sum.
For the first one, we write∑

(r,s)≤(r∗,s∗)

2M (r) lnN

=
r∗∑

r=0

2M (r) lnN +
r∗−1∑
r=0

(Sr − Sr−1)
(
2M (r)

)
lnN

+s∗
(
2M (r∗)

)
lnN

≤
R∑

r=0

2M (r) lnN + (Sr∗−1 + s∗)(4M) ln N

≤ 2M(lnN) (3 + 2d(log2 lnN)/2e)

where we used (21). The proof is concluded in the case SR ≥ 1 by
putting things together and performing some overapproximation.

When SR = 0, q = 1, κ is simply less than 6M , (22) is less than
8M

√
lnN , so that the bound holds as well in this case. 2

Proof of Lemma 3

We first note that Jensen’s inequality implies that Φ is nonnegative.
The proof below is a simple modification of an argument first pro-

posed in Auer, Cesa-Bianchi, and Gentile (2002). Note that we consider
real-valued (non necessarily nonnegative) payoffs in what follows. For
t = 1, . . . , n, we rewrite pi,t = wi,t/Wt, where wi,t = eηtXi,t−1 and
Wt =

∑N
j=1 wj,t (the payoffs Xi,0 are understood to equal 0, and thus, η1

may be any positive number satisfying η1 ≥ η2). Use w′
i,t = eηt−1Xi,t−1

to denote the weight wi,t where the parameter ηt is replaced by ηt−1.
The associated normalization factor will be denoted by W ′

t =
∑N

j=1 w′
j,t.

Finally, we use j∗t to denote the expert with the largest cumulative
payoff after the first t rounds (ties are broken by choosing the expert
with smallest index). That is, Xj∗t ,t = maxi≤N Xi,t. We also make use
of the following technical lemma.

Lemma 5. (Auer, Cesa-Bianchi, and Gentile, 2002) For all N ≥ 2,
for all β ≥ α ≥ 0, and for all d1, . . . , dN ≥ 0 such that

∑N
i=1 e−αdi ≥ 1,

ln
∑N

i=1 e−αdi∑N
j=1 e−βdj

≤ β − α

α
lnN .
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Proof (of Lemma 5). We begin by writing

ln
∑N

i=1 e−αdi∑N
j=1 e−βdj

= ln
∑N

i=1 e−αdi∑N
j=1 e(α−β)dje−αdj

= − ln E
[
e(α−β)D

]
≤ (β − α)E [D]

where we applied Jensen’s inequality to the random variable D taking
value di with probability e−αdi/

∑N
j=1 e−αdj for each i = 1, . . . , N . Since

D takes at most N distinct values, its entropy H(D) is at most lnN .
Therefore

lnN ≥ H(D) =
∑N

i=1 e−αdi∑N
j=1 e−βdj

αdi + ln
N∑

j=1

e−βdj


= αE [D] + ln

N∑
j=1

e−βdj ≥ αE [D]

where the last inequality holds since
∑N

i=1 e−αdi ≥ 1. Hence E [D] ≤
(lnN)/α. As β > α by hypothesis, we can plug the bound on E [D] in
the upper bound above and conclude the proof. 2

Proof of Lemma 3. As it is usual in the analysis of the exponentially
weighted average predictor, we study the evolution of ln(Wt+1/Wt).
However, here we need to couple this term with ln(wj∗t−1,t/wj∗t ,t+1)
including in both terms the time-varying parameters ηt, ηt+1. Track-
ing the currently best expert j∗t is used to lower bound the weight
ln(wj∗t ,t+1/Wt+1). In fact, the weight of the overall best expert (after n
rounds) could get arbitrarily small during the prediction process. We
thus obtain the following

1
ηt

ln
wj∗t−1,t

Wt
− 1

ηt+1
ln

wj∗t ,t+1

Wt+1

=
(

1
ηt+1

− 1
ηt

)
ln

Wt+1

wj∗t ,t+1
+

1
ηt

ln
w′

j∗t ,t+1/W ′
t+1

wj∗t ,t+1/Wt+1
+

1
ηt

ln
wj∗t−1,t/Wt

w′
j∗t ,t+1/W ′

t+1

= (A) + (B) + (C) .

We now bound separately the three terms on the right-hand side. The
term (A) is easily bounded by using ηt+1 ≤ ηt and using the fact that
j∗t is the index of the expert with largest payoff after the first t rounds.
Therefore, wj∗t ,t+1/Wt+1 must be at least 1/N . Thus we have

(A) =
(

1
ηt+1

− 1
ηt

)
ln

Wt+1

wj∗t ,t+1
≤
(

1
ηt+1

− 1
ηt

)
lnN .
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We proceed to bounding the term (B) as follows

(B) =
1
ηt

ln
w′

j∗t ,t+1/W ′
t+1

wj∗t ,t+1/Wt+1
=

1
ηt

ln
∑N

i=1 e
−ηt+1(Xj∗

t
,t−Xi,t)∑N

j=1 e
−ηt(Xj∗

t
,t−Xj,t)

≤ ηt − ηt+1

ηtηt+1
lnN =

(
1

ηt+1
− 1

ηt

)
lnN

where the inequality is proven by applying Lemma 5 with di = Xj∗t ,t −
Xi,t. Note that di ≥ 0 since j∗t is the index of the expert with largest
payoff after the first t rounds and

∑N
i=1 e−ηt+1di ≥ 1 as for i = j∗t we

have di = 0.
The term (C) is first split as follows,

(C) =
1
ηt

ln
wj∗t−1,t/Wt

w′
j∗t ,t+1/W ′

t+1

=
1
ηt

ln
wj∗t−1,t

w′
j∗t ,t+1

+
1
ηt

ln
W ′

t+1

Wt
.

We bound separately each one of the two terms on the right-hand side.
For the first one, we have

1
ηt

ln
wj∗t−1,t

w′
j∗t ,t+1

=
1
ηt

ln
e
ηtXj∗

t−1
,t−1

e
ηtXj∗

t
,t

= Xj∗t−1,t−1 −Xj∗t ,t .

The second term is handled by using the very definition of Φ,

1
ηt

ln
W ′

t+1

Wt
=

1
ηt

ln
∑N

i=1 wi,te
ηtxi,t

Wt
=

1
ηt

ln
N∑

i=1

pi,te
ηtxi,t

=
N∑

i=1

pi,txi,t + Φ(pt, ηt, xt) .

Finally, we plug back in the main equation the bounds on the first two
terms (A) and (B), and the bounds on the two parts of the term (C).
After rearranging we obtain

0 ≤
(
Xj∗t−1,t−1 −Xj∗t ,t

)
+

N∑
i=1

pi,txi,t + Φ(pt, ηt, xt)

− 1
ηt+1

ln
wj∗t ,t+1

Wt+1
+

1
ηt

ln
wj∗t−1,t

Wt

+ 2
(

1
ηt+1

− 1
ηt

)
lnN .

We apply the above inequalities to each t = 1, . . . , n and sum up using
n∑

t=1

Xj∗t−1,t−1 −Xj∗t ,t = − max
j=1,...,N

Xj,n
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and
n∑

t=1

(
− 1

ηt+1
ln

wj∗t ,t+1

Wt+1
+

1
ηt

ln
wj∗t−1,t

Wt

)
≤ − 1

η1
ln

wj∗0 ,1

W1
=

lnN

η1

to conclude the proof. 2
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