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A Further Look at Sequential Aggregation Rules for Ozone Ensemble Forecasting

Notations, goals, sample description

Notations

Time rounds t = 1, 2, . . . , T . Stations N = {1, . . . , S}. Base forecasters indexed by
m = 1, . . . ,N.

The active stations at round t are given by a subset Nt � N . For a round t and
s 2 Nt, the observation yst 2 [0, B] is available (B is a bound on the peak heights).

The prediction of base forecaster m at round t for station s is xsm,t. The vector of
predictions for station s at round t is xst = (xs1,t, . . . , x

s
N,t).

The master forecaster outputs at each round a vector vt = (v1,t, . . . , vN,t) 2 R
N and

forms the prediction, at each station s,

byst = vt � xst =
∑

m=1,...,N

vm,t x
s
m,t

(which has to be compared to yst, if s 2 Nt). Two prototypical cases arise,

– we constrain the vt to lie in the simplex X of probability distributions over N
elements – in that case, we use the notation vt = pt;

– unconstrained prediction (possibly any vector of RN) is denoted by vt = ut in the
sequel.

Assessment of the quality of a master forecaster

We use a root mean squared error criterion (rmse). We start the evaluation from time
round t0 = 1+ T0 (where T0 usually equals 30, thus allowing for a short learning period).
Formally, the rmse of a sequence vT1 = (v1, . . . ,vT ) of prediction vectors is

rmset0(v
T
1 ) =

vuuut 1∑T
t=t0

|Nt|
T∑

t=t0

∑
s2Nt

(vt � xst − yst)
2 .

Some lower bounds beyond which it is impossible or difficult to go,

– the oracle lower bound, that no forecaster, even knowing the observations before-
hand, can beat,

Boracle = inf
v1,...,vT2RN

rmset0(v
T
1 ) =

vuuut 1∑T
t=t0

|Nt|
T∑

t=t0

inf
vt2RN

∑
s2Nt

(vt � xst − yst)
2 ;

– the lower bounds on the quantities appearing below in the definition of regret, either

BregretRN = inf
u2RN

rmset0
�
(u, . . . ,u)

�
= inf

u2RN

vuuut 1∑T
t=t0

|Nt|
T∑

t=t0

∑
s2Nt

(u � xst − yst)
2
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or

BregretX = min
p2X

rmset0
�
(p, . . . ,p)

�
= min

p2X

vuuut 1∑T
t=t0

|Nt|
T∑

t=t0

∑
s2Nt

(p � xst − yst)
2 ;

or simply (but many forecasters will beat it), the performance of the best model

min
j=1,...,N

rmset0
�
(j, . . . , j)

�
= min
j=1,...,N

vuuut 1∑T
t=t0

|Nt|
T∑

t=t0

∑
s2Nt

�
xsj,t − yst

�2
.

Some notation useful for the description of the algorithms (will not be used immedi-
ately): for a vector u 2 R

N or a probability p 2 X and a round t,

`t(u) =
∑
s2Nt

(u � xst − yst)
2 and `t(p) =

∑
s2Nt

(p � xst − yst)
2 ;

when p is a Dirac mass on an expert m = 1, . . . ,N, we simply write

`m,t =
∑
s2Nt

(xsm,t − yst)
2 .

All these quantities have cumulative counterparts: for all integer T � 1,

LT (u) =

T∑
t=1

`t(u) , LT (p) =

T∑
t=1

`t(p) , Lm,T =

T∑
t=1

`m,t .

Minimization of rmse via the minimization of regret

We attempt to minimize the rmse of the master forecaster by ensuring that it has a small
regret, where the regret is defined either as (unconstrained prediction or convex constraints
given by a convex set F)

sup
u2RN

RT (u) or sup
u2F

RT (u) where RT (u) =

T∑
t=1

∑
s2Nt

(ut � xst − yst)
2−

T∑
t=1

∑
s2Nt

(u � xst − yst)
2

or (master predictions as convex combinations of the base predictions)

max
p2X

RT (p) where RT (p) =

T∑
t=1

∑
s2Nt

(pt � xst − yst)
2 −

T∑
t=1

∑
s2Nt

(p � xst − yst)
2

or even (still convex combinations, but we compare to single base forecasters only)

max
j=1,...,N

RT (j) where RT (j) =

T∑
t=1

∑
s2Nt

(pt � xst − yst)
2 −

T∑
t=1

∑
s2Nt

�
xsj,t − yst

�2
.

We can either

– minimize the regrets directly; this is, for instance, what ridge regression does, when
maximizing RT (u) over all u 2 R

N; many other forecasters, like the exponentially
weighted average one, can do that on the RT (j);
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– or compare to convex combinations, and first “linearize” the problems as follows, by
using the convexity of a 7→ a2 (and the slope inequality),

RT (u) �
T∑
t=1

∑
s2Nt

2 (ut � xst − yst)x
s
t � (ut − u) =

T∑
t=1

ut � èt −

T∑
t=1

u � èt
and similarly,

RT (p) �
T∑
t=1

pt � èt −

T∑
t=1

p � èt � max
j=1,...,N

T∑
t=1

∑
m=1,...,N

pm,tèm,t −

T∑
t=1

è
j,t , (1)

where

è
t =

�è
1,t, . . . , èN,t� =

∑
s2Nt

2 (vt � xst − yst)x
s
t (vt = ut or pt depending on the case).

(2)

Numerical values

The (typical) values of the parameter on the network are

T N B S T0 |Nt| (typ.) L

125 48 (+3) 100 240 30 150 106

(where L = maxt
wwè
t

ww∞; note that L � 2SB2 in case only predictions from the simplex
are issued).

Some standard rmse are summarized below. Mean is the master forecaster that uses
ut = (1/N, . . . , 1/N) at all time rounds. ftl (“follow the leader”) is the one that uses at
round t the least-square estimate from time rounds 1 to t− 1, that is,

ut 2 argmin
u2RN

t−1∑
t 0=1

∑
s2Nt 0

(u � xst 0 − yst 0)
2 .

els–30 performs the same type of least-square estimation, but only over the last 30 rounds.

Best model Mean Boracle BregretRN BregretX ftl els–30

22.43 24.41 11.99 19.24 21.45 20.79 20.18

The base forecasters and the additional els–xx models

Here are also some statistics on the rmse of the sample. The mean of the rmse is

els–10 els–20 els–30

20.78 20.27 20.18

26.34, the median is 24.75, the maximal rmse is 35.79 and the minimal one, 22.43. The
standard deviation equals 3.69. We also give some values of the corresponding cumulative
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Figure 1: rmse of the 48 base forecasters

distribution function. Denote by F(r) the number of forecasters whose rmse is less or
equal to r. We have F(23) = 6, F(24) = 14, F(25) = 27, and F(26) = 32. (Out of 48
base forecasters, 32 have an rmse less or equal to 26.) The rmse of the additional els–xx
forecasters are summarized above. Here is the complete (unsorted) list of the rmse of the
base forecasters.

24.01 24.40 25.80 22.59

25.04 23.50 32.30 25.55

24.57 23.00 25.17 23.18

24.10 24.89 35.79 30.29

24.75 24.04 24.75 23.76

27.55 30.72 30.67 28.20

23.40 24.73 24.21 23.45

25.26 35.42 33.89 32.09

24.39 23.34 22.43 23.47

22.53 29.21 26.65 26.94

23.13 24.56 22.92 22.95

24.76 34.08 31.54 30.34

Table 1: rmse of the 48 base forecasters
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1 Thresholded Exponentially Weighted Average Forecaster

1.1 References

Some inspiration is taken from [Allenberg et al., 2006]

1.2 Theoretical bound

[See the proof below!]
For all η > 0 and γ � 1/(2N),

max
1�m�N

RT (δm) � lnN
η

+
η T

8
S2B4 + 2NSB2 γT = O

�p
T
�

where the last inequality holds for the choices of η ∼ 1/
p
T and γ � 1/pT .

1.3 Interpretation and/or comments

The forecaster below uses the standard version of the exponentially weighted average
forecaster as a base routine and applies at a top level the following transformation on the
prescribed convex combination: the weights less than a given threshold γ are set to zero
and the remaining weights are then renormalized.

N.B.: γ should be taken less than or equal to 1/N to ensure that at least one weight
is not less than the threshold and thus remains positive.

The algorithm is inspired by but slightly different from the one stated in [Allenberg et al., 2006]
and we prove here a bound with an approximation argument. Note that the theoretical
optimal parameter is γ = 0 in the current form of the bound (that is, no threshold). Still,
the practical performance discussed below shows that such a threshold is valuable.

1.4 Default values of the parameters

Implemented with default values of the parameters η = 2.2e-6 and γ = 1/48.

1.5 Statement and implementation

For t � 1, pt is defined as

pm,t =

{
ct p

0
m,t if p0m,t � γ

0 if p0m,t < γ

where
ct =

1∑N
m=1 p

0
m,tI{p0

m,t�γ}

and p0t is the weight vector associated to the standard exponentially weighted average
forecaster, that is p01 = (1/N, . . . , 1/N) and for t � 2,

p0m,t =
exp

�
−η
∑t−1
t 0=1 `m,t 0

�
∑N
j=1 exp

�
−η
∑t−1
t 0=1 `j,t 0

�

Vivien Mallet, Sébastien Gerchinovitz, and Gilles Stoltz 7



A Further Look at Sequential Aggregation Rules for Ozone Ensemble Forecasting

for all m = 1, . . . ,N.

Can be implemented as follows.

Parameters: learning rate η and threshold γ

Initialization: p01 = (1/N, . . . , 1/N)

For each round t = 1, 2, . . . , T,

(1) threshold the weights vector p0t into pt defined as

pm,t =

{
ct p

0
m,t if p0m,t � γ

0 if p0m,t < γ

(2) predict with pt

(3) compute p0t+1 as

p0m,t+1 =
p0m,te

−η `m,t∑N
j=1 p

0
j,te

−η `j,t

for all m = 1, . . . ,N.

1.6 Proof of the theoretical bound

For each t � 1, we have by convexity of `t and by definition of pt,

b̀
t �

N∑
m=1

pm,t`m,t =

N∑
m=1

ctp
0
m,tI{p0

m,t�γ}`m,t � ct
N∑
m=1

p0m,t`m,t .

But
1

ct
=

N∑
m=1

p0m,tI{p0
m,t�γ} = 1−

N∑
m=1

p0m,tI{p0
m,t<γ} � 1−Nγ .

Hence, using that Nγ < 1/2, we get

ct � 1

1−Nγ
� 1+ 2Nγ .

We thus have upper-bounded b̀t as
b̀
t � (1+ 2Nγ)

N∑
m=1

p0m,t`m,t .

Summing over all time rounds t = 1, . . . , T , substracting the cumulative loss of the best
model, and substituting the bound on the exponentially weighted average forecaster (see,
e.g., [Mallet et al., 2007]), we get

bLT − min
1�j�T

Lj,T �
0@ T∑
t=1

N∑
m=1

p0m,t`m,t − min
1�j�T

Lj,T

1A+ 2Nγ

T∑
t=1

N∑
m=1

p0m,t`m,t

� lnN
η

+
η T

8
S2B4 + 2NγTSB2 .
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1.7 Performance
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Figure 2: Empirical performance: rmse versus η for minimum, maximum, and best
threshold values (top); ratio of the best threshold γ(η) for each η, over its maximum value
1/48 (bottom).

η = 3.4e-6 η = 2.2e-6 η� = 2.5e-6

γ = 0 γ = 1/48 γ� = 0.83/48

rmse 22.46 22.41 22.40

Thresholding results in a slight improvement in the rmse. The maximal thresholding
level is almost as good as the best empirical thresholding level.

The interest of thresholding lies rather in an improved robustness against the choice
of the learning parameter η. Figure 2 shows that the rmse curve is flatter in presence of
the maximal threshold. Actually, differences between the two curves appear mostly for
parameters η smaller than the optimal value η�. Learning parameters η larger than η�

give already rise to an drastic selection of the models, and thus, a further selection by
thresholding is useless. On the contrary, too small an η does not lead to the selection

Vivien Mallet, Sébastien Gerchinovitz, and Gilles Stoltz 9
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of a subset of models and thresholding forces such a selection in this case; empirical
performance shows that this additional thresholding has a positive impact on the rmse.

1.8 Graphical evolution of the weights
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Figure 3: Evolution of the weights for η = 2.2e-6 and for γ = 0 (left) and γ = 1/48 (right)
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2 Thresholded Exponentiated Gradient

2.1 References

Some inspiration is taken from [Allenberg et al., 2006]

2.2 Theoretical bound

[See the proof below!]
For all η > 0 and γ � 1/(2N),

max
p2X

RT (p) � lnN
η

+
η T

2
L2 + 2NLγT = O

�p
T
�

where the last inequality holds for the choices of η ∼ 1/
p
T and γ � 1/pT .

2.3 Interpretation and/or comments

The same comments as in Section 1 apply; except that here, the master forecaster is the
linearized version of the exponentially weighted average forecaster, called the exponenti-
ated gradient forecaster.

2.4 Default values of the parameters

Implemented with default values of the parameters η = 2.1e-5 and γ = 1/48.

2.5 Statement and implementation

For t � 1, pt is defined as

pm,t =

{
ct p

0
m,t if p0m,t � γ

0 if p0m,t < γ

where
ct =

1∑N
m=1 p

0
m,tI{p0

m,t�γ}

and p0t is the weight vector associated to Exponentiated Gradient, that is, p01 = (1/N, . . . , 1/N)

and for t � 2,

p0m,t =
exp

�
−η
∑t−1
t 0=1

è
m,t 0

�
∑N
j=1 exp

�
−η
∑t−1
t 0=1

è
j,t 0

�
for all m = 1, . . . ,N, where we recall that the èj,t 0 were defined in (2).

Can be implemented as follows.
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Parameters: learning rate η and threshold γ

Initialization: p01 = (1/N, . . . , 1/N)

For each round t = 1, 2, . . . , T,

(1) threshold the weights vector p0t into pt defined as

pm,t =

{
ct p

0
m,t if p0m,t � γ

0 if p0m,t < γ

(2) predict with pt

(3) compute p0t+1 as

p0m,t+1 =
p0m,te

−ηèm,t∑N
j=1 p

0
j,te

−ηèj,t
for all m = 1, . . . ,N.

2.6 Proof of the theoretical bound

We first have by convexity (the so-called slope inequality), like in (1), that

bLT − min
p2X

LT (p) � max
j=1,...,N

T∑
t=1

∑
m=1,...,N

pm,tèm,t −

T∑
t=1

è
j,t

and can thus apply the same argument as in Section 1 with the only replacement of the
`m,t (bounded between 0 and SB2) there by the èm,t (bounded between −L and L).
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2.7 Performance
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Figure 4: Practical performance with the N base forecasters: rmse versus η for minimum,
maximum and best threshold values (upper); ratio of the best γ’s value w.r.t. η over its
maximum value (lower)

The best rmse equals 21.47 and is obtained for the (a posteriori) choices of η� � 2.1e-5
and γ� = 1/48 (the maximal threshold level). This rmse does not differ by more than 5e-3
from the rmse of the unthresholded version. Thus, up to accuracy issues, no improvement
is gained from thresholding in this case as far as the rmse is concerned.

However, the main improvement of thresholding is a gain in robustness against a bad
(too small) choice of the learning parameter. The same comments as in Section 1 apply
here again.
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2.8 Graphical evolution of the weights
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Figure 5: Evolution of the weights for η =2.09e-5 and for γ = 0 (left) or γ = 1
N

(right)
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3 Lasso

3.1 References

The Lasso method was introduced in [Tibshirani, 1996]. A thorough investigation of the
Lasso problem and its dual was given in [Osborne et al., 2000b], following an article by
the same authors giving a first homotopy method to compute all the Lasso solutions at
once [Osborne et al., 2000a]. The LARS-type implementation of Lasso was described in
[Efron et al., 2004].

3.2 Theoretical bound

No individual sequence-type regret bound for the Lasso has been proven yet. However,
some convergence rates were obtained in stochastic settings. The special case of linear
regression on a fixed design is, for example, derived from oracle inequalities for the pre-
diction loss in [Bickel et al., 2008].

Let y = (y1, . . . , yn) = Xβ� + W be a vector of n realizations of the response variable
y, where X is a deterministic n �M matrix, β� 2 R

M and W = (W1, ...,Wn) a vector of
i.i.d. N (0, σ2) variables. The Lasso estimator is defined by

bβ = argmin
β2RM

 1n
n∑
i=1

�
yi − (Xβ)i

�2
+ 2r

M∑
j=1

|βj|

 .

Then, if all the diagonal elements of the matrix XTX/n equal 1 and under certain conditions
described in [Bickel et al., 2008], for r of the order of

p
(logM)/n, one has with large

probability that
1

n

n∑
i=1

�
X(bβ− β�)

�2
i

= O
�
logM
n

�
.

Other results dealing with prediction loss and/or excess risks may be found in [Bunea et al., 2007]
and [de Geer, 2008]. The proven upper bounds are again of the order of (log M)/n.

3.3 Statement, interpretation and/or comments

The version of the Lasso parameterized by λ � 0 chooses u1 = (0, . . . , 0) and for t � 2,

ut(λ) 2 argmin
u2RN

24λ kuk1 +

t−1∑
t 0=1

`t 0(u)

35 = argmin
u2RN

24λ kuk1 +

t−1∑
t 0=1

∑
s2Nt 0

(u � xst 0 − yst 0)
2

35
The Lasso thus appears as a `1-penalized “follow the leader” (sequential least-squares

regression) forecaster. It enjoys both the shrinkage property of the ridge regression fore-
caster (`2-penalty) and variable selection, thus leading to improved prediction accuracy
and better interpretability.

The LARS-Lasso algorithm proposed in [Efron et al., 2004] enables to efficiently com-
pute all the Lasso solutions, i.e., the whole path λ 7→ ut(λ), at each round t � 2. Since
these paths can be shown to be continuous and piecewise-linear (and constant for λ large
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enough), they are completely described by the breakpoint values, denoted by λt,k, and the
corresponding coefficient vectors ut,k 2 R

N.

Note that this algorithm assumes the one-at-a-time condition — see [Efron et al., 2004].
Since its termination property has not been proven yet, one could add a stopping criterion.

We also highlight a numerical issue: the so-called numerical precision error has a ma-
jor influence on the (theoretically valid) algorithm sketched below. This is mainly due to
comparison tests (among which, sign tests), whose results can be incorrect in practice. We
thus recommand to adapt the implementation by considering the three following points:

– explicitly put the components of the coefficient vector ut,k to zero when theoretically
known to equal zero,

– omit terms known to (theoretically) equal zero within the formula defining bγk,
– compute the maximal absolute correlation bCk directly instead of using the seemingly
more efficient recursive formulation bCk+1 = bCk − bγk+1Ak+1.

3.4 Default value of the parameter

Implemented with default value of the parameter λ = 300.

3.5 Implementation

As mentioned in Section 3.3, it suffices to compute, at each round t � 2, the breakpoint
values λt,k and the corresponding coefficient vectors ut,k 2 R

N of the continuous and
piecewise-linear path λ 7→ ut(λ), for 0 � k � Kt. (We sort the λt,k in a non-increasing
fashion.) This is what the LARS-Lasso algorithm implements. Given those values and
the chosen parameter value λ, it then simply remains to

– compute the linear interpolation ut between (λt,k+1,ut,k+1) and (λt,k,ut,k), where
λ 2 �λt,k+1, λt,k�, if λ < λt,0 = maxk λt,k,

– let ut = ut,0 = (0, . . . , 0), if λ � λt,0.
To do so, at each round t � 2, the LARS-Lasso forecaster proceeds in loops and uses the
available data only through the following two quantities (both summations only go till
t− 1):

Gt =

t−1∑
t 0=1

∑
s2Nt 0

xst 0
�
xst 0
�>

and c0t =

t−1∑
t 0=1

∑
s2Nt 0

yst 0x
s
t 0 .

Gt is the Gram matrix of the covariates given the data till round t − 1, while c0t is the
empirical correlation vector (up to a multiplicative factor) between the covariates and the
observation vector on the same time range.

At the end of the k-th LARS-Lasso step, the set At,k � {1, . . . ,N} will denote the new
active set used at the next step, ct,k, the current correlation vector (up to a multiplicative
factor) between the covariates and the still unexplained part of the observations

ct,k = c0t −Gtut,k ,
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st,k =
�
sgn ct,k,m

�
1�m�N 2 {−1, 0, 1}N, the signs of its components, and λt,k = kct,kk∞,

the maximal absolute correlation (corresponding to the quantity referred to as Ĉk+1 in
[Efron et al., 2004]).

The whole algorithm can be implemented as is described below by using the following
additional notation. For a given matrix X and two subsets of indexes A1,A2 � {1, . . . ,N},
we denote by X|A1,A2

the matrix extracted of X by picking only rows with indexes in A1
and columns with indexes in A2; the ‘�’ symbol refers to the whole set {1, . . . ,N} and thus
enables to perform only row-wise or column-wise extractions.

Parameters: regularization parameter λ � 0

Initialization: u1 = (0, . . . , 0), G1 = 0, c0
1 = (0, . . . , 0)

For each round t = 1, 2, . . . , n,

(1) predict with ut;

(2) get the observations and compute

Gt+1 = Gt +
∑

s2Nt

xs
t (xs

t)
> and c0

t+1 = c0
t +
∑

s2Nt

ys
tx

s
t ;

(3) go through the LARS-Lasso loops:

Loop initialization:
k = 0, ct+1,0 = c0

t+1, st+1,0 = sgn(c0
t+1), λt+1,0 =

wwc0
t+1

ww∞,
At+1,0 = argmax1�m�N

��c0
t+1,m

��;
raise an error if #At+1,0 > 1

While (#At+1,k < N) or (#At+1,k = N and #At+1,k−1 < N)

(a) compute

∗ Gt+1,k+1 = Gt+1|At+1,k,At+1,k
,

∗ ewt+1,k+1 = G−1
t+1,k+1st+1,k,

∗ At+1,k+1 =
�
s>t+1,k ewt+1,k+1

�−1/2 (possible, by positiveness and
symmetry),

∗ wt+1,k+1 = At+1,k+1 ewt+1,k+1,
∗ at+1,k+1 = Gt+1|�,At+1,k

;

(b) compute (min+ stands for minimum over positive arguments only)

bγt+1,k+1 =
+

min
m2Ac

t+1,k

{
λt+1,k − ct+1,k,m

At+1,k+1 − at+1,k+1,m
,

λt+1,k + ct+1,k,m

At+1,k+1 + at+1,k+1,m

}
and the unique corresponding minimizer bm (if more than one, raise an
error);
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(c) compute (1/0 = +∞ by convention)

eγt+1,k+1 =
+

min
m2At+1,k

{
−ut+1,k,m

wt+1,k+1,m

}
and the possible minimizer em (if more than one, raise error);

(d) if eγt+1,k+1 < bγt+1,k+1, let At+1,k+1 = At+1,k − { em} and bγ = eγ ; else,
let At+1,k+1 = At+1,k [ { bm};

(e) compute ut+1,k+1,m = ut+1,k+1,m + bγt+1,k+1wt+1,k+1,m for m 2

At+1,k+1 and ut+1,k+1,m = 0 otherwise;

(f) compute ct+1,k+1 = ct+1,k − bγt+1,k+1at+1,k+1;

(g) update st+1,k to st+1,k+1 by recomputing the sign for the added index
(if any);

(h) compute λt+1,k+1 = kct+1,k+1k∞;

(i) set k = k+ 1;

(4) compute the linear interpolation given λ,

ut+1 =


λ− λt+1,k+1

λt+1,k − λt+1,k+1

�
ut+1,k − ut+1,k+1

�
if λt+1,k+1 � λ < λt+1,k,

(0, . . . , 0) if λ � λt+1,0.

3.6 Performances
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Figure 6: Practical performances with the N base forecasters: rmse versus λ for the
whole test range (left) and around the minimum (right).

The best rmse equals 20.76 and is obtained for the (a posteriori) choice of λ� � 320.
The Lasso thus has about the same best practical performance as the ridge regression
forecaster (20.77 on the same data). Note that this best rmse is already almost achieved
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by the “follow the leader” forecaster (20.79) as well.

As far as robustness is concerned, the optimal regularization parameter λ� is nearly
at the utmost right of the left flat region of the rmse curve. This suggests slightly
under-penalizing to avoid rapidly increasing rmse regions. The same remark holds for
variants of the Lasso — see, e.g., Section 4.

We also note that the Lasso has constant rmse for λ large enough. For theses values,
the constant weight ut = (0, . . . , 0) indeed solves the minimization problem, which is not
the case for the ridge regression forescater which only ensures that ut → (0, . . . , 0) as
λ → ∞. Future attempts to calibrate λ can thus be restricted on a bounded interval,
which is very convenient compared to, e.g., ridge regression.

3.7 Variable selection
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Figure 7: Evolution of the weights for λ = λ� � 320.

Figure 7 shows that some weights strictly equal zero at some time instants. The Lasso
thus acts as a variable selector, which is an important characteristic beyond coefficient
shrinkage.

More precisely, the number of zero weights globally decreases with time as shown
on Figure 8. This is quite natural since the penalty term has less influence as the num-
ber of terms in the cumulative loss term increases (hence leading to a loosened constraint).

Figure 8 also shows that all the base forecasters are selected, at least at two or three
time instants, by the Lasso (i.e., get non-zero weight). This tends to prove that the whole
ensemble is useful for the Lasso.
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Figure 8: Evolution of the number of zero weights (left) and corresponding indexes (right)
for λ = λ� � 320.

Finally, Figure 9 illustrates the way the Lasso selects the base forecasters. The low-
rmse ones are quite always kept, but the large-rmse ones can be left out (get zero weight)
or kept. The Lasso is right to keep them if, for instance, they only differ from the true
observations by a constant multiplicative factor, from which the weight put on the model
should then be close to. (This is where the fact that the combination is linear and not
necessarily convex plays a crucial role.)
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Figure 9: Role of rmse in the Lasso selection for λ = 300. Each of the 48 base forecasters
is plotted by two coordinates: its rmset0 (x-axis), and the number of time instants the
Lasso puts its weight to zero (y-axis).
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4 Lasso with Discounted Losses

4.1 References

This is a new forecaster. It is strongly motivated by the good performance shown for the
discounted version of the ridge regresssion forecaster.

4.2 Theoretical bound

None yet! But it should be easy to obtain one by approximation arguments once an
individual sequence-type regret bound for the Lasso has been proven.

4.3 Interpretation and/or comments

A version of the Lasso corrected by discount factors that puts more weight on more recent
losses.

4.4 Default values of the parameters

Implemented with default values of the parameters λ = 2.e4, β = 1.5, and γ = 150 .

4.5 Statement and implementation

Consider a decreasing sequence of positive numbers (βt)t�1. We take it depending on two
parameters γ > 0 and β > 0 only, say βt = 1 + γ/tβ, just as for the discounted ridge
regression forecaster. The version of the discounted Lasso parameterized by λ � 0 chooses
u1 = (0, . . . , 0) and, for t � 2,

ut(λ;β, γ) 2 argmin
u2RN

24λ kuk1 +

t−1∑
t 0=1

βt−t 0 `t 0(u)

35
= argmin

u2RN

24λ kuk1 +

t−1∑
t 0=1

βt−t 0
∑
s2St 0

�
u � xst 0 − yst 0

�235 .
Just as for the standard Lasso, the LARS-Lasso algorithm enables to efficiently compute
the whole discounted Lasso paths. At each round t � 2, the algorithm proceeds exactly in
the same way, after transforming the observations and the covariates into their discounted
counterparts. More precisely, the two quantities Gt and c0t are now defined by

Gt =

t−1∑
t 0=1

βt−t 0
∑
s2St 0

xst 0
�
xst 0
�>

and c0t =

t−1∑
t 0=1

βt−t 0
∑
s2St 0

yst 0x
s
t 0

(note that both summations only go till t− 1). This time, there is no efficient sequential
update for these quantities.

The implementation of the discounted Lasso is thus point-by-point similar to the stan-
dard Lasso implementation, except that there are now three parameters (λ � 0, γ > 0 and
β > 0) and that step (2) must be replaced by
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(2) get the observations and compute

Gt+1 =
∑
1�t 0�t

βt+1−t 0
∑
s2Nt 0

xst 0
�
xst 0
�>

and c0t+1 =
∑
1�t 0�t

βt+1−t 0
∑
s2Nt 0

yst 0x
s
t 0 ;

4.6 Performance
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Figure 10: Practical performance with the N base forecasters and the discount factors
β = β� � 1.5 and γ = γ� � 150: rmse versus λ for the whole test range (left) and around
the minimum (right).

Simulations on a (λ, β, γ)-mesh suggest that the best rmse approximately equals 19.31
and is obtained for the (a posteriori) choice of λ� � 2.e4, β� � 1.5, γ� � 150 . The dis-
counted Lasso thus has about the same best practical performance as the discounted ridge
regression forecaster (19.38 on the same data and with the same discount factors).

Recall that, with non-discounted losses, the “follow the leader” forecaster (sequential
least squares) performed almost as well as the ridge regression forecaster and the Lasso.
The situation is here a bit different with discounted losses, and the `1-penalty shows some
effectiveness (0.3 absolute decrease in the rmse w.r.t. the discounted “follow the leader”
with the same discount factors). The same remark held for the `2-penalty, but the dis-
counted Lasso also proves to be quite a strong variable selector — see Section 4.7.

We also note the influence of the discount factors on the rmse. Figure 11 shows that
the larger the discount amplitude γ (or the lower the discount exponent β), the larger the
optimal regularization parameter λ�(β, γ) 2 argminλ�0 rmset0(β, γ). This is quite natural
since the cumulative loss term in the criterion minimized by the Lasso is then larger.
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Figure 11: Practical performance with the N base forecasters for different values of the
regularization parameter λ and the discount factors β and γ. The parameter β is constant
on each single graph and respectively equals 0 (upper left), 1 (upper right), 1.5 (lower left)
and 2 (lower right).

Since the discounted Lasso is the standard Lasso applied to the “discounted” data, two
further comments on the standard Lasso hold as well. To ensure good performance with
sufficient robustness, we thus suggest slightly under-penalizing to avoid the part of the
rmse curve where it rapidly increases.

Idem for the calibration remark — the optimal regularization parameter λ can be
studied in a bounded interval.

4.7 Variable selection

Figures 12 and 13 shows the weights evolution for the optimal parameters. The average
number of zero weights on the “stationary” period (60 first days excluded) approximately
equals 17.6 . The discounted Lasso thus proves to be an even better variable selector than
the base version (6.5 zero weights on the average for λ = 320). This is quite natural since
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Figure 12: Evolution of the weights for λ = 2.e4, β = 1.5, and γ = 150.

it is more easy to discriminate between the base forecasters on a small period (the recent
past).
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Figure 13: Evolution of the number of zero weights (left) and corresponding indexes
(right) for λ = 2.e4, β = 1.5, and γ = 150.

The same remarks on the globally decreasing property of the number of zero weights,
or on the richness of the base forecasters ensemble, hold as in the no-discount case.

We eventually note that the larger the discount amplitude γ (or the lower the exponent
β), the weaker the variable selection — see Figure 14. This is again quite natural, since,
with constant λ, the cumulative loss term is then larger and leads to a loosened constraint.
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Figure 14: Evolution of the number of zero weights for λ = 2.e4 and for different values
of the discount factors β and γ. The parameter β is constant on each single graph and
respectively equals 0 (upper left), 1 (upper right), 1.5 (lower left) and 2 (lower right).
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5 Renormalized Lasso

5.1 References

This is a new variant of the Lasso that is defined for both undiscounted or discounted
losses. It is motivated by intuitive considerations — see Section 5.3 — and stochastic-
type theoretical results — see Section 5.2.

5.2 Theoretical bound

None yet! But, as mentioned in 3.2 to motivate the standard Lasso, some convergence
rates were proven in stochastic settings. Under assumptions of the kind of those described
therein, with large probability, the prediction loss (or the conditional excess risk) is of the
order of (logM)/n, if the regularization parameter r after renormalizing the cumulative
loss term is taken of the order of

p
(logM)/n.

5.3 Statement, interpretation and/or comments

The “renormalized Lasso” is defined as a generic modification of the Lasso for both undis-
counted or discounted losses. It consists in refining the Lasso penalty term

λ kuk1
into what we will call the “renormalized Lasso penalty” term,

λ

0@ t−1∑
t 0=1

|Nt 0 |
1Aα kuk1 ,

for the renormalized non-discounted version of the Lasso, or

λ

0@ t−1∑
t 0=1

βt−t 0 |Nt 0 |
1Aα kuk1 ,

for the renormalized discounted Lasso, where the sequence (βt)t�1 =
�
1+ γ/tβ

�
t�1

is
defined as in Section 4.5.

This new penalty term thus takes into account the (possibly discounted) total number
of observations seen so far, |N1| + . . .+ |Nt−1| (or βt−1 |N1| + . . .+ β1 |Nt−1| in case of dis-
counted losses) and prevents the λ penalty term from becoming negligible as t increases.
We chose to consider an additional parameter α, which controls the growth rate of the
penalty term. Intuitive values for α would be 1 or 1/2 (and α = 0 gets us back to standard
case).

More precisely, the renormalized Lasso is parameterized by λ � 0 and chooses u1 =

(0, . . . , 0) and, for t � 2,

ut(λ, α) 2 argmin
u2RN

24λ
0@ t−1∑
t 0=1

|Nt 0 |
1Aα kuk1 +

t−1∑
t 0=1

∑
s2Nt 0

�
u � xst 0 − yst 0

�235 (3)
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for the renormalized non-discounted version of the Lasso, and

ut(λ, α;β, γ) 2 argmin
u2RN

24λ
0@ t−1∑
t 0=1

βt−t 0 |Nt 0 |
1Aα kuk1 +

t−1∑
t 0=1

βt−t 0
∑
s2St 0

�
u � xst 0 − yst 0

�235 (4)

for the renormalized discounted Lasso.

This variant of the (possibly discounted) Lasso makes the minimization-criterion defin-
ing the Lasso more homogeneous and enables to better customize the Lasso penalty with
respect to the time round t. Consider the no-discount case for instance. Definition 3 is
equivalent to

ut(λ, α) 2 argmin
u2RN

26664λ
0@ t−1∑
t 0=1

|Nt 0 |
1Aα−1

kuk1 +
1

t−1∑
t 0=1

|Nt 0 |

t−1∑
t 0=1

∑
s2Nt 0

�
u � xst 0 − yst 0

�2
37775 (5)

The second term of the right hand side of Equation 5 is an average (summand divided
by number of terms in the summations). The choice of α = 1 thus corresponds to a
penalty of constant strength over time, that does not become negligible with time. That
was not the case for the (possibly discounted version of the) Lasso (where α = 0). Recent
stochastic-type theoretical results very briefly recalled in Section 5.2 suggest to take α− 1

of the order of −1/2, i.e., α of the order of 1/2 .

Finally, denote by λ�(α) (resp. λ�(α;β, γ)) the parameter value λ minimizing the first-
30-days-excluded rmse of the renormalized Lasso (resp. renormalized discounted version
of the Lasso) with parameter value α — assuming existence and uniqueness:

λ�(α) = argmin
λ�0

rmset0
�
u0(λ, α), . . . ,uT (λ, α)

�
for the renormalized Lasso, and

λ�(α;β, γ) = argmin
λ�0

rmset0
�
u0(λ, α;β, γ), . . . ,uT (λ, α;β, γ)

�
for the renormalized discounted version of the Lasso.

5.4 Default values of the parameters

Implemented with default values of the parameters

– λ = 3 and α = 0.5 for the no-discount case;

– λ = 60, α = 0.5, β = 1.5, and γ = 150 in case of discounted losses.

5.5 Implementation

The renormalization just affects the penalty term, and the LARS-Lasso algorithm enables
to compute the whole Lasso path in both no-discount or discount cases. It thus just re-
mains to change the point λ at which the linear interpolation is computed. More precisely,
one has to change step (4) of the Lasso implementation in Section 3.5 by what follows.
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(4) compute the linear interpolation given eλ := λ

 
t−1∑
t 0=1

|Nt 0 |
!α

,

ut+1 =


eλ− λt+1,k+1

λt+1,k − λt+1,k+1

�
ut+1,k − ut+1,k+1

�
if λt+1,k+1 � eλ < λt+1,k,

(0, . . . , 0) if eλ � λt+1,0.

for the renormalized non-discounted version of the Lasso, or

(4) compute the linear interpolation given eλ := λ

 
t−1∑
t 0=1

βt−t 0 |Nt 0 |
!α

,

ut+1 =


eλ− λt+1,k+1

λt+1,k − λt+1,k+1

�
ut+1,k − ut+1,k+1

�
if λt+1,k+1 � eλ < λt+1,k,

(0, . . . , 0) if eλ � λt+1,0.

for the renormalized discounted version of the Lasso.

5.6 Performance versus variable selection: Non-discounted losses

Here are the rmse of the renormalized non-discounted version of the Lasso for different
values of the parameters α and λ.

α 0 0.5 1

λ = 0 20.79 20.79 20.76

λ = 1 20.79 20.77 21.54

λ = 100 20.77 21.35 22.40
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Simulations on a (λ, α)-mesh suggest that the best rmse approximately equals 20.76
and is obtained for the (a posteriori) choice of α� = 0.5 and λ� = λ�(α�) � 2.82 — see
Figure 15.
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Figure 15: Practical performance with the N base forecasters versus λ for different values
of the renormalization parameter α (left), or versus α with the corresponding optimal
λ = λ�(α) (right).

No significant gain in rmse is thus enabled via renormalization (the best rmse is just
5e-4 lower than that of the standard Lasso, i.e., 20.76 on the same data).

As far as variable selection is concerned, an evolution of the weights similar to the one
for the standard Lasso can be observed — see Figure 16.
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Figure 16: Evolution of the weights for α = α� � 0.5 and λ = λ� � 2.81 (left) ;
corresponding zero weight indexes (right).

We first note the respective influence of the regularization parameter λ and the renor-
malization parameter α on the selectiveness of the renormalized Lasso. As shown on
Figure 17, the larger the regularization parameter λ or the renormalization parameter α,
the stronger the variable selection. This is again quite natural, since the penalty term is
larger in both cases.
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Figure 17: Evolution of the number of zero weights for α = α� � 0.5 and different values
of λ (left), and for λ = λ� � 2.82 and different values of α (right).
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The very interest of renormalizing w.r.t. variable selection lies in what could be ex-
pected intuitively: the selectivity of the renormalized version of the Lasso is more constant
over time when α is closer to 1 (hence a better interpretability or an improved selection
of a subset of the models), see Figure 18. A good compromise seems to be achieved with
α� = 0.5: the renormalized version of the Lasso proves to be effective and well selective
(at least more than with α = 0).

Another crucial remark deals with calibration: by allowing the penalty term to depend
on the total number of observations, the a posteriori optimal parameter λ may be used
with the same kind of data but on different (longer, shorter) time periods.
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Figure 18: Evolution of the number of zero weights for different values of α and the
corresponding values of λ = λ�(α).

Penalty renormalization might also be useful to get a somehow universal regularization
parameter λ, probably with the additional practical preprocessing that consists in renor-
malizing the data itself (reduction and centering of the observations and base predictions).

The same comments on robustness (slight under-penalization is suggested) and bounded
parameter search for their calibration ((λ, α) here) hold as in the unnormalized case
(α = 0); see Sections 3.6 and 4.6.
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5.7 Discounted losses

Simulations on a (λ, α, β, γ)-mesh suggest that the best rmse approximately equals 19.31
and is obtained for the (a posteriori) choice of β� � 1.5, γ� � 150, α� = 0.5 and
λ� = λ�(α�) � 60.
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Figure 19: Practical performance (rmse in blue) with the N base forecasters versus α
with the corresponding optimal λ = λ�(α) plotted in green (left); average number of
zero weights after current step t for different values of α and the corresponding values of
λ = λ�(α) (right). In both cases, β = 1.5 and γ = 150.

No significant gain in rmse stems from penalty renormalization (improvements are
just of the order of 1.e-3: Figure 19, left).

Yet, Figure 19 shows that the renormalized discounted versions of the Lasso are highly
selective. The one with α = 0.5 is even among the most selective ones (right), since the
average number of zero weights on the remaining time period [t, T ] is about one unit larger
with α = 0.5 than with α = 0 (no renormalization) or α = 1 (penalty of constant strength
over time).
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6 Calibration via Empirical Loss Minimization

6.1 References

This is a new calibration method. Tuning the parameters of learning algorithms has al-
ways been a delicate issue, and this is a new way out of it.

Some related practical attempts were made in stochastic scenarios to automatically
choose some good parameter values (see, e.g., the empirical study based on cross-validation
in [Gaïffas and Lecué, 2007]).

The previous theoretical results (see, e.g., [Cesa-Bianchi et al., 2007]), though totally
adaptive and automatic, led to cautious updates of the weights and in turn, to poor
performance, see [Mallet et al., 2007, Chapter 4].

6.2 Theoretical bound

None yet! The aim is to achieve a performance nearly as good as the one of the considered
parameterized prediction method tuned with the best parameter in hindsight.

6.3 Interpretation and/or comments

This forecaster is a generic modification of all individual sequence prediction methods that
depend on a (possibly vector-valued) tuning parameter. It automatically calibrates this
parameter by choosing the parameter value that minimizes the past cumulative loss of the
considered parameterized prediction method.

Several optimization methods might be used. We chose a grid-based optimization
procedure, but continuous methods, though necessarily inaccurate and more difficult to
control, might prove to be more effective. Good practical results were indeed obtained via
the BFGS optimization procedure.

6.4 Statement and implementation

Consider a parameterized weighted average forecaster whose predictions at step t are com-
puted with the weight vector vt = v(λ)

t as described on page 3, where λ 2 Λ � Rd is the
parameter to be automatically chosen. For instance, d = 1 and Λ = R�

+ for the exponen-
tiated gradient forecaster, the ridge regression forecaster and the Lasso.

We assume that v(λ)
1 = v�1 does not depend on λ, which is the case for every method

studied so far.

Our forecaster automatically calibrated by minimization of the empirical loss (ELM
calibrated forecaster thereafter) chooses v1 = v�1 and, for t � 2,

vt = v
�bλt

�
t
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where bλt 2 argmin
λ2Λ

t−1∑
t 0=1

∑
s2Nt 0

�
v(λ)
t 0 � xst 0 − yst 0

�2
.

We chose a finite logarithmically-scaled parameter grid eΛ � Λ to perform the above
minimization.

Can be implemented as follows.

Parameters: the grid eΛ
Initialization: v1 = v�1
For each round t = 1, 2, . . . , T,

(1) predict with vt;

(2) get the observations and compute bλt+1 as
bλt+1 2 argmin

λ2eΛ
t∑

t 0=1

∑
s2Nt 0

�
v(λ)
t 0 � xst 0 − yst 0

�2
;

(3) compute vt+1 as

vt+1 = v
�bλt+1

�
t+1 .

Algorithmic remark: if the v(λ)
t can be computed sequentially, one can save one order

of computational (but not space) complexity in time step t by maintaining all weights v(λ)
t

(for all λ 2 Λ).

6.5 Performance

We tested the calibration via empirical loss minimization on two simple prediction meth-
ods: the exponentiated gradient and the ridge regression forecasters.

We chose in both cases a uniform logarithmic grid:

– on [1e-8, 1e-4] for the exponentiated gradient;

– on [1, 1e6] for the ridge regression forecaster.

Below are summarized the first-30-days-excluded rmse of the resulting ELM calibrated
forecasters, for different numbers of grid points | eΛ| = 11, 101, 1001 and 10001.

These performances can be compared to the best rmse obtained with a constant pa-
rameter λ (“best” — this is the target), or to the rmse corresponding to a parameter value
of 1e-8 (resp., 1e6) for the exponentiated gradient forecaster (resp., ridge regression fore-
caster) (“bad” — these particular parameter values yield the worse rmse on the considered
optimization grid when used at all time rounds).
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| eΛ| 11 101 1001 10001 best bad

EG 21.77 21.75 21.81 21.80 21.47 24.35

Ridge 20.81 20.81 20.81 20.81 20.77 21.80

We first note that, for both ridge regression and the exponentiated gradient forecaster,
the grid does not need to be too dense. The obtained rmse are indeed very stable as | eΛ|

increases, and a choice of | eΛ| = 1000 seems correct — the underlying forecasters are robust
enough w.r.t. their parameters.

For both base forecasters, the rmse of the associated ELM calibrated forecaster is
not too far from the rmse that could be obtained with the beforehand knowledge of the
optimal choice of a constant parameter λ. The results are good, but could be better for
the exponentiated gradient forecaster (a difference in the rmse below 0.1 would be more
acceptable). Yet, the achieved performance is much better than the one obtained with
constant learning rate equal to 1e-8 (close to the ensemble mean).

As for the ridge regression forecaster, results are very good (one rmse point below a
bad one, and just 0.03 above the aimed one). Nevertheless, one should not forget that the
ridge rmse curve is very flat for small λ values, and then grows rapidly for λ large enough.
The difficulty in calibrating the ridge regression forecaster thus just lies in avoiding too
large λ (i.e., over-penalizing), which is not the case for the exponentiated gradient (large
learning rates are bad, but small ones as well).
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Figure 20: Evolution of the calibrated parameter bλt for the exponentiated gradient (left)
and the ridge regression forecasters (first 5 days excluded because of too large parameter
values, right). In both cases, | eΛ| = 1001 .

Figure 20 shows the evolution of the calibrated parameters for these base forecasters.
Note that the two main levels obtained for the exponentiated gradient forecaster are not
artificial because the grid is dense enough (about 250 points per decade).
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In a word, the numerical results presented above tend to prove that calibration via
empirical loss minimization is quite performant.

6.6 Graphical evolution of the weights
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Figure 21: Evolution of the weights for the ELM calibrated exponentiated gradient (left)
and the ELM calibrated ridge regression forecaster (right).
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7 Data Renormalization

7.1 References

This consideration of some pre- and post-processing stages is a widespread practical tech-
nique in the statistics community, at least in stochastic settings — see
[Cornillon and Matzner-Lober, 2007] for instance. It is intuitively motivated by the i.i.d.
case.

7.2 Theoretical bound

None yet! It is not even clear how to get one. An assumption of stochasticity is probably
needed.

7.3 Interpretation and/or comments

This meta-forecaster is a black-box trick that can be applied to all individual sequence
prediction methods, especially when they depend on some tuning parameters. It consists
in a pre-treatment, which centers and reduces the base forecasters predictions and the ob-
servations before the weight vector is computed (the post-treatment counterpart follows).

The aim is threefold. It is first strongly motivated by the need to get a somehow
universal parameter for parameterized prediction methods, e.g., independent of the range
of the individual sequence

It might also be interesting for prediction methods minimizing a penalized M-criterion
(penalized min-forecasters therafter), e.g., a cumulative square loss with a `1 or `2 penalty.
If the N base forecasts are preprocessed, they then are treated more equally by the regu-
larization.

Finally, centering the base predictions helps getting rid of the intercept term, and no
constant term in the linear model seems intuitively necessary when the observations are
centered too (hence a pure inner product vt � xst). This can also be viewed as a way of
partly eliminating the prediction biais.

7.4 Statement and implementation

We fix a weighted average forecaster F and will feed it with the following data.

For each t � 2 and each m = 1, . . . ,N, we define the empirical means and standard
deviations of the past base predictions as

xm,t−1 =
1

t−1∑
t 0=1

|Nt 0 |

t−1∑
t 0=1

∑
s2Nt 0

xsm,t 0 ,

and

bσm,t−1 =

0BBB@ 1
t−1∑
t 0=1

|Nt 0 |

t−1∑
t 0=1

∑
s2Nt 0

�
xsm,t 0 − xm,t−1

�2
1CCCA

1
2

.
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We also define the empirical means and standard deviations of the past base observations
as

yt−1 =
1

t−1∑
t 0=1

|Nt 0 |

t−1∑
t 0=1

∑
s2Nt 0

yst 0 ,

and

cσyt−1 =

0BBB@ 1
t−1∑
t 0=1

|Nt 0 |

t−1∑
t 0=1

∑
s2Nt 0

�
yst 0 − yt−1

�2
1CCCA

1
2

.

The meta-algorithm can be implemented as follows.

Parameters: A forecasting method F and its parameters

Initialization: As in F ; we denote by v1 the corresponding starting vector

For each round t = 1, 2, . . . , T,

(1) if t = 1, predict bys1 = v1 � xs1 at each station s; otherwise, predict

byst = yt−1 + cσyt−1 N∑
m=1

vm,t
xsm,t − xm,t−1bσm,t−1 ;

(2) get the observations and compute the quantities xm,t, bσm,t,
m = 1, . . . ,N, yt and cσyt;

(3) compute the weight vector vt+1 prescribed by the forecasting method
F when applied to the preprocessed past predictions and observations

xsm,t 0 − xm,tbσm,t , m = 1, . . . ,N and
yst 0 − ytcσyt ,

for every s 2 Nt 0 and t 0 = 1, . . . , t.

Note that in the rare cases when the weight vector vt computed by the forecast-
ing method F depends on the base predictions at time round t, these base predic-
tions should be preprocessed too before the computation of vt. This is for example
the case for the modified non-linear version of the ridge regression forecaster — see
[Cesa-Bianchi and Lugosi, 2006, page 320], or [Mallet et al., 2007, chapter 15].

7.5 Performance

We list below the results of some classical convex and linear prediction methods. They
can be compared to the best rmse obtained with a constant parameter on original data,
without the pre- and post-processing steps (“best” thereafter, optimal value denoted with
a star).
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The discount parameters were taken equal to β = 1.5 and γ = 150 for both the ridge
regression forecaster and the Lasso.

η 1e-3 0.01 0.03 0.1 1 best η�

EG 23.28 22.67 22.62 23.22 23.55 21.47 2e-5

λ 0.01 0.1 1 10 100 best λ�

Ridge 20.70 20.69 20.69 20.88 21.25 20.77 100

Ridge with discount 19.48 19.46 19.37 19.26 19.39 19.38 5.8e3

Lasso 20.70 20.69 20.68 20.91 21.64 20.76 300

Lasso with discount 19.48 19.48 19.44 19.24 19.32 19.31 2e4

Renormalized Lasso 20.68 21.05 21.74 22.91 35.07 20.76 3

Renormalized Lasso with discount 19.36 19.17 19.84 21.00 23.33 19.31 60

The best obtained rmse are all slightly smaller than in the case with no pre-/post-
processing of the data, except for the exponentiated gradient forecaster (because its com-
binations are convex).

Moreover, the corresponding optimal values for the parameters of the ridge regression
forecaster and of the Lasso lie in a more reasonable scale; and such values could turn out
to be more universal (provided pre-/post-processing steps are used). A sharper numerical
study would yet be necessary to determine more precisely the optimal parameter value
(we only reported the results of a sparse grid here).

Vivien Mallet, Sébastien Gerchinovitz, and Gilles Stoltz 39



A Further Look at Sequential Aggregation Rules for Ozone Ensemble Forecasting

8 Data Preprocessing

8.1 References and motivations

This meta-forecasting technique is inspired by the techniques of Section 7. It also ap-
plies to prediction methods minimizing a penalized M-criterion (penalized min-forecasters
thereafter), e.g., a cumulative square loss with a `1 or `2 penalty, and enables to regularize
the N base forecasters more equally.

It should not be applied to forecasting methods outputting convex combinations, only
to the ones yielding linear combinations.

8.2 Theoretical bound

None yet! Theoretical results were proved in [de Geer, 2008] for the Lasso in the i.i.d.
case.

8.3 Statement and implementation

We fix a weighted average forecaster F and will feed it with the following data.

For each t � 2 and each m = 1, . . . ,N, we define the empirical L2 norms of the past
base predictions as

kxmkt−1 =

0BBB@ 1
t−1∑
t 0=1

|Nt 0 |

t−1∑
t 0=1

∑
s2Nt 0

�
xsm,t 0

�2
1CCCA

1
2

.

The meta-algorithm can be implemented as follows.

Parameters: A forecasting method F and its parameters

Initialization: As in F ; we denote by v1 the corresponding starting vector

For each round t = 1, 2, . . . , T,

(1) if t = 1, predict bys1 = v1 � xs1 at each station s; otherwise, predict

byst =

N∑
m=1

vm,t
xsm,t

kxmkt−1 ;

(2) get the observations and compute the quantities kxmkt, m = 1, . . . ,N;

(3) compute the weight vector vt+1 prescribed by the forecasting method
F when applied to the preprocessed past predictions

xsm,t 0

kxmkt , m = 1, . . . ,N ,

for every s 2 Nt 0 and t 0 = 1, . . . , t.
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Note that in the rare cases when the weight vector vt computed by the forecasting
method F depends on the base predictions at time round t, the same comments as after
the statement of implementation in Section 7 apply.

8.4 Interpretation and/or comments

As mentioned in Section 8.1, this meta-method applied on penalized min-forecasters helps
penalizing the base predictions in a more homogeneous way. This can be illustrated on
the example of the ridge regression forecaster. For each time round t � 2, vt is indeed
defined as

vt = argmin
u2RN

264 t−1∑
t 0=1

∑
s2St 0

0@ N∑
m=1

um
xst 0,m

kxmkt−1 − yst 0

1A2 + λ

N∑
m=1

u2m

375
= argmin

u2RN

264 t−1∑
t 0=1

∑
s2St 0

0@ N∑
m=1

um

kxmkt−1 x
s
t 0,m − yst 0

1A2 + λ

N∑
m=1

kxmk2t−1
�

um

kxmkt−1

�2375
= kxmkt−1 argmin

u 02RN

264 t−1∑
t 0=1

∑
s2St 0

0@ N∑
m=1

u 0mx
s
t 0,m − yst 0

1A2 + λ

N∑
m=1

kxmk2t−1u 02m

375 ,
where we used the change of variables

u 0m =
um

kxmkt−1 , m = 1, . . . ,N .

Base forecasters with larger empirical Euclidian norms are thus more penalized.

8.5 Performance

We list below the results of some classical linear prediction methods. They can be com-
pared to the best rmse obtained with a constant parameter on original data, without the
pre-processing step (“best” thereafter, optimal value denoted with a star).

The discount parameters were taken equal to β = 1.5 and γ = 150 for both the ridge
regression forecaster and the Lasso.

λ 0.01 0.1 1 10 100 best λ�

Ridge 20.77 20.83 21.12 21.49 21.81 20.77 100

Ridge with discount 19.56 19.44 19.39 19.67 20.17 19.38 5.8e3

Lasso 20.79 20.78 20.77 20.78 21.17 20.76 300

Lasso with discount 19.61 19.61 19.60 19.54 19.33 19.31 2e4

Renormalized Lasso 20.77 20.80 21.34 22.00 22.28 20.76 3

Renormalized Lasso with discount 19.59 19.44 19.34 20.28 20.89 19.31 60
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There is no improvement in the rmse, and even a slight worsening of the results with
respect to the case with no pre-processing of the data. They are thus slighly larger than
in the case of centering and reduction of the past base predictions and observations — see
Section 7.

On the other hand, while the optimal value for the parameter of the ridge regression
forecaster can be expected to be universal w.r.t. the range of the individual sequence,
because of the `2 penalty is consistent with the square loss, this is not the case for the
Lasso and its variants.
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9 Selection of a Good Subset of the models by the Lasso

9.1 Motivations and comments

This aims at reducing the overall computational load by removing some less necessary
models, hence shortening the simulation stage. For the time being, we provide such a
study in hindsight only (i.e., run a first time the Lasso on the data, make a selection,
and then run all the algorithms again on the same data feeding them with the selected
subsample only).

This is a black-box trick that can be used preliminary to the consideration of any
forecaster.

9.2 Basic ideas

We sketch below the basic ideas underlying the Lasso preselection. More sophisticated
(e.g., adaptative) schemes could advantageously be implemented.

The Lasso preselection consists in first applying the Lasso to the whole ensemble on
a given period, and then removing the models whose weights were most often set to zero
by the Lasso. The remaining models are together called the “Lasso-preselected ensemble”.
The same can be done with the discounted version of the Lasso, yielding the “discounted-
Lasso-preselected ensemble”.

20 40 60 80
Number of zero-weight dates

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 f

re
q
u
e
n
cy

�=0�=0.5

10 20 30 40 50 60 70 80 90
Number of zero-weight dates

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 f

re
q
u
e
n
cy

�=0�=0.5�=1

Figure 22: Distribution of the number of zero-weight dates over all the 48 initial models.
The weights are computed by the non-discounted version of the Lasso (left), or by its
discounted version (right).

To choose the subset of models to remove, we used a graphical procedure. We con-
sidered the distribution of the number of zero-weight dates (on the usual 126-day period)
over the whole 48-member ensemble. Figure 22, left, plots the empirical cumulative dis-
tribution of the list of 48 elements, in which each element is the number of times a given
model gets zero weight from the Lasso. It shows that the first 60% models most often kept
by the Lasso cannot be easily distinguished (small variations in the number of zero-weight
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dates), whereas the remaining 40% were left out a significantly larger number of times.
We thus fixed the preselection level at 22 dates: only the models left out by the Lasso
a number of times less or equal to 22 make up the preselected ensemble. This way, we
removed 19 models (40%) among the 48 initial ones.

Since the distribution associated to the discounted version of the Lasso was almost
uniform, no evident preselection level could be decided. We thus chose to keep the first
60% most Lasso-selected models as in the no-discount case to compute the discounted-
Lasso-preselected ensemble (hence a preselection level at 68 dates).

9.3 Performance

We fixed the Lasso parameters to their optimal values (in hindsight) for the whole period
and the whole set of models to get a first run of these forecasters. We then computed
the Lasso-preselected and discounted-Lasso-preselected ensembles. We finally applied the
following prediction methods with their previous (in hindsight) optimal parameters, to
the whole test period but using only the subsamples (and computing the associated rmse
by discarding the first 30 days as a learning period, as usual).

A more sophisticated test (dissociating the preselection and prediction periods) would
certainly be preferable.

Preselection with Lasso Disc. Lasso Previous rmse for η =

EG 21.86 21.42 21.47 2e-5

Preselection with Lasso Disc. Lasso Previous rmse for λ =

Ridge 20.77 20.83 20.77 100

Ridge with discount 19.39 19.36 19.38 5.8e3

Lasso 20.77 20.82 20.76 300

Lasso with discount 19.43 19.31 19.31 2e4

Results are positive for both the ridge regression forecaster and the Lasso, since similar
rmse are obtained with 29 models instead of 48 in both cases.
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10 Results on a larger ensemble and on a longer period

Some usual convex or linear prediction methods were tested on a larger ensemble with
100 members and on a longer period [01/01/2001 – 30/12/2001], including the shorter
reference period considered before (summer 2001). Note that the former 48 models are
not included (even in the summer period) in this larger ensemble. The rmse are as usual
computed out of the short initial learning period of 30 days.

The smallest rmse obtained with a constant parameter can be compared to the one of
the best model: “Gain with 100” stands for the corresponding improvement (i.e., difference
between the two rmse) on the new, larger, ensemble. “Former gain” is the improvement
made w.r.t. the (best of the) 48-member ensemble used in the rest of this report on the
shorter period. We mostly indicate it to show that the interest of aggregation techniques
increases with time.

The best model out of the 100 ones has a rmse that equals 22.67 on the longer period
considered. We also indicate three oracles computed on the ensemble with 100 members:
the smallest rmse that can be achieved with a constant convex, respectively, linear, com-
bination equals 22.21, respectively, 20.00. The smallest rmse that can be achieved with a
time-varying linear combination (the “prescient”) finally equals 7.53.

10.1 Performance without data renormalization

Method (secondary parameters) Best rmse Opt. parameter Gain with 100 Former gain

EG 20.87 1.8e-5 1.81 0.96

Thresholded EG (γ = 1/100) 20.89 1.7e-5 1.78 0.96

Ridge 20.64 2.1e4 2.03 1.66

Ridge with discount 19.35 2.5e5 3.32 3.05

(β = 1.5 and γ = 150)

Lasso 20.69 4200 1.98 1.67

Lasso with discount 19.41 4.5e4 3.26 3.12

(β = 1.5 and γ = 150)

Renormalized Lasso (α = 0.5) 20.69 17 1.98 1.67

Renormalized Lasso with discount 19.42 190 3.26 3.12

(α = 0.5, β = 1.5 and γ = 150)

The linear oracle is now clearly outperformed.
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10.2 Performance with data renormalization

Data renormalization is considered as described in Section 7. Forecasting is carried out
with the tuning parameters recommended after the study therein. Note that a further
numerical study would be necessary to determine the optimal parameter values more pre-
cisely (with a finer grid, both here and in Section 7).

Method (secondary parameters) Best rmse Opt. parameter Gain with 100 Former gain

EG 22.69 8.5e-3 -0.02 -0.19

Ridge 20.51 100 2.16 1.74

Ridge with discount 19.28 1000 3.39 3.17

(β = 1.5 and γ = 150)

Lasso 20.55 10 2.12 1.75

Lasso with discount 19.32 100 2.12 3.19

(β = 1.5 and γ = 150)

Renormalized Lasso (α = 0.5) 20.59 0.01 2.08 1.75

Renormalized Lasso with discount 19.37 1 3.30 3.26

(α = 0.5, β = 1.5 and γ = 150)
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10.3 Performance of the ELM calibration algorithm

The same experiment configuration as in Section 6.5 was chosen.

| eΛ| 11 101 1001 best bad

EG 20.90 20.89 20.89 20.87 24.59

Ridge 20.66 20.66 20.66 20.64 21.10

ELM calibration thus proves to be very effective on the 100-member ensemble.

We can note on Figure 23 that the ELM calibrated exponentiated gradient parameter
tends to be constant in the limit. As for the ELM ridge regression forecaster, its parameter
can be shown to be approximately linear on the second half period (a penalty renormaliza-
tion as with the Lasso could thus help to get the right optimal penalty evolution without
the ELM procedure). Note also a sudden and temporary peak of this parameter at about
t = 50, which has not been explained yet.
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Figure 23: Evolution of the calibrated parameter bλt for the exponentiated gradient (left)
and the ridge regression forecasters. In both cases, | eΛ| = 1001 .
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