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Aggregation of sleeping predictors to forecast electricity consumption

1.1 Description of the framework

Data

The data set consists in hourly observations of the Slovaquian comsumption of electricity.
The units are Megawatts and the period of reference is from 01/01/2005 to 12/31/2007.
There are 35 base forecasters (experts). The experts do not necessarily output a prediction
at each step, they express themselves only at certain moments. (Yet at each step at least
one expert makes a prediction.) The framework is therefore called prediction with “sleeping
experts”.

Notations

Time rounds are indexed by t = 1, 2, . . . , n. Experts are indexed by i = 1, . . . ,N. The
active experts at round t are given by a subset Et � {1, . . . ,N}. The observation at round
t is denoted by yt. The prediction of expert i at round t exists if and only if i 2 Et

and we denote it by fi,t. For practical reasons, we set the prediction of expert i to zero
when i 62 Et. We can thus define the vector of the predictions of the experts at time t as
f t = (f1,t, . . . , fN,t).

At each round the master forecaster outputs a vector of weights (an element of RN),
which he uses to form a linear prediction (to be compared to yt). Two prototypical cases
arise.

– Constrained prediction: for each t, the vector used for the prediction is a probability
distribution over Et. In this case we denote the vector of weights by pt 2 XEt . More
precisely, pt 2 R

N belongs to XEt if pi,t = 0 for i 62 Et, for all i, we have pi,t > 0,
and
∑
i2Et pi,t = 1. (Note that in the classical framework X is simply the simplex

over {1 . . .N}.) In this constrained case, the master forecaster forms the prediction

byt =
∑
i2Et

pi,tfi,t = pt � ft .

– Unconstrained prediction: the vector used for prediction at time t is possibly any
vector ut of RN. In this unconstrained case the master forecaster forms the prediction

byt =
∑
i2Et

ui,tfi,t = ut � ft .

Note that the second equality holds because of the convention that fi,t = 0 for i /2 Et.

An idea to deal with this “sleeping experts” framework may be to go back to the classical
framework by considering a partition of the data set that depends on the Et. Let K be the
number of values taken by the Et on the data (for t 2 {1, . . . , n}), we denote by U1, . . . , UK
the corresponding values. In addition, we denote by kt the index corresponding at the
step t, so that Et = Ukt .
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Criteria to assess the quality of a master forecaster

We use a root mean squared error criterion (rmse). Formally, the rmse of a sequence
vn1 = (v1, . . . ,vn) of aggregation vectors is defined by

rmse(vn1 ) =

vuuut 1

n

n∑
t=1

0@∑
i2Et

vi,tfi,t − yt

1A2.
We give below some lower bounds beyond which it is difficult to go.

1. The following bounds have counterparts in the classical framework,

Boracle = min
(j1,...,jn)2E1�...�En

rmse
�
(δj1 , . . . , δjn)

�
= min

(j1,...,jn)2E1�...�En

vuut 1

n

n∑
t=1

(fjt,t − yt)
2

or

BRN = inf
v2RN

rmse
�
(v, . . . ,v)

�
= inf

v2RN

vuut 1

n

n∑
t=1

(v � ft − yt)
2 .

The second oracle has a counterpart in terms of a given probability distribution
p 2 X (it is legally defined thanks to the convention that fi,t = 0 for i 62 Et).
However, the p � ft will be in general too biased. This is, by the way, already the
case even with a general v 2 R

N. The performance table below will show that the
oracle BRN is not a desirable target to achieve.

2. A first family of oracles designed for the setting of sleeping experts is in terms of the
partition of time depending on the the values of the Et, first in terms of any linear
combination,

B partRN = inf
(v1,...,vK)2(RN)K

rmse
�
(v1, . . . ,vK)

�
= inf

(v1,...,vK)2(RN)K

vuut 1

n

n∑
t=1

(vkt � ft − yt)
2 ,

then only with probability distributions,

B partX = min
(q1,...,qK)2XU1�...�XUK

rmse
�
(q1, . . . ,qK)

�
= min

(q1,...,qK)2XU1�...�XUK

vuut 1

n

n∑
t=1

(qkt � ft − yt)
2,

and finally only with Dirac distributions,

Bpart = min
(j1,...,jK)2U1�...�UK

rmse
�
(δj1 , . . . , δjK)

�
= min

(j1,...,jK)2U1�...�UK

vuut 1

n

n∑
t=1

�
fjkt ,t − yt

�2
.
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3. We can also take into account some renormalizations to deal with some experts being
sleeping. In this respect, for q 2 X we denote by q(Et) =

∑
i2Et qi a renormalization

factor and let qEt 2 XEt be the conditional distribution of q subject to Et. It is
defined from q by only keeping the components indexed by Et and dividing them
by q(Et). By convention, qEt = (0, . . . , 0) when q(Et) = 0.

a) A first version of the oracle is

B
(a)
renorm = min

q2X

vuut 1∑n
t=1 I{q(Et) 6=0}

n∑
t=1

I{q(Et) 6=0} (qEt � ft − yt)
2

which implies a natural average at each round of active forecasters when taking
q as the uniform distribution (1/N, . . . , 1/N),

B
(a)
ave =

vuuut 1

n

n∑
t=1

 ∑
j2Et fj,t
|Et|

− yt

!2
.

b) A second (more continuous) version is given by a rmse criterion with non-equal
weights to all losses,

B
(b)
renorm = min

q2X

vuut 1∑n
t=1 q (Et)

n∑
t=1

q (Et) (qEt � ft − yt)
2

and the average at each round of active forecasters corresponding:

B
(b)
ave =

vuuut 1∑n
t=1 |Et|

n∑
t=1

|Et|

 ∑
j2Et fj,t
|Et|

− yt

!2
.

The versions a) and b) give the same bound when we take the minimum over Dirac
distributions only,

Bbest exp = min
j=1,...,N

rmse
�
(δj, . . . , δj)

�
= min
j=1,...,N

vuut 1∑n
t=1 I{j2Et}

n∑
t=1

I{i2Et} (fj,t − yt)
2 .

4. Instead of renormalizing on the restriction of q 2 X indexed by active experts, we
may consider the Euclidian projection onto XEt , which we denote by ΠXEt . For
q 2 X , we denote by q|Et its restriction to the set Et of active experts, defined as
q|Et =

�
qi1 , . . . , qi|Et|

�
, with

{
i1, . . . , i|Et|

}
= Et and i1 < i2 < . . . < i|Et|. Finally,

we define the projection Pt as follows: for all q 2 X ,

Pt(q) = ΠXEt
�
q|Et

�
.

The corresponding oracle is

Bproject = min
q2X

vuut 1

n

n∑
t=1

�
Pt
�
q
� � ft − yt

�2
.

No simple reduction is obtained in this case when we take the minimum over Dirac
distributions only, since Pt(δj) = δj when j 2 Et but Pt(δj) is the uniform distribution
of XEt when j 62 Et.
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Notations used in the description of the algorithms

We denote by `(� , �) the square loss `(x, y) = (x − y)2. We need in the proofs a uniform
bound on the losses; it exists when the observations and the predictions are bounded by
B for instance, which is the case in practice. In this case, as the data are non negative, we
can take B2 as uniform bound on our losses. (The only difficulty is to exhibit a value for
B in advance.)

For each round t, we denote by

`t(v) = `

0@∑
i2Et

vifi,t, yt

1A
the instantaneous loss of a vector v 2 R

N (possibly a probability distribution on Et).
When v = δi is a Dirac mass on an active expert, i.e., i 2 Et, we simply write

`i,t = `t(δi) = `(fi,t, yt).

The loss of the master forecaster at round t equals

b̀
t = `(byt, yt)

with the notations above.
All these quantities have cumulative counterparts. The cumulative loss of the forecaster

is referred to as bLn =

n∑
t=1

b̀
t .

The cumulative losses of the experts are less easy to define in the framework of sleeping
experts. We consider

1. for v 2 R
N,

Ln(v) =

n∑
t=1

`t(v) ;

2. for vK1 = (v1, . . . ,vK) 2
�
R
N
�K

(where vK1 can possibly be a sequence of probability
distributions on U1 � . . .�UK)

Ln

�
vK1
�

=

n∑
t=1

`t (vkt) ;

3. for a distribution q 2 X

L 0n(q) =

n∑
t=1

q(Et)`t
�
qEt

�
, L 0i,n =

n∑
t=1

I{i2Et}`i,t ,

where the second definition follows from the first one by taking the probability
distribution q = δi;

4. for a distribution q 2 X
L 00n(q) =

n∑
t=1

`t
�
Pt(q)

�
.

Marie Devaine, Yannig Goude, and Gilles Stoltz 7



Aggregation of sleeping predictors to forecast electricity consumption

Minimization of rmse via the minimization of regret

We attempt to minimize the rmse of the master forecaster by ensuring that it has a small
regret, where the regret is defined

1. either as
sup

v2RN
Rn(v) where Rn(v) = bLn − Ln(v) ;

2. or

sup
vK1 2(RN)K

Rn

�
vK1
�

where Rn

�
vK1
�

= bLn − Ln
�
vK1
�

=

n∑
t=1

`t (vkt) ;

3. or

sup
q2X

R 0n(q) where R 0n(q) =

n∑
t=1

q (Et) b̀t − L 0n(q) ;

in the case we restrict our attention in the previous definition to Dirac distributions
only, we get

max
j=1,...,N

R 0n (δj)
not.
= max

j=1,...,N
R 0j,n where R 0j,n =

n∑
t=1

I{j2Et}
�b̀
t − `j,t

�
;

4. or
sup
q2X

R 00n(q) where R 00n(q) = bLn − L 00n(q) .
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Numerical values

For practical purposes we do not use the whole data set to build our forecasts. As pre-
dictions are made for the next 24 hours, we split our data set into 24 fixed-hour subsets
and run 24 algorithms in parallel. In our examples and simulations, we chose the subset
corresponding to noon. We denote by n the total number of prediction steps and by
n12 the number of prediction in the noon data subset. (We index by a subscript 12 the
quantities that refer to this subset only.) M is some typical order of magnitude for yt.

n n12 M N K K12

26277 1095 700 35 74 74

Some standard rmse are summarized for the noon data subset below. As argued above,
BRN is high because of the bias induced by sleeping experts. (When a highly weighted
expert is missing, the bias is important and the corresponding instantaneous loss is large.)
We must therefore use the information of sleeping/active experts to get lower bounds
smaller that this one.

Boracle BRN BpartRN BpartX Bpart B
(a)
renorm

9.4 40.7 16.4 24.5 29.1 29.7

B
(a)
ave B

(b)
renorm B

(b)
ave Bproject Bbest exp

31.3 29.2 30.7 29.2 30.4

Global performance of the experts (results are very similar for each hour data set) is drawn
in Figure 1.1. In Figure 1.2, we plot the global performance of each expert with respect
to his percentage of activity.
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Figure 1.1: Performance of experts
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Figure 1.2: rmse vs percentage of activity
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2.1 Exponentially Weighted Average Beta-Forecaster

2.1.1 References

This forecaster is described in [BM05].

2.1.2 Theoretical bound

For β such that log 1β is of the order of
1

B

s
logN
n

we have

max
i2{1,...,N}

R 0i,n 6 O
�
B
p
n logN

�
.

2.1.3 Interpretation and/or comments

This is variant of the exponentially weighted average forecaster in the context of sleeping
experts. It is arguably less intuitive that the one presented in Section 2.2 but we can prove
in a straightforward way a theoretical bound on its performance.

The parameter β used here should be thought of as e−η with η > 0. The weigths
obtained with this algorithm are thus of the same form as the weights given by the algo-
rithm of Section 2.2. However, the difference is that it is not the same quantity (the same
regret) that is used in the exponential weighting, even though in both cases the aim is to
control the original regret, maxi R 0i,n.

2.1.4 Statement and implementation

The parameter β belongs to ]0, 1[. We introduce the β–regret: for i 2 {1, . . . ,N} and
n > 1,

R 0β,i,n =

n∑
t=1

I{i2Et}
�
βb̀t − `i,t

�
.

Note that R 0i,n is a β–regret for β = 1 (which is however a forbidden value for β in this
section).

For t > 1, the convex weights pt are defined as

pi,t =
I{i2Et}β

−R 0

β,i,t−1∑
j2Et β

−R 0

β,j,t−1

.

By convention, R 0β,i,0 = 0 for all i = 1, . . . ,N.
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The forecaster is implemented as follows.

Parameters: β 2 ]0, 1[

Initialization: R 0β,i,0 = 0 for all i = 1, . . . ,N and

pi,1 =


1

|E1|
if i 2 E1;

0 if i /2 E1.

For each round t = 1, 2, . . . , n,

(1) predict with byt = pt � ft;

(2) observe yt and compute the regrets

R 0β,i,t = R 0β,i,t−1 + I{i2Et}
�
βb̀t − `i,t

�
for all i = 1, . . . ,N;

(3) compute pt+1 as

pi,t+1 =
I{i2Et+1} β

−R 0

β,i,t∑
j2Et+1 β

−R 0

β,j,t

for all i = 1, . . . ,N.

2.1.5 Proof of the theoretical bound

Without loss of generality, we can assume that B = 1. (If this is not the case, one simply
considers the `i,t/B instead of the `i,t.)

We introduce first some notations: for i 2 {1, . . . ,N} and t > 1, we denote

w 0
i,t = β

−R 0

β,i,t−1 , wi,t = I{i2Et}w
0
i,t, Wt =

N∑
i=1

wi,t and W 0
t =

N∑
i=1

w 0
i,t .

In particular, we have
pi,t =

wi,t

Wt
.

By convexity of ` in its first argument, we have

b̀
t 6

N∑
i=1

pi,t`i,t =

N∑
i=1

wi,t`i,t

Wt
and thus, Wt

b̀
t −

N∑
i=1

wi,t`i,t 6 0 ,

an inequality we will need later.
We now bound W 0

t by N for all t. We have W 0
0 = N and now show that the sequence�

W 0
t

�
t>0

decreases. We use that for β 2 ]0, 1[ and x 2 [0, 1], we have βx 6 1 − (1 − β)x

Marie Devaine, Yannig Goude, and Gilles Stoltz 13
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and β−x 6 1+ (1− β)x/β to get:

W 0
t+1 =

N∑
i=1

w 0
i,tβ

−I{i2Et}

�
βb̀t−`i,t�

6

N∑
i=1

w 0
i,t

�
1− (1− β)`i,tI{i2Et}

� �
1+ (1− β)βb̀tI{i2Et}/β�

6

N∑
i=1

w 0
i,t

�
1− (1− β)I{i2Et}

�
`i,t − b̀t��

6

N∑
i=1

w 0
i,t + (1− β)

0@Wt
b̀
t −

N∑
i=1

wi,t`i,t

1A
︸ ︷︷ ︸

60

6W 0
t .

In particular, we have that w 0
i,t+1 6 N for all t > 0. Since w 0

i,t+1 = β
−R 0

βi,t , we have

R 0β,i,t 6
logN
log 1β

,

which rewrites as

n∑
t=1

I{i2Et}b̀t 6
n∑
t=1

I{i2Et}`i,t +
logN
log 1β

β
6

n∑
t=1

I{t2Et}`i,t +

 
n

�
1

β
− 1

�
+

logN
log 1β

!
.

Optimizing in β (by taking the parametrization β = e−η and optimizing in η) we get
the claimed bound.

2.1.6 Performance

1− β 1− 1e-3 5e-1 1e-4 1e-5 1e-6 1− β? = 4e-6

rmse 31.6 31.7 32.7 30.9 30.8 30.5

Forward note: We obtain the same performance as with the algorithm of Section 2.2.
Indeed, setting β = e−η, the two algorithms can be seen equivalent for sufficiently small
values of η. These values are the one which we are interested in and for those, β is close
to 1. Thus, the table above is the same as the one which will be given in Section 2.2 for
small values of η (for which 1− β � η).
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2.1.7 Graphical evolution of the weights

0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Step 

 W
ei

gh
t

Figure 2.1: Evolution of the weights for β = 1− 4e-6

Marie Devaine, Yannig Goude, and Gilles Stoltz 15



Aggregation of sleeping predictors to forecast electricity consumption

2.2 Exponentially Weighted Average Forecaster

2.2.1 References

This is an adaptation of the forecaster of Section 2.1. We designed it and there is no
previous occurrence of it in the literature.

2.2.2 Theoretical bound

For η of the order of
1

B

s
logN
n

, we have

max
i2{1,...,N}

R 0i,n 6 O
�
B
p
n logN

�
.

2.2.3 Interpretation and/or comments

We claim that the forecaster introduced below is more natural than the one of Section 2.1
since it is based on the regret and not on a variant of it. Note that with respect to the
standard (i.e., non-sleeping) version of the exponentially weighted average forecaster, it
cannot be defined only in terms of the cumulative losses of the experts. Here, unlike the
standard case, the loss of the master forecaster in the numerator does not cancel out with
corresponding terms in the denominator of the expression defining the weights.

2.2.4 Statement and implementation

The parameter η belongs to ]0,+∞[ . For t > 1, the convex weights pt are defined as

pi,t =
I{i2Et} e

ηR 0

i,t−1∑
j2Et e

ηR 0

j,t−1

.

By convention R 0i,0 = 0 for all i = 1, . . . ,N.
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The forecaster is implemented as follows.

Parameters : η > 0

Initialization : R 0i,0 = 0 for all i = 1, . . . ,N and

pi,1 =


1

|E1|
if i 2 E1;

0 if i /2 E1.
For each round t = 1, 2, . . . , n

(1) predict with byt = pt � ft;

(2) observe yt and compute the regrets

R 0i,t = R 0i,t−1 + I{i2Et}
�b̀
t − `i,t

�
for all i = 1, . . . ,N ;

(3) compute pt+1 as

pi,t+1 =
I{i2Et+1} e

ηR 0

i,t∑
j2Et+1 e

ηR 0

j,t

for all i = 1, . . . ,N.

2.2.5 Proof of theoretical bound

We do not provide a direct proof but derive rather the bound from the one of Section 2.1.
In particular we use that taking β = e−η 2 ]0, 1[,

eηR
0

i,n = β
−R 0

β,i,n � eη(1−β)
∑n
t=1
b̀tI{i2Et} = w 0

i,n � eη(1−β)
∑n
t=1
b̀tI{i2Et}

where we used the notations of Section 2.1.5 for the two equalities. We know from Sec-
tion 2.1.5 that w 0

i,n 6 N for all i 2 {1 . . . , n}, so that

eηR
0

i,n 6 Neη(1−β)
∑n
t=1
b̀tI{i2Et} .

Using in addition e−η > 1− η, we thus get for η > 0

ηR 0i,n 6 logN+ η(1− e−η)

n∑
t=1

b̀
tI{i2Et} 6 logN+ η2

n∑
t=1

b̀
tI{i2Et} .

Rearranging and bounding the sum in a crude but uniform manner by n,

R 0i,n 6
logN
η

+ ηB2n .

The claimed bound is obtained by taking η =
q
logN/(B2n),

R 0i,n 6 2B
p
n logN .
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2.2.6 Performance

η 1e-8 1e-7 1e-6 1e-5 1e-4 η? = 4e-6

rmse 31.3 31.2 30.8 30.9 32.7 30.5

2.2.7 Graphical evolution of the weights
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Figure 2.2: Evolution of the weights for η = 4e-6
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2.3 Exponential Gradient Forecaster

2.3.1 References

This forecaster follows from the one of Section 2.2 thanks to the consideration of the
gradients of the losses, see [CBL06, Section 2.5].

2.3.2 Theoretical bound

For η of the order of
1

C

s
logN
n

, we have

max
i2{1,...,N}

R 0i,n 6 O
�
C
p
n logN

�
,

where C is a constant such that −C 6
�
rb̀t�

i
6 C for all i = 1, . . . ,N and t = 1, . . . , n.

We can take C = 2B2.

2.3.3 Interpretation and/or comments

The forecaster below is the exponentiated gradient version of the forecaster of Section 2.2,
in which the cumulative regrets appearing in the exponent in the definition of the weights
are replaced by some gradient-based upper bound.
We only adapt here the forecaster of Section 2.2. We also considered a gradient version of
the algorithm of Section 2.1 but again, it obtains about the same performance as the one
presented in this section. This is why we do not write a dedicated section for it.

2.3.4 Statement and implementation

The parameter η belongs to ]0,+∞[ . We use rb̀t to denote the gradient of the convex
function v 7→ `t(v) taken in pt, that is,

rb̀t = 2(byt − yt)ft .

For t > 1, the vector of weights pt is defined component-wise as

pi,t =
I{i2Et} exp

�
η
∑t−1
s=1 I{i2Es}rb̀s � (pt − δi)

�
∑
j2Et exp

�
η
∑t−1
s=1 I{j2Es}rb̀s � (pt − δj)

�
=

I{i2Et} exp
�
2η
∑t−1
s=1 I{i2Es}(bys − ys)(bys − fi,s)

�
∑
j2Et exp

�
2η
∑t−1
s=1 I{j2Es}(bys − ys)(bys − fj,s)

� .
By convention an empty sum is nul.
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The forecaster is implemented as follows.

Parameters : learning rate η > 0

Initialization : eRi,0 = 0 for all i = 1, . . . ,N and

pi,1 =


1

|E1|
if i 2 E1

0 if i /2 E1
For each round t = 1, 2, . . . , n

(1) predict with byt = pt � ft;

(2) observe yt and compute the pseudo-regrets

eRi,t = eRi,t−1 + 2I{i2Et}(byt − yt)(byt − fi,t)

for all i = 1, . . . ,N;

(3) compute pt+1 as

pi,t+1 =
I{i2Et+1} e

ηeRi,t∑
j2Et+1 e

ηeRj,t
for all i = 1, . . . ,N.

2.3.5 Proof of the theoretical bound

Since v 7→ `t(v) is convex and differentiable, we can upper bound the instantenous regrets
as

`(byt, yt) − `(fi,t, yt) = `t(pt) − `t(δi) 6 rb̀t � (pt − δi) = è(byt, yt) − è(fi,t, yt) ,
where we denoted, for all probability distributions q 2 XEt , the linearized losses by

è(q � ft, yt) = rb̀t � q .
Summing up the bound, we get

R 0i,n =
∑

I{i2Et}
�b̀
t − `i,t

�
6

n∑
t=1

I{i2Et}
�è(byt, yt) − è(fi,t, yt)� 6 logN

η
+ nCη

for all i = 1, . . . ,N, where C is some bound on the è, for instance, C = 2B2. We used
here the result of Section 2.2.5, up to the replacement of the losses by their linearized
counterparts. We can do so because we only use in this proof and in the present one that
the losses are nonnegative functions convex in their first arguments.
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2.3.6 Performance

η 1e-7 1e-6 1e-5 1e-4 1e-3 η? = 1.1e-4

rmse 31.3 30.9 29.8 28.2 33.5 28.2

2.3.7 Graphical evolution of the weights
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Figure 2.3: Evolution of the weights for η = 1.1e-4
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2.4 Exponential Gradient Forecaster Partition

2.4.1 References

This forecaster is an adaptation from the EG forecaster studied in [CB99].

2.4.2 Theoretical bound

For η of the order of
1

B2K

s
logN
n

, we have

sup
qK12XU1�...�XUK

Rn

�
qK1
�
6 O

�
CK
p
n logN

�

where qK1 is a shorthand notation for (q1, . . . ,qK) and C is a constant such that −C 6�
rb̀t�

i
6 C for all i = 1, . . . ,N and t = 1, . . . , n. We can take C = 2B2.

2.4.3 Interpretation and/or comments

This forecaster is obtained by running in parallel K classic exponential gradient algorithms
on each subset Uk for k 2 {1 . . . , K}. The bound is obtain by summing up the base bounds
of [CB99] on each subset. Note that if K is large, then the proposed bound is poor.

2.4.4 Statement and implementation

The parameter η belongs to ]0,+∞[ .
For t > 2, we introduce the notation Ut = Ukt \ {1, . . . , t− 1}, which refers to the set

of past rounds with the same sleeping configuration as the current one, i.e., the rounds
indexed by s 6 t− 1 and such that Es = Ukt .

For t > 1, the weight vector pt is defined as

pi,t =
I{i2Et} exp

�
η
∑t−1
s=1 I{i2Es}rb̀s � (pt − δi)

�
∑
j2Et exp

�
η
∑t−1
s=1 I{j2Es}rb̀s � (pt − δj)

�
=

I{i2Et} exp
�
2η
∑
s2Ut(bys − ys)(bys − fi,s)

�∑
j2Et exp

�
2η
∑
s2Ut(bys − ys)(bys − fj,s)

� .
By convention an empty sum is nul. The definition is legal because if i 2 Et then by
definition of Ut, one also has i 2 Es for all s 2 Ut.
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This forecaster is implemented as follows.

Parameters : learning rate η > 0

For each round t = 1, . . . , n,

(1) if Ut = ;

pi,t =


1

|Et|
if i 2 Et;

0 if i /2 Et.
Otherwise,

pi,t =
I{i2Et} exp

�
2η
∑
s2Ut(bys − ys)(bys − fi,s)

�∑
j2Et exp

�
2η
∑
s2Ut(bys − ys)(bys − fj,s)

� ,
for i = 1, . . . ,N.

(2) predict with byt = pt � ft.

2.4.5 Performance

η 1e-6 1e-5 1e-4 1e-3 η? = 7.4e-5

rmse 31.3 30.8 29.9 37.1 29.8
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2.4.6 Graphical evolution of the weights
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Figure 2.4: Evolution of the weights for η = 1.1e-4
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2.5 Renormalized Exponential Gradient Forecaster

2.5.1 References

This forecaster is described in [FSS97].

2.5.2 Theoretical bound

For η of the order of
1

C

s
logN
n

, we have

sup
q2X

R 0n(q) 6 O
�
C
p
n logN

�
,

where C is a constant such that −C 6
�
rb̀t�

i
6 C for all i = 1, . . . ,N and t = 1, . . . , n.

We can take C = 2B2.

2.5.3 Interpretation and/or comments

This forecaster is another adaptation of the gradient-based forecasters to the setting of
sleeping experts. The notion of regret minimized is not the same as in Section 2.3. How-
ever, their respective performance is similar. This is despite the fact that the two algo-
rithms are quite different, as the graphical evolutions of the weights reveal.

2.5.4 Statement and implementation

The parameter η belongs to ]0,+∞[ . This forecaster is implemented as follows.

Parameters : learning rate η

Initialization : pi,1 = 1/N for i = 1, . . . ,N

For each round t = 1, 2, . . . , n

(1) predict with byt = pEtt � ft
(2) observe yt and compute pt+1 as follows:

pi,t+1 =

 pi,te
−2ηfi,t(byt−yt) ∑

j2Et pj,t∑
k2Et pk,te

−2ηfk,t(byt−yt) if i 2 Et,

pi,t if i 62 Et.

2.5.5 Proof of the theoretical bound

Since v 7→ `t(v) is convex and differentiable, we can upper bound the instantenous regrets
as

`(byt, yt) − `
�
qEt

�
= `t

�
pEtt

�
− `
�
qEt

�
6 rb̀t � �pEtt − qEt

�
.
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We thus have

R 0n(q) 6

n∑
t=1

q(Et) rb̀t � �pEtt − qEt
�
.

We now prove the following bound,

rb̀t � �pEtt − qEt
�
6
ηC2

2
+
1

η

�
K
�
qEt ,pEtt

�
−K

�
qEt ,pEtt+1

��
where we denoted by K( � , � ) the Kullback-Leibler divergence between two distributions.
We recall that the latter is defined, for two probability distributions p and q over a set
with R elements as

K(q,p) =

R∑
i=1

qi log
�
qi

pi

�
.

The claimed bound actually follows from an application of the general lemma stated below
together with the fact that by definition of the forecaster,

pEti,t+1 =
pEti,t e

−ηγi,t∑N
j=1 p

Et
i,t e

−ηγj,t
,

for all t 2 {1, . . . , n} and i = 1, . . . ,N, where we set

γi,t = 2
�byt − yt

�
fi,t =

�
rb̀t�

i
.

Lemme 1. Let q, p be two probability distributions over a set with R elements, γ 2 R
R

be any R–dimensional real vector. Define a distribution p 0 as follows: for i = 1, . . . , R,

p 0i =
pi e

−ηγi∑R
j=1 pj e

−ηγj
.

Then, denoting by D a bound such that −D 6 γi 6 D for i = 1, . . . , R, one has

ηp � γ− η

R∑
i=1

qiγi −
η2D2

2
6 K(q,p) −K(q,p 0) . (2.1)

Proof. We start with a chain of equalities,

K(q,p) −K(q,p 0) =

R∑
i=1

qi log
�
p 0i
pi

�

=

R∑
i=1

qi log

0@ pie
−ηγi∑R

j=1 pj e
−ηγj

� 1
pi

1A
=

R∑
i=1

−qi log

0@ R∑
j=1

pj e
−ηγj

1A+

N∑
i=1

qi log
�
e−ηγi

�

= −

R∑
i=1

qi log

0@ R∑
j=1

pj e
−ηγj

1A−

R∑
i=1

qiηγi .
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We have, first resorting to Hoeffding’s lemma for each i = 1, . . . , R and then using that∑R
i=1 qi = 1,

R∑
i=1

qi log

0@ R∑
j=1

pj e
−ηγjpj

1A 6 R∑
i=1

qi

0@−η

R∑
j=1

γjpj +
η2D2

2

1A
= −ηγ � p+

η2D2

2
.

We now get back to the main proof. So far, we have

R 0n(q) 6

n∑
t=1

q(Et)

 
ηC2

2
+
1

η

�
K
�
qEt ,pEtt

�
−K

�
qEt ,pEtt+1

��!
.

In our case, as we have that pi,t = pi,t+1 if i /2 Et and therefore pt+1(Et) = pt(Et), we
derive

q(Et)

�
K
�
qEt ,pEtt

�
−K

�
qEt ,pEtt+1

��
=
∑
i2Et

qi log
�
pi,t+1

pi,t

�

=

N∑
i=1

qi log
�
pi,t+1

pi,t

�
= K(q,pt) −K(q,pt+1) . (2.2)

Substituting, we get

R 0n(q) 6

n∑
t=1

q(Et)

�
ηC2

2
+
1

η

�K(q,pt) −K(q,pt+1)
��
.

A telescoping summing has appeared and we are left with

R 0n(q) 6
ηnC2

2
+
K(q,p1)

η
6
ηnC2

2
+

logN
η

where the last equality proceeds from the choice of p1 as the uniform distribution. Opti-
mizing in η we obtain the claimed bound.

2.5.6 Performance

η 1e-7 1e-6 1e-5 1e-4 1e-3 η? = 1e-4

rmse 31.3 30.9 29.8 28.2 34.7 28.2
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2.5.7 Graphical evolution of the weights
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Figure 2.5: Evolution of the weights for η = 1e-4
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2.6 Zinkevich’s forecasters

2.6.1 References

These forecasters are an adaptation of the ones proposed in [Zin03].

2.6.2 First forecaster: lazy projection

Theoretical bound

The aim of this forecaster is to minimize the regret defined in terms of the R 00n(q), that is,
to achieve a performance nearly as good as the oracle Bproject. We do not provide any
theoretical bound in the sleeping case for the time being.

Interpretation and/or comments

The forecaster below uses the standard version of the lazy Zinkevich’s forecaster in the
framework of sleeping experts. The original forecaster proceeds by projecting on the
simplex of size N the weights obtained by a so-called gradient descent. Here, in the
sleeping expert context, at each round the projection is performed on the subset of the
weights indexed by the active experts.

Statement and implementation

The parameter η belongs to ]0,+∞[ .
We first define a sequence of intermediate weights wt as w1 = (1/N, . . . , 1/N) and

wt+1 = wt − ηIt � rb̀t, where It =
�
I{12Et}, . . . , I{N2Et}

�
and for two vectors u,v 2 R

N,
u � v is the term by term product (u1v1, . . . , uNvN). The final convex weights pt output
at round t are then given by

pt = Pt (wt)

where we use again the notations of Section 1.1.

We briefly recall how to project a real m-tuple x = (x1, . . . , xm) 2 R
m onto Xm, the

simplex of dimension m: let a be the unique real number such that

m∑
i=1

(yi + a)+ = 1 .

Then the Euclidian projection of x onto Xm is given by

ΠXm(x) =
�
(x1 + a)+, . . . , (xm + a)+

�
.
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The forecaster is implemented as follows.

Parameters: η > 0
Initialization:

pi,1 =


1

|E1|
if i 2 E1;

0 if i /2 E1.

For each round t = 1, 2, . . . , n,

(1) predict with byt = pt � ft;

(2) obtain yt and perform the update

wt+1 = wt − 2η (byt − yt) (It � ft) ;

(3) compute pt+1 = Pt+1
�
wt+1

�
.

Performance

η 1e-9 1e-8 1e-7 1e-6 η? = 2e-8

rmse 31.7 31.4 34.4 39.1 31.3

Graphical evolution of the weights
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Figure 2.6: Evolution of the weights of the lazy version for η = 2e-8.
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2.6.3 Second forecaster: by plug-in and projection

Interpretation and/or comments

This second version is less intuitive but it achieves a better practical performance. In view
of its statement, the oracle its performance should be compared to is given by

min
q2X

n∑
t=1

`t

�
qt
�

where the sequence of the qt is defined iteratively by q1 = P1(q) and qs+1 = Ps+1(qs) for
s > 1.

Theoretical bound

One can prove a O
�p
n
�
bound on the regret

bLn − min
q2X

n∑
t=1

`t

�
qt
�
.

Statement and implementation

The forecaster is implemented as follows.

Parameters: η > 0

Initialization:

pi,1 =


1

|E1|
if i 2 E1;

0 if i /2 E1.

For each round t = 1, 2, . . . , n,

(1) predict with byt = pt � ft;

(2) compute pt+1 as

pt+1 = Pt+1

�
pt − 2η (byt − yt)(It � ft)

�
.
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Performance

η 1e-7 1e-6 1e-5 1e-4 η? = 1e-5

rmse 39.1 30.9 28.2 36.4 28.2

Graphical evolution of the weights
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Figure 2.7: Evolution of the weights of the plug-in version for η = 1e-5.
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2.7 Ridge Regression Forecaster

2.7.1 References

This is an adaptation of [CBL06, Section 11.7].

2.7.2 Theoretical bound

We have

Rn(v) 6
λ

2
kvk2 +

0@ n∑
i=1

log
�
1+

µi

λ

�1A max
16t6n

`t(v)

where µ1, . . . , µN are the eigenvalues of
∑n
t=1 ftf

T
t . See [CBL06, Section 11.7] for the proof.

2.7.3 Interpretation and/or comments

The forecaster below uses the standard version of the ridge regression forecaster in the
framework of sleeping experts. In order to ensure that this forecaster is well defined at
each round, predictions of inactive experts are set to zero as explained in the introduction.
Because of that, the predictions of the forecaster are strongly biased.

In fact, this forecaster is designed to come close to the performance given by BRN .
It actually achieves this goal but the latter is not ambitious and quite irrelevant, as the
introduction underlines.

2.7.4 Statement and implementation

The parameter λ belongs to ]0,+∞[ . We take u1 as the uniform distribution on E1. For
t > 2, the vector of weights ut is defined as

ut = argmin
v2RN

{
λkvk2 +

t−1∑
s=1

(v � fs − ys)
2

}
.

The computation of this least-square estimate is given by ut = A−1
t bt, where for t > 2,

At = λI+

t−1∑
s=1

fsfTs and bt =

t−1∑
s=1

ysfs .

Simple manipulations lead to the recursive update

ut+1 = ut −A−1
t+1

�
uT
t ft+1 − yt+1

�
ft .
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The forecaster is implemented as follows.

Parameters : penalization factor λ

Initialization : A1 = λI and u1 = (1/N, . . . , 1/N)

For each round t = 1, . . . , n

(1) predict with byt = ut � ft;

(2) observe yt and update At+1

At+1 = At + ftfTt ;

(3) compute ut+1 as

ut+1 = ut −A−1
t+1

�
uT
t ft+1 − yt+1

�
ft .

2.7.5 Performance

λ 1e-3 1 1e+3 1e+6 λ? = 4e+5

rmse 52.8 51.5 49.1 42.1 41.8
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2.7.6 Graphical evolution of the weights
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Figure 2.8: Evolution of the weights for λ = 4e+5
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2.8 Ridge Regression Partition Forecaster

2.8.1 References

This is an adaptation of [CBL06, Section 11.7].

2.8.2 Theoretical bound

We proceed as in Section 2.4 and derive the global bound as a sum over the K different
sub-regimes Uk, for k = 1, . . . , K:

Rn
�
vK1
�
6

K∑
k=1

0@λ
2
kvkk2 +

0@ n∑
i=1

log

 
1+

µki
λ

!1Amax
t2Uk

`t(vk)

1A
for all vK1 = (v1, . . . ,vK) 2

�
R
N
�K

, where µk1 , . . . , µ
k
N are the eigenvalues of

∑
t2Uk ftf

T
t

for each k = 1, . . . , K.

2.8.3 Interpretation and/or comments

This forecaster is another adaptation of the ridge regression forecaster to the setting of
sleeping experts. It simply performs K simultaneous instances of ridge regression to avoid
any bias issues (see the issues encountered with the adaptation of Section 2.7).

Nevertheless, this results in poor results on this data set, because K is large and the
first steps of instance of the ridge regression forecaster have a large loss. We try to improve
these results by cleaning the data set, e.g., by removing data corresponding to rounds t
when |Et| = 1 (we remove 40 such t). The results are then slightly better but still very
poor.

2.8.4 Statement and implementation

The parameter λ belongs to ]0,+∞[ .
We introduce the sets

R
N
Et =

{
v 2 R

N : 8i /2 Et, vi = 0
}

and Ut = Ukt \ {1, . . . , t− 1}.
For t > 1,

– if Ut = ; , the vector of weights ut is defined as the uniform distribution on Et;

– otherwise ut is defined as

ut = argmin
v2RNEt

{
λkvk2 +

∑
s2Ut

(v � fs − ys)
2

}
.

Note that it is equivalent to consider that we perform K simultaneous ridge regressions
(on each Uk, for k = 1, . . . , K). We thus have at step t that if Ut 6= ;, then ut = A−1

t bt,

At = λI+
∑
s2Ut

fsfTs and bt =
∑
s2Ut

ysfs .
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This forecaster is implemented as follows.

Parameters : penalization factor λ

For each round t = 1, . . . , n,

(1) if Ut = ;, define ut as

ui,t =


1

|Et|
if i 2 Et;

0 if i /2 Et;

(2) otherwise, when Ut 6= ;, compute At as

At = λI+
∑
s2Ut

fsfTs

and ut as �
ui,t

�
i2Et = A−1

t

∑
s2Ut

ysfs

and ui,t = 0 for i /2 Et;

(3) predict with byt = ut � ft;

(4) observe yt.

2.8.5 Performance

The performance is shown for the initial (not cleaned) data set. It is slightly better for
cleaned data but remains poor (the best rmse equaling 137).

λ 1e-3 1 1e+3 1e+6 1e+9 λ? = 1.1e+5

rmse 192.7 148.39 143.4 142.6 142.6 142.5
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2.8.6 Graphical evolution of the weights
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Figure 2.9: Evolution of the weights for λ =1.1e+5
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2.9 Normalized Ridge Forecaster

2.9.1 References

This is a new forecaster!

2.9.2 Theoretical bound

We have no theoretical bound yet.

2.9.3 Interpretation and/or comments

The forecaster results from an adaptation of the forecaster of Section 2.7 (the least-squares
formulation) in the spirit of the one of Section 2.5 (the renormalization factors in front of
the squares).

Its aim is to get close to the oracle 28.8 that is the linear (weights in R
N) counterpart

of B(b)renorm.

2.9.4 Statement and implementation

The parameter λ belongs to ]0,+∞[ . We take u1 as the uniform distribution over E1.
For t > 2, we compute ut 2 R

N as indicated below and then aggregate the forecasts of
the experts with utEt , where for all v 2 R

N, we define, similarly to the notations used in
Section 1.1,

v(Et) =

N∑
i=1

I{i2Et}vi,t and vEt =


vi,t

v(Et)
if i 2 Et,

0 if i 62 Et,

and ut is defined as

ut = argmin
v2RN

{
λkvk2 +

t−1∑
s=1

v(Es)
�
vEs � fs − ys

�2}
.

Note that we do not provide any efficient recursive computation anymore.
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The forecaster is implemented as follows.

Parameters : penalization factor λ

Initialization : u1 = (1/N, . . . , 1/N)

For each round t = 1, . . . , n

(1) predict with byt = utEt � ft;

(2) observe yt and compute ut+1 as

ut+1 = argmin
v2RN

{
λkvk2 +

t∑
s=1

v(Es)(vEs � fs − ys)
2

}
.

2.9.5 Performance

The performance of this forecaster is better than the one of ridge regression (Section 2.7)
but remains poor (worse than the one of the best expert). This might be due to a lack of
precision in the implementation: since no closed form expression is available for the ut,
numerical minimizations (implemented in the software R) are performed at each step.

λ 1e+4 1e+5 1e+6 1e+7 λ? = 1e+6

rmse 31.5 43.12 31.3 34.0 31.3

2.9.6 Graphical evolution of the weights
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Figure 2.10: Evolution of the weights for λ = 1e+6.
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2.10 Fixed-Share Forecaster

2.10.1 References

This is an adaptation of a forecaster described, e.g., in [CBL06, Section 5.2].

2.10.2 Theoretical bound

We take a larger comparison class, whose elements are indexed by sequences (i1, . . . , in)

of elements of {1, . . . ,N} and are called compound experts. They predict at round t as
expert it. In the context of sleeping experts we thus only consider sequences such that
that for all t, one has it 2 Et; a sequence satisfying this condition will be referred to as
an admissible sequence. The tracking regret for a such sequence is defined as

Rn
�
(i1, . . . , in)

�
=

n∑
t=1

b̀
t − `it,t .

The size

size(i1, . . . , in) =

n∑
t=2

I{it−1 6=it}

of a sequence counts how many switches occur in the sequence.
The following theoretical bound holds for the tracking regret of the forecaster presented

in this section:

Rn
�
(i1, . . . , in)

�
6
m+ 1

η
logN+

1

η
log

1

(α/N)m(1− α)n−m−1
+
η

8
nB4

for all admissible sequences (i1, . . . , in) of size smaller thanm. Thus, taking α = m/(n−1)

and

η =
1

B2

vuut 8

n

 
(m+ 1) logN+ (n− 1)H

�
m

n− 1

�!
,

we get

Rn
�
(i1, . . . , in)

�
6 B2

vuutn
2

 
(m+ 1) logN+ (n− 1)H

�
m

n− 1

�!
,

where H denotes the binary entropy function: H(x) = −x log x − (1 − x) log(1 − x) for
x 2 [0, 1].

2.10.3 Interpretation and/or comments

At each step, this forecaster performs two updates. The first one is similar to the one
performed by the exponentially weighted average forecaster of Section 2.2. The second
one mixes the previous weights to ensure that all base forecasters get a sufficient weight,
which allows them to recover quickly higher weights in case they start outputting good
predictions.

Note that for α = 0, we do not recover the forecaster of Section 2.2. This is because
we deal in a different way with the fact that some experts may be inactive.
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2.10.4 Statement and implementation

The parameter η belongs to ]0,+∞[ , while α belongs to [0, 1].
For t > 1, the convex weights pt are defined in two steps: the loss update (the same

as in Section 2.2) and the share update, which allows our forecaster to be more reactive
to breaking points (when the index of the best expert changes).

The forecaster is implemented as follows.

Parameters : η > 0 and 0 6 α 6 1

Initialization : w0 = (1/N, . . . , 1/N)

For each round t = 1, 2, . . . , n,

(1) predict with the weights

pt =
wt−1∑N
j=1wj,t−1

;

(2) Loss update: observe yt and update for each i = 1, . . . ,N,

vi,t =

{
wi,t−1 e

η
�b̀t−`i,t� if i 2 Et,

undefined if i /2 Et;

(3) Share update: let wi,t = 0 if i 62 Et+1, and

wi,t =
1

|Et+1|

∑
j2Et\Et+1

vj,t +
α

|Et+1|

∑
j2Et\Et+1

vj,t + (1− α) I{i2Et\Et+1} vi,t

if i 2 Et+1 (with the convention that an empty sum is null).

Note: in (2), it is equivalent to put b̀t or to omit it.

2.10.5 Proof of the theoretical bound

The proof is given by a straightforward adaptation of the proof in the non-sleeping case
proposed in [CBL06, Section 5.2]. Indeed, the version proposed here corresponds to a
(fake) prior weight assignment to the set of admissible compound experts given by a certain
Markovian process. We give here the relation that defines the transition probability:

w 0
0

�
i1, . . . , it+1

�
= w 0

0

�
i1, . . . , it

�
I{it+12Et+1}

�
(1− α)I{it+1=it} +

α

|Et+1|
+ I{it /2Et+1}

1− α

|Et+1|

�
.

That is, the transition function from it to it+1 is given, at round t+ 1, by

Trt+1(it → it+1) = I{it+12Et+1}
�
(1− α)I{it+1=it} +

α

|Et+1|
+ I{it /2Et+1}

1− α

|Et+1|

�
.

Rewriting the proof of [CBL06, Theorem 5.1] with these prior weights we obtain how
compute efficiently wi,t thanks to the vector vt. In particular, the last equality of the
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proof yields

wi,t =
∑
j2Et

vj,tTrt+1(j→ i) =
∑
j2Et

vj,t I{i2Et+1}
�
(1− α)I{i=j} +

α

|Et+1|
+ I{j/2Et+1}

1− α

|Et+1|

�
,

from which follows the expression stated in our implementation.
As the prior weights w 0

0 are larger than the ones w0 proposed by the original version of
[CBL06, Section 5.2] that puts weights on all compound experts, this entails the proposed
bound.

2.10.6 Performance

This forecaster has a good performance (better than the one of the exponentiated gradi-
ent forecaster of Section 2.3). This might be because this forecaster uses two parameters;
however, in practice, tuning two parameters online is often more delicate than simply
calibrating one. We will propose several solutions to this issue in Section 3.4. The best
performance (rmse of 27.0) is achieved for (η?, α?) = (2e-3, 0.2).

α = 0.01 α = 0.05 α = 0.1 α = 0.2

η = 1e-6 35.9 33.4 32.6 32.0

η = 1e-5 33.1 32.1 31.7 31.5

η = 1e-4 31.2 29.3 29.1 29.5

η = 1e-3 29.3 28.1 27.5 27.2

η = 1e-2 28.4 28.0 27.9 27.8
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2.10.7 Graphical evolution of the weights
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Figure 2.11: Evolution of the weights for (η?, α?) = (2e-3, 0.2).

Marie Devaine, Yannig Goude, and Gilles Stoltz 44



Aggregation of sleeping predictors to forecast electricity consumption

2.11 Exponentiated-Gradient Fixed-Share Forecaster

2.11.1 References

It follows from the one of Section 2.10 thanks to the consideration of the gradients of the
losses, see [CBL06, Section 2.5].

2.11.2 Theoretical bound

Recall that rb̀t = 2(byt − yt)ft.
We denote by C a constant such that −C 6

�
rb̀t�

i
6 C for all i = 1, . . . ,N and t =

1, . . . , n. We can take C = 2B2, so that the range is 4B2.
The bound of Section 2.10 holds in particular for the forecaster described here, up to

the replacement of B2 by the new range 4B2.

2.11.3 Interpretation and/or comments

The forecaster below is the exponentiated gradient version of the forecaster of Section 2.10,
in which the cumulative regret of interest is first upper-bounded by some gradient-based
sum.

2.11.4 Statement and implementation

The parameter η belongs to ]0,+∞[ , while α belongs to [0, 1]. The forecaster is imple-
mented as follows.

Parameters : η > 0 and 0 6 α 6 1

Initialization : w0 = (1/N, . . . , 1/N)

For each round t = 1, 2, . . . , n,

(1) predict with the weights

pt =
wt−1∑N
j=1wj,t−1

;

(2) Loss update: observe yt and update

vi,t =

{
wi,t−1 e

−2η
�byt−yt��byt−fi,t� if i 2 Et,

undefined if i /2 Et;

(3) Share update: let wi,t = 0 if i 62 Et+1, and

wi,t =
1

|Et+1|

∑
j2Et\Et+1

vj,t +
α

|Et+1|

∑
j2Et\Et+1

vj,t + (1− α) I{i2Et\Et+1} vi,t

if i 2 Et+1 (with the convention that an empty sum is null).
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2.11.5 Performance

This forecaster has a relatively good performance (better than the one of the exponentiated
gradient forecaster of Section 2.3), but surprisingly enough it does not beat the exponen-
tially weighted average version of the fixed-share forecaster presented in Section 2.10.

α = 0.01 α = 0.05 α = 0.1 α = 0.2

η = 1e-5 33.0 32.0 31.7 31.5

η = 1e-4 28.5 28.0 28.3 28.9

η = 1e-3 29.9 29.5 29.3 29.2

η = 1e-2 28.9 28.7 28.4 28.5

η = 1e-1 29.0 28.7 28.6 28.5

The best performance is achieved for the pair (η?, α?) = (2e-4, 0.07) and the value of the
corresponding rmse is 27.2.

2.11.6 Graphical evolution of the weights
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Figure 2.12: Evolution of the weights for (η?, α?) = (2e-4, 0.07).

Marie Devaine, Yannig Goude, and Gilles Stoltz 46



Aggregation of sleeping predictors to forecast electricity consumption

2.12 Another sleeping adaptation of the fixed-share forecaster

2.12.1 References

This is another adaptation of the original fixed-share forecaster described, e.g., in [CBL06,
Section 5.2]. As the forecaster of Section 2.10, this forecaster has a counterpart in terms
of exponentiated gradient.

2.12.2 Interpretation and/or comments

We do not provide any theoretical result for these forecasters yet. They achieve a good
performance especially in the exponentiated gradient case.

Moreover, if we take α = 0 we recover exactly the forecaster of Section 2.2 (respectively,
Section 2.3 in the exponentiated gradient case), which is not the case for the forecasters
of Sections 2.10 and 2.11. However, the weights obtained in this case are not exactly
the same because of computational issues: the loss update for the fixed-share forecasters
is made multiplicatively whereas it is made additively in the case of the forecasters of
Sections 2.10 and 2.11.

2.12.3 Statement and implementation

We present here only the implementation of the variant of the exponentially weighted
average fixed-share forecaster. The exponentiated gradient version can be obtained by
replacing the losses by the gradients of the losses.

The parameter η belongs to ]0,+∞[ , while α belongs to [0, 1] (when α = 0, we recover
exactly the forecaster of Section 2.2). The forecaster is implemented as follows.
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Parameters : η > 0 and 0 6 α 6 1

Initialization : w0 = (1/N, . . . , 1/N)

For each round t = 1, 2, . . . , n,

(1) predict with the weights

pi,t =
I{i2Et}wi,t−1∑N
j=1 I{i2Et}wj,t−1

for each i = 1, . . . ,N;

(2) Loss update: observe yt and update for each i = 1, . . . ,N,

vi,t =

{
wi,t−1 e

−η
�b̀t−`i,t� if i 2 Et,

vi,t−1 if i /2 Et;

(3) Share update: let

wi,t =

 α
Wt

|Et+1|
+ (1− α)vi,t if i 2 Et+1,

0 if i /2 Et+1,

where Wt =
∑N
i=1 I{i2Et+1}vi,t.
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2.12.4 Performance

The two forecasters have a good performance. The one of the exponentially weighted
average version is similar to the one of the forecaster of Section 2.10. The best performance
is achieved for (η?, α?) = (1e-3, 0.2).

α = 0.01 α = 0.05 α = 0.1 α = 0.2

η = 1e-5 30.6 30.6 30.7 30.9

η = 1e-4 30.7 29.8 29.6 29.7

η = 1e-3 28.7 27.7 27.3 27.0

η = 1e-2 27.9 27.6 27.5 27.4

The exponentiated gradient version has a performance better than the one of the forecaster
of Section 2.11. The best performance (rmse of 26.5) is achieved for (η?, α?) = (2e-4,
0.05).

α = 0.01 α = 0.05 α = 0.1 α = 0.2

η = 1e-5 29.9 30.4 30.6 30.9

η = 1e-4 27.0 27.1 27.6 28.5

η = 1e-3 29.2 29.0 29.0 28.8

η = 1e-2 28.3 28.4 28.2 28.3

η = 1e-1 28.9 28.6 28.6 28.2

2.12.5 Graphical evolution of the weights
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Figure 2.13: Evolution of the weights of the two variants of the fixed-share forecasters
considered here: the exponentially weighted average version (left) and the exponentiated
gradient version (right).
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3.1 On-line calibration of one parameter

3.1.1 References

This adaptive calibration method has been introduced in [GMS08].

3.1.2 Theoretical Bound

No theoretical bound yet. The aim is to achieve a performance nearly as good as the one
of the considered prediction method tuned with the best parameter in hindsight.

3.1.3 Interpretation and/or comments

This method provides a generic adaptive implementation of all forecasters that depend
only on a (possibly vector-valued) tuning parameter. It automatically calibrates this
parameter by choosing the parameter value that minimizes the past cumulative loss of the
considered forecaster. Several optimization methods can be used. We choose a grid-based
optimization procedure, but continuous methods, though necessarily inaccurate and more
difficult to control, could be more effective.

3.1.4 Statement and implementation

Consider a forecaster depending on a parameter λ and whose weight vector at step t is
denoted by vt = v(λ)

t . The parameter λ 2 Λ is called a tuning parameter of the forecaster
and our aim is to choose it in an automatic way. The parameter space is, for instance,
Λ = ]0,+∞[ for ridge regression, exponential weighted average, and exponential gradient
forecasters.

In addition we assume that v(λ)
1 = v?

1 does not depend on λ, which is the case for all
methods studied so far.

The proposed calibration method tunes the forecaster automatically by minimizing
of the empirical loss. The latter is thus called ELM calibrated forecaster thereafter. It
chooses v1 = v?

1 and, for t > 2,

vt = v
�bλt�
t where bλt 2 argmin

λ2eΛ
t−1∑
s=1

�
v(λ)
s � fs − ys

�2
.

We chose a finite logarithmically-scaled parameter grid eΛ � Λ to perform an approxima-
tion of the minimization above.
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This is implemented as follows.

Parameters : a grid eΛ
Initialization : v1 = v?

1

For each round t = 1, 2, . . . , n,

(1) predict with byt = vt � ft;

(2) observe yt and compute bλt+1 as
bλt+1 2 argmin

λ2eΛ
t∑
s=1

�
v(λ)
s � fs − ys

�2
;

(3) compute vt+1 as

vt+1 = v
�bλt+1�
t+1 .

3.1.5 Performance

We have tested the calibration via empirical loss minimization (ELM) on three simple
prediction methods: the exponential gradient (EG, see Section 2.3) and exponentially
weighted average forecasters (EWA, see Section 2.2), as well as the plug-in version of
Zinkevich’s forecaster (see Section 2.6).

We chose in all three cases a uniform logarithmic grid over

– [1e-6, 1e-2] for the exponentiated gradient;

– [1e-8, 1e-4] for the exponentially weighted average forecaster;

– [1e-7, 1e-3] for the plug-in version of Zinkevich’s forecaster.

Below are summarized the rmse of the resulting ELM calibrated forecasters, for different
numbers of grid points ��� eΛ��� = 5, 9, 21, and 41

(for the plug-in version of Zinkevich’s forecaster, only the case = 5 was computed).
Columns “best” and “worst” refer to the best (respectively, worst) performance obtained

with a constant value η taken on the grid.��� eΛ��� 5 9 21 41 best worst

EWA 31.0 30.7 30.6 30.6 30.5 32.7

EG 28.2 28.2 28.2 28.2 28.2 33.5

Zink. 28.3 28.2 39.1
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The performance of the exponentiated gradient forecaster is independent of the size
of the grid. This is because for almost all t and all grids, bλt = 1e-4, which is close to the
optimal off-line tuned parameter (here η? = 1.1e-4, see Section 2.3). For the exponentially
weighted average forecaster, there is a dependency on the grid: we can obtain better
results if our grid ranges from 1e-8 to 1e-5 (of course, it is difficult to guess the best range
in advance). Figure 3.1 shows the evolution of the calibrated parameters for these two
base forecasters.
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Figure 3.1: Evolution of the calibration parameters bλt for the exponentiated gradient
(left) and the exponentially weighted average (right) forecasters. In both cases, the size
of the grid is

��� eΛ��� = 21.

3.1.6 Graphical evolution of the weights
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Figure 3.2: Evolution of the weights for the exponentiated gradient forecaster (left), the
exponentially weighted average forecaster (middle) and Zinkevich’s forecaster (right). For
the first two forecasters, the size of the grid was

��� eΛ��� = 21, while for the third forecaster,
it was equal to 5.
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3.2 Towards a reduction of the bias of the ridge-type fore-
casters?

3.2.1 Intuition

We have met serious bias issues in Sections 2.7 and 2.8. To overcome them, one may think
of going back to an unbiased data set by applying the following transformation: we define
new fake base forecasters efi,t = fi,t−yt and fake outcomes eyt = 0, for all t = 1, . . . , n and
i = 1, . . . ,N. These modified base forecasters can be thought of as measuring the error of
prediction of the original ones.

3.2.2 Adaptation of the algorithms

To obtain the linear combination to be used at round t to aggregate the fi,t, we run
the previous ridge regression forecasters (see Sections 2.7 and 2.8) on the efi,s and eys, for
s 6 t− 1.

In addition we perform the following transformations on the obtained weights: we
set to 0 the weights that correspond to inactive experts and renormalize the remaining
weights so that they sum up to 1. Therefore, we obtain at round t an element of XEt .

This additional step is needed because otherwise all weights are very close to 0 and
the obtained prediction is almost meaningless.

3.2.3 Performance

The performance of this adaption for the case of the simple ridge regression of Section 2.7
is given below. It is better than the original forecaster of Section 2.7 mainly because of
the renormalization step, but the performance remains disappointing and the fact that the
best performance is achieved when λ grows to ∞ and the obtained performance indicate
that the chosen convex combination is the uniform one.

λ 1e+3 1e+6 1e+9 1e+12 λ? =∞
rmse 35.5 35.3 32.2 31.8 31.8
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3.2.4 Graphical evolution of the weights
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Figure 3.3: Evolution of the weights of the unbiased variant of ridge regression forecaster
with λ = 1e+20.
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3.3 Compensated Regrets

3.3.1 References

This is an adaptation of the forecaster of Section 2.2, which we designed.

3.3.2 Theoretical bound

We do not provide any theoretical bound yet.

3.3.3 Interpretation and/or comments

This forecaster results from an adaptation of our variant of the exponentially weighted
average forecaster described in Section 2.2. Indeed, in the algorithm of Section 2.2, the
weights at time t depend are based on a reweighting of the R 0i,t−1, which can potentially
penalize an expert which is often active and incurs a small regret at each step against an
expert which is rarely active but incurs at each active step a large regret.

Therefore in this version, instead of taking R 0i,t−1 in exponent in the weights, we use
instead the renormalized version

R 0i,t−1

�vuut t∑
t 0=1

I{i2Et} .

We have adapted the forecaster of Section 2.3 as well.

3.3.4 Statement and implementation

The parameter η belongs to ]0,+∞[ . For t > 1, pt is defined as

pi,t =

I{i2Et} exp
�
ηR 0i,t−1

�q∑t
t 0=1 I{i2Et}

�
∑
j2Et exp

�
ηR 0j,t−1

�q∑t
t 0=1 I{j2Et}

� .
By convention R 0i,0 = 0 for all i = 1, . . . ,N.
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This forecaster is implemented as follows.

Parameters : learning rate η > 0

Initialization :

pi,1 =


1

|E1|
if i 2 E1;

0 if i /2 E1.

For each round t = 1, 2, . . . , n,

(1) predict with byt = pt � ft;

(2) observe yt, compute the regrets

R 0i,t = R 0i,t−1 + I{i2Et}
�b̀
t − `i,t

�
,

and update
τi,t = τi,t−1 + I{i2Et}

for all i = 1, . . . ,N;

(3) compute pt+1 as

pi,t+1 =
I{i2Et+1} e

ηR 0

i,t/
p
τi,t∑

j2Et+1 e
ηR 0

j,t/
p
τj,t

for all i = 1, . . . ,N.
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3.3.5 Performance

The performance of the compensated exponentially weighted average forecaster is slightly
better than the one of the base sleeping variant of the exponentially weighted average
forecaster.

η 1e-6 1e-5 1e-4 1e-3 η? = 8.5e-5

rmse 31.3 31.0 30.5 31.9 30.4

This is not the case for the exponentiated gradient forecaster: the compensated variant
is less efficient that the original version.

η 1e-6 1e-5 1e-4 1e-3 η? = 8.5e-5

rmse 31.3 31.1 30.0 29.0 28.6

3.3.6 Graphical evolution of the weights
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Figure 3.4: Evolution of the weights for the compensated exponentially weighted average
forecaster with the choice η = 8.5e-5.
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Figure 3.5: Evolution of the weights for the compensated exponentiated gradient forecaster
with the choice η = 6.8e-4.

3.3.7 Note

The variant with the renormalized quantity

R 0i,t−1

� t∑
t 0=1

I{i2Et}

obtained a worse performance (which we did not report in details here).
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3.4 Calibration of the couple of parameters for fixed-share
type forecasters

3.4.1 Overview

We propose here three methods to tune the couple of parameters on which the fixed-
share type forecasters of Sections 2.10 (referred to as FS-EWA hereafter) and Section 2.11
(referred to as FS-EG hereafter) rely on:

– the use of a grid,

– the estimation of a break-points rate,

– online tuning of η and α as functions of the current time index t to minimize the
theoretical bound.

One can also apply these methods to the forecasters of Section 2.12. The obtained per-
formance is generally similar for the exponentially weighted average versions but is much
better for the exponentiated gradient version. However, for simplicity, we only report
below the performance of the forecasters derived from Sections 2.10 and 2.11.

3.4.2 Theoretical Bound / Comments

We do not provide any theoretical bound yet. The aim is to achieve a performance nearly
as good as the one of the considered prediction method tuned with the best couple of
parameters in hindsight.
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3.4.3 On-line calibration on a grid

The first solution is to proceed as in Section 3.1 and define a grid for the couple of param-
eters (η, α). Since there are two parameters, the computation time is much longer than in
the case of one parameter only studied therein. On the other hand we have seen in Sec-
tion 3.1 that choosing a very thin grid, which is computationally much more demanding,
does not result in a substantial improvement of the performance.

We thus provide here the performance obtained with the limited grid

eΛ = {1e-6, 1e-5, 1e-4, 1e-3, 1e-2}� {0.01, 0.05, 0.1, 0.2}

for the forecaster derived from FS-EWA and

eΛ = {1e-5, 1e-4, 1e-3, 1e-2, 1e-1}� {0.01, 0.05, 0.1, 0.2}

for the forecaster derived from FS-EG. Columns “best” and “worst” refer to the best (re-
spectively, worst) performance obtained with a constant value (η, α) taken on the grid eΛ.

eΛ best worst

FS-EWA 27.4 27.2 35.9

FS-EG 28.3 28.0 33.0

In conclusion, the performance of FS-EWA calibrated on-line on a grid is good. In addition,
the computation time was reasonable.

Graphical evolution of the weights
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Figure 3.6: Evolution of the weights for FS-EG (left) and FS-EWA (right) calibrated
on-line on a grid.
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3.4.4 On-line calibration of α in terms of a break-points rate

This second method uses a time-varying α and a fixed η (to be calibrated on a grid, as
before). It is easy to see that the implementations of the forecasters FS-EWA and FS-EG
can be extended immediately to the case of such time-varying parameters α, we therefore
do not detail this point.

As indicated in Section 2.10.2, a good choice of α to optimize the theoretical bound at
round n is α = m/(n− 1), where m is the number of switches used to define the compar-
ison class formed by the compound experts. The method presented here therefore uses at
rounds t > 2 a time-varying parameter of the form α(t) = m(t)/(t − 2), computed with
the help of the losses suffered from rounds 1 to t− 1. (For t 6 2, we take α(t) = 0.)

We describe below how to define m(t) at each step. This is done in two layers: first, we
define a family of quantities indexed by integersm and based on the best cumulative square
loss computed obtained by a compound expert with m switches. Second, we penalize each
member of this family by a measure of the complexity of the considered compound experts:
the larger the number of switches m, the larger the penalty pen(m). (Such a penalization
is needed, otherwise we would select m(t) = t− 2 for each t.)

Statement and implementation of the tuning of m(t)

We give here the description of the algorithm that selects the value of m(t). For each
t > 2, it proceeds in two steps. The first one is to compute the best cumulative square
loss corresponding to each 0 6 m < t− 1:

L(m, t− 1) = min�
i1,...,it−1

�
2E1�...�Et−1

size
�
i1,...,it−1

�
=m

t−1∑
s=1

�
fis,s − ys

�2
.

Of course, for too small values of m, the quantity L(m, t − 1) may be undefined (the
minimum is over an empty set), in which case we consider that it is equal to +∞. The
same occurs for m > t − 1. The second step is to choose the value m that minimizes the
penalized criterion, that is,

m(t) = argmin
m2{0,...,t−2}

L(m, t− 1) + pen(m)

for some penalty function pen. Note that this penalty function should depend on the
current round index t but not on n.

We now explain how to perform the first step in an efficient and recursive manner, by
backward induction. To do so, we show that it suffices to maintain the weights

L(m, i, t) = min�
i1,...,it−1

�
2E1�...�Et−1

size
�
i1,...,it−1,i

�
=m

�
fi,t − yt

�2
+

t−1∑
s=1

�
fis,s − ys

�2

for all m, t, and i 2 Et.
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A recursive definition can then be obtained as

L(m, i, t) = min
{
L(m, i, t− 1), min

j2Et−1\{i}
L(m− 1, j, t− 1)

}
+
�
fi,t − yt

�2
.

It can be exploited as follows to compute the m(t).

Initialization : m(1) = 0 and L(0, i, 0) = 0 for all i 2 {1, . . . ,N}

For each round t = 2, . . . , n,

(1) update the cumulative losses

L(m, i, t−1) = min
{
L(m, i, t−2), min

j2Et\{i}
L(m−1, j, t−2)

}
+
�
fi,t−1−yt−1

�2
for all m 2 {0, . . . , t− 2} and all i 2 Et−1;

(2) compute
L(m, t− 1) = min

i2Et−1
L(m, i, t− 1)

for all m 2 {0, . . . , t− 2};

(3) select
m(t) = argmin

m2{0,...,t−2}
L(m, t− 1) + pen(m) .

Performance

We start by indicating some benchmark values (some oracles). We provide below the best
performance obtained by a compound expert of size at most m, for different values of m.
Note that for m = n− 1, we recover the oracle Boracle defined in Section 1.1.

m 10 50 200 n− 1 = 1094

rmse 32.1 23.1 15.2 9.4

We tried several penalties for each forecaster (FS-EWA and FS-EG). The form of the
bound obtained in Section 2.10.2 seems to argue in favor of a penalty equal to

p
nm: the

cumulative loss of the forecaster is less than the cumulative loss of the best compound
expert of size m plus something of the order of

p
nm. However, the performance is quite

better for a penalty equal to nm for both forecasters. (Other choices of the penalty
did not provide better results.) But since we do not know the value of n in advance
we use penalties depending on the current round index t, that is, at round t we choose
pen(m) = tm. See Table 3.1 for a summary of the performance.
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η 1e-4 1e-3 1e-2 η?

FS-EWA 29.8 27.6 28.1 27.3

FS-EG 29.3 28.5 28.6 28.5

Table 3.1: Performance of FS-EWA and FS-EG with a time-varying parameter α(t); the
chosen penalty is pent(m) = tm.

Of course, we can now apply the on-line calibration trick of Section 3.1 to deal with
the tuning of η. The performance is provided below for the same grid as in Section 3.4.3.

eΛ best

FS-EWA 27.7 27.6

FS-EG 28.7 28.5

Graphical evolution of the weights
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Figure 3.7: Evolution of the weights for FS-EWA, with the penaly pent(m) = tm and for
η? = 3.5e-2 (left) or with the calibration trick of Section 3.1 on a grid (right).
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3.4.5 On-line calibration of η as a function of α(t)

To take the idea of Section 3.4.4 even further, in addition of taking a time-varying α(t),
we could do the same with η, in view of the updates proposed in Section 2.10 and 2.11.
This η(t) could be chosen so as to minimize the associated theoretical bound. That is, we
could take

η(t) =
1

B2

vuut8
t

 �
m(t) + 1

�
logN+ (t− 1)H

�
m(t)

t− 1

�!
.

In fact this choice of η(t) give poor results whereas the choice

η(t) =
1

B

vuut8
t

 �
m(t) + 1

�
logN+ (t− 1)H

�
m(t)

t− 1

�!

give better performance. As it is difficult to know in advance B, we replace it in the
expression of η(t) by the parameter M defined in Section 1.1.

Performance

The results are reported for pent(m) = tm.

FS-EWA FS-EG

27.5 28.5

Graphical evolution of the weights
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Figure 3.8: Evolution of the weights of the variant described above of the FS-EWA (with
the penalty pent(m) = tm).
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4.1 Description of the French data

We now consider an other data set. This data set consists in half-hourly observations
of the French comsumption of electricity. The units are Gigawatts and the period of
reference is from 01/09/2007 to 31/08/2008. For the sake of simplicity, we remove data
that correspond to special days (e.g., public holidays), the day before and the day after
them, as well as the first two weeks of May and the winter holidays.

4.1.1 Description of the experts

In this section we present the French Data and the individual experts used in this study
to forecast French load data. These experts belong to three different classes of forecasting
methods:

1. parametric methods – Eventail (based on the Metehore model);

2. semi-parametric methods – GAM (Generalized Additive Model);

3. non-parametric methods – similarity forecasts on functional data.

French load data

The data for this study are classically used for the estimation and the validation of the
short-term EDF models calibration. Thus, we consider 5 years of consolidated half hourly
data (CPRC) for the estimation set (from September 2002 to September 2007) and one
year of real time load estimation (ETR) for the validation part. This data are given by
RTE, the French national grid company.

The Corse and the Eurodif data are subtracted from the CPRC data from the Eventail
and GAM model estimation. For the GAM model, the Eurodif data are also subtracted
from the ETR data.

Meteorological data

The meteorological data consist in half hourly (interpolated) temperature and nebulosity
data. This data are provided by MeteoFrance and come from 26 meteorological stations
all over the French territory.

Eventail model

The Eventail software is one of the tools in used ad EDF to produce electricity load forecast
based on the Metehore model. The reader is referred to [BDR05] for a presentation of this
parametric model.

For the calibration of the basic Eventail model we follow the methodology in use at
EDF (Kheops model). The short-term correction is performed with the classical weights
(0.4, 0.1, 0.09, 0.08, 0.07, 0.06, 0.2). From this basic model we can derive a family of
Eventail models by considering different heating gradients (see Table 4.1) and different
weights in percentage for the short-term correction (see Table 4.2).
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Heating Gradient -1350 -1450 -1550 -1650 -1750

Table 4.1: Values for the heating gradient for the Eventail individual predictors
(MW/Celsius degrees)

Lag 48 96 144 192 240 288 336

Weights1 40 10 9 8 7 6 20

Weights2 80 20 - - - - -

Weights2 70 - - - - - 30

Table 4.2: Lags and Weights

GAM model

A GAMmodel has been calibrated to forecast the French electricity load (work in progress,
to be presented at the CFE / CSDA conference in Cyprus, in October 2009). In this mod-
eling the relation between the electricity load and the various predictors (meteorological
conditions, calendar events, etc.) is supposed to be additive and non-linear. We summarize
this model in the following equation:.

yhi =f1
�
yhi−1

�
+ f2

�
Thi

�
+ f3

�
Thi−1

�
+ f4

�
Thi−2

�
+ f5

�
Tminhi

�
+ f6

�
Tmaxhi

�
+ f7

�
Nebhi

�
+ f8

�
posanhi

�
+ ah Jhi + bhThi

+ εi

(4.1)

where

– yhi is the electricity load at the h–th hour of the i–th day of the estimation set,

– Tminhi is the minimal temperature over the last 23 hours, while Tmaxhi has a similar
definition with maxima,

– Nebhi is the cloud cover,

– posanhi is the position in the year (the number of days since the beginning of the
year estimated with periodic splines),

– Jhi is the day type effect,

– Thi is the trend.

In practice, the lag and the seasonality effects are specified by day type (one by day in a
week).

Different GAM models can be obtained from this model. One effect of interest is the
trend effect as one of the main issue is the extrapolation of low frequency effects from one
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year to another. Thus, we derive 3 additional GAM models with different values for the
intercept point of the trend effect ((-25,+25,+50) % of the basic intercept point). We also
generate a GAM forecaster with linear lag effects instead of non-linear ones, a GAM with
no lag effects, and a two-stage GAM model where the lag effects and the other effects are
estimated separately in a two-stage process.

Similarity forecasts on functional data

This similarity forecaster can be assimilated to a “blind” method in comparison to the other
methods considered above. The principles of this method applied on classical data are
presented in [Pog94], see [APS06] for an application to functional data. The development
of this method is the topicc of a PhD thesis at OSIRIS (EDF) and this forecaster was
provided by Jairo Cugliari.

4.1.2 Numerical values

For practical purposes and computational issues we convert our data in Gigawatts. Unlike
in previous chapters we do not split the data set in 48 fixed-hour data because otherwise we
would not have large enough samples. Nevertheless, to preserve the operational constraint
that every day at noon predictions should be made for the whole next day, the weights of
our forecasters are computed every day at noon and used for the whole next day with a
renormalization taking into account the sleeping aspects when necessary. (There are thus
only 320 real rounds, as the table below shows.)

As in Section 1.1, M is some typical order of magnitude for the observations yt, N is
the number of experts, and K the number of different values taken by Et.

n n/48 M N K

15 360 320 50 24 7

Some standard rmse are summarized below. As expected, BRN has a less disappoint-
ing performance than before since few experts only are sleeping occasionally (see Figure
4.2). B6m refers to the best performance obtained by a compound expert of size at mostm.

Boracle BRN B
(a)
ave B

(b)
renorm B

(b)
ave Bbest exp B650 B6100

0.223 0.620 0.724 0.696 0.748 0.782 0.534 0.474
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A summary of the global performance of the experts is plotted in Figure 4.1. In Figure
4.2, we plot the global performance of each expert with respect to its percentage of activity.

The colors refer to the type of the expert: dark blue is for the Eventail experts, pink
is for the GAM experts, and light blue is for the functional expert. The Eventail and
similarity experts are always active whereas the GAM experts are inactive the day before
and after special days (those triples of days are totally excluded).
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Figure 4.1: Performance of experts
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Figure 4.2: Performance of experts
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4.2 Results obtained by the forecasters

We present in this section the performance of some forecasters presented in Chapter 2. As
explained in Section 4.1 weights (living in R

N or in the simplex of order N) are computed
each day at noon and used for the whole next day with a renormalization taking into
account the sleeping aspects when necessary. In the sequel, we make the assumption that
it is noon at t = 1, thus it is noon if and only if t is of the form 48k+1 for some integer k.

For several forecasters we give results both with uniform initial weights and with the
following initial distribution, which we call the fair distribution: (1/3, 1/3, 1/3) uniform
distribution between the three types of experts and uniform distribution over experts of
the same type (for instance the initial weight of an Eventail expert is 1/(3� 15), whereas
the functional expert has a 1/3 weight).

4.2.1 Exponentially weighted average forecaster

We use a variant of the forecaster described in Section 2.2, where we still use an exponen-
tially weighted average but where the cumulative regrets R 0i,t are updated only at rounds
of the form t = 48k+ 1, for integers k. (At these rounds, at most 48 instantaneous regrets
with respect to i are added.)

Uniform distribution

η 1e-6 1e-5 1e-4 1e-3 1e-2 η? = 1e-4

rmse 0.724 0.722 0.718 0.731 0.788 0.718
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Figure 4.3: Evolution of the weights for η? = 1e-4
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Fair distribution

η 1e-6 1e-5 1e-4 1e-3 1e-2 η? = 2e-4

rmse 0.736 0.731 0.695 0.722 0.789 0.683
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Figure 4.4: Evolution of the weights for η? = 2e-4
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4.2.2 Exponentiated gradient forecaster

We adapt the forecaster described in Section 2.3 as we adapted the exponentially weighted
average forecaster in the section above (by updating only every 48 rounds and taking into
account sums of at most 48 instantaneous regrets).

Uniform distribution

η 1e-6 1e-5 1e-4 1e-3 1e-2 η? = 5e-3

rmse 0.724 0.722 0.712 0.683 0.668 0.650
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Figure 4.5: Evolution of the weights for η? = 5e-3
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Fair distribution

η 1e-6 1e-5 1e-4 1e-3 1e-2 η? = 5e-3

rmse 0.737 0.733 0.711 0.674 0.670 0.651
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Figure 4.6: Evolution of the weights for η? = 5e-3
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4.2.3 Mixed lazy–plug-in version of Zinkevich’s forecaster

We adapt the forecasters described in Section 2.6 as follows. (We only provide the version
with uniform initial allocation.)

Parameters: η > 0

Initialization: p1 = (1/N, . . . , 1/N)

For each round t = 1, 2, . . . , n,

(1) predict with byt = Pt(pt) � ft;

(2) if t is not a multiple of 48, then pt+1 = pt;

(3) if t is a multiple of 48, then

pt+1 = Pt−47
�
pt−47

�
− 2η

48∑
s=1

(byt+1−s − yt+1−s)(It+1−s � ft+1−s) .

Comments: A totally lazy version would simply omit Pt−47 in step (3); its results are
worse than the mixed version we provide here. No totally plug-in version exists, since
there is no commun value for the simplexes of probability of the next 48 steps. This is
why we provide this mixed version. The choice of Pt−47 in step (3) is quite arbitrary, we
checked that choosing different values (e.g., Pt, Pt−1, Pt−2, ..., Pt−46) had only a limited
impact.

Uniform distribution

We provide the results in the case of uniform initial weights only (the results are similar
in the case of an initial fair distribution).

η 1e-5 1e-4 1e-3 1e-2 η? = 6e-4

rmse 0.725 0.727 0.690 1.127 0.676
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Figure 4.7: Evolution of the weights for η? =6e-4
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4.2.4 Ridge regression forecaster

We use the forecaster described in Section 2.7, except that we force it to only output a
new vector of weights ut at rounds of the form t = 48k + 1 and to use it for the next 48
rounds. (No renormalization is involved this time.)

Uniform distribution

We give the performance of this forecaster run with uniform initial weights and the graph-
ical evolution of the weights it outputs. Even though the target oracle BRN is quite good,
the performance of this forecaster is poor and is quite far from this target.

We checked that this is because we fix the vectors of weights for the whole next day (i.e.,
for 48 rounds): in an additional experiment we allowed ridge updates at each half-hour
and the performance came close to BRN .

λ 1 1e+3 1e+6 1e+9 λ? = 2e+2

rmse 1.176 0.840 0.863 0.867 0.833
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Figure 4.8: Evolution of the weights for λ? = 2e+2
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4.2.5 Renormalized exponentiated gradient forecaster

We adapt the forecaster described in Section 2.5.

Parameters : learning rate η

Initialization : pi,1 = 1/N for i = 1, . . . ,N

For each round t = 1, 2, . . . , n

(1) predict with byt = pEtt � ft;

(2) if t is not a multiple of 48, then pt+1 = pt;

(3) if t is a multiple of 48, then compute pt+1 as follows: for all i = 1, . . . ,N,

pi,t+1 = pi,t−47

47∏
s=0

 
I{i/2Et−s}+

I{i2Et−s}
e−2ηfi,t−s(byt−s−yt−s)∑

i2Et−s pi,t−47∑
i2Et−s pi,t−47 e

−2ηfi,t−s(byt−s−yt−s)
!
.

Uniform distribution

We only provide the performance in case of uniform initial weights.

η 1e-7 1e-6 1e-5 1e-4 η? = 3e-6

rmse 0.724 0.723 0.742 0.940 0.722
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Figure 4.9: Evolution of the weights for η? = 3e-6
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4.2.6 Fixed-share forecasters

We now present the adaptations of the forecasters of Sections 2.10 and 2.11. Since they are
similar we only present in details the one for the exponentially weighted average variant
of the fixed-share forecaster.

Exponentially weighted average variant of the fixed-share forecaster

The forecaster is implemented as follows.

Parameters : η > 0 and 0 6 α 6 1

Initialization : w1 = v1 = (1/N, . . . , 1/N)

For each round t = 1, 2, . . . , n,

(1) predict with byt = pEtt � ft;

(2) if t is not a multiple of 48, then pt+1 = pt and vt+1 = wt

(3) if t is a multiple of 48, perform the loss update: for each i = 1, . . . ,N,

vi,t+1 = wi,t e
η

∑t−1
s=t−48 I{i2Es}

�b̀s−`i,s� ;

(4) perform the share update: for each i = 1, . . . ,N,

wi,t+1 =
1

|Et+1|

∑
j2Et\Et+1

vj,t+1 +
α

|Et+1|

∑
j2Et\Et+1

vj,t+1

+ (1− α) I{i2Et\Et+1} vi,t+1

(with the convention that an empty sum is null);

(5) if t is a multiple of 48, then pt+1 = wt+1.

The results with the uniform initial distribution follow.
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α = 0.01 α = 0.05 α = 0.1 α = 0.2

η = 1e-5 0.725 0.724 0.724 0.724

η = 1e-4 0.723 0.723 0.723 0.723

η = 1e-3 0.708 0.711 0.711 0.713

η = 1e-2 0.681 0.677 0.678 0.682

η = 1e-1 0.753 0.716 0.716 0.715

The best performance is achieved for (η, α) = (3e-2, 0.1) and its value is 0.665.
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Figure 4.10: Evolution of the weights for (η, α)? = (3e-2, 0.1)

Exponentiated gradient variant of the fixed-share forecaster

The results with the uniform initial distribution follow.

α = 0.01 α = 0.05 α = 0.1 α = 0.2

η = 1e-5 0.725 0.724 0.724 0.725

η = 1e-4 0.723 0.723 0.723 0.723

η = 1e-3 0.676 0.685 0.684 0.683

η = 1e-2 0.761 0.778 0.767 0.754

η = 1e-1 0.708 0.712 0.713 0.714

The best performance is achieved for (η, α)? = (6e-3, 3e-4) and its value is 0.656.
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Figure 4.11: Evolution of the weights for (η, α)? = (6e-3, 3e-4)

These results are somewhat disappointing compared to the performance obtained in
Chapter 2. This can be explained by the fact that the sleeping aspect is reduced in
comparison to the Slovakian data set.
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4.2.7 On-line calibration of the parameters with a grid

We use here the trick presented in Section 3.1. We apply calibration via empirical loss
minimization (ELM) at five prediction methods adapted above: the exponentially weighted
average forecaster, the exponentiated gradient forecaster, the plug-in version of Zinkevich’s
forecaster, the exponentially weighted average and the exponentiated gradient variants of
the fixed-share forecaster.

We chose in the first three cases a uniform logarithmic grid on [1e-6, 1e-2], with��� eΛ��� = 21. For the fixed-share forecasters we use the following grid:

eΛ = {1e-5, 1e-4, 1e-3, 1e-2, 1e-1}� {0.01, 0.05, 0.1, 0.2} .

The performance is summarized below. The “offline” line stands for the results obtained
by the best parameters tuned offline whereas “online” refers to the performance of the
calibration method alluded at above. In parentheses we indicate whether we used a uniform
or a fair initial weight allocation.

EWA (fair) EG (fair) Zink (unif.) FS-EWA (unif.) FS-EG (unif.)

online 0.692 0.661 0.684 0.697 0.662

offline 0.683 0.651 0.676 0.675 0.655

The evolutions of the weights are shown in Figure 4.12 for the first three algorithms
and in Figure 4.13 for the fixed-share forecasters.
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Figure 4.12: Evolution of the weights for the exponentiated gradient forecaster (left), the
exponentially weighted average forecaster (middle) and Zinkevich’s forecaster (right). For
the three forecasters, the size of the grid was

��� eΛ��� = 21.
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Figure 4.13: Evolution of the weights for exponentiated gradient (left), and the exponen-
tially weighted average (right) versions of the fixed-share forecaster.

We also provide in Figure 4.14 the evolution of the calibrated parameters for the first
three forecasters.
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Figure 4.14: Evolution of the calibrated parameters for the exponentiated gradient fore-
caster (left), the exponentially weighted average forecaster (middle) and Zinkevich’s fore-
caster (right). For the three forecasters, the size of the grid was

��� eΛ��� = 21.
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