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CHAPTER 1

Foundations of the prediction of arbitrary sequences

Introduction. We focus in this chapter on a generic formulation of the problem of
sequential prediction, which highlights the meta-statistical point of view. Formally,
observations y1, . . . , yt are to be predicted sequentially; no assumption is made
on their generating process. In particular, these observations are not considered
the realization of some underlying stochastic process whose parameters should be
estimated in order to provide accurate predictions. Put differently, the problem at
hand is not of a statistical nature.

However, a finite number of base predictors (indexed by j = 1, . . . , N) are available;
at each time instance t, when the outcome to be predicted is yt, they form a
prediction fj,t. These predictors may rely on some stochastic modeling and use
statistical methods. The aim is to aggregate sequentially their predictions fj,t so as
to output a combined forecast ŷt that is as accurate as possible.

Because of this the considered framework is of a meta-statistical nature. This
chapter surveys some of its fundamental results and connects them to some other
results of the classical statistical setting. This presentation is followed by an
overview of my mathematical contributions to the foundations of the theory of
sequential prediction of arbitrary sequences.

Table of contents

1.1 Two (related) settings of sequential prediction of arbitrary sequences . . . . . . . 1
1.2 Regret minimization with exponentially weighted averages . . . . . . . . . . . . 9
1.3 Contributions to randomized prediction [2, 12] . . . . . . . . . . . . . . . . . . 15
1.4 Data-driven tuning of the parameters and data-dependent bounds [5] . . . . . . 23
1.5 Perspectives for future research . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.1 Two (related) settings of sequential prediction of arbitrary sequences

We start by describing the common features of the two settings. Two other features will
make them different: whether the set of predictions X is convex or not, whether the
observations may depend on the forecaster’s predictions or not. A brief history of the
field will then be addressed.
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1.1.1 Common features of the two settings

The aim is to predict sequentially observations y1, y2, . . . lying in a given set Y , on which
no assumption or restriction is made. Unlike the classical framework of statistics, this
sequence of observations is not to be modeled as the realization of a given underlying
stochastic process. The problem at hand is therefore not to estimate the characteristics
of such a process in order to predict its behavior and to form forecasts that are as
accurate as possible.

Sets of observations and predictions. At each time instance t, the statistician is to output
a forecast ŷt based on the past observations y1, . . . , yt−1; it belongs to a set X , possibly
different from Y . A typical case is when X is the convex hull of Y : the occurrence of an
event is to be predicted, i.e., Y = {0, 1}, and to this end the statistician may output a
probability of realization, i.e., he chooses an element of X = [0, 1].

Assessment of the quality of the predictions. The prediction ŷt is then compared to the
observation yt via a loss function ` : X × Y −→ R, which is often non negative. The
cumulative loss of the statistician on the first T time instances is then defined as

T∑
t=1

`
(
ŷt, yt

)
and his goal is to ensure that this loss is as small as possible.

Use of experts. A key ingredient is needed for this problem of prediction deprived of
any stochastic assumption to be meaningful: the statistician may resort to some experts.
The latter correspond to base predictors that output at each time instance a forecast
based on the past observations.

More precisely, they come in finite number N and are indexed by j = 1, . . . , N (or
by i when another ghost variable is required). Expert j provides at time instance t a
forecast denoted by fj,t ∈ X and that depends on y1, . . . , yt−1 and possibly on other
private information. The statistician can then form a combined forecast based not only
on the past observations y1, . . . , yt−1 but also on the past and present forecasts of the
experts, fj,s where 1 6 1 6 t and j = 1, . . . , N . The consideration of the past forecasts
of the experts is useful to assess in some sense the expected quality of their present
forecasts.

Aim and methodology. The ultimate goal is to ensure that the cumulative loss of the
statistician is small. A path to this will be to guarantee that this loss is not much larger
than, e.g., the cumulative loss of the best expert,

min
j=1,...,N

T∑
t=1

`(fj,t, yt) ,
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where we however note that the index j?T of the expert achieving the minimum above
may change over time and is in general not known in advance.

Two underlying assumptions to determine

The general description above is ambiguous (on purpose). Two features need to be
detailed: whether the set of observations X is convex or not; whether the generating
process of the observations yt and the experts may react or not to the sequential
forecasts of the statistician. Therefore, four instances of this general framework could
be considered but for the sake of simplicity we only study the following two: on the one
hand, the setting where X is convex and no reaction to the forecasts is allowed; and on
the other hand, the one where X is arbitrary and where reactions are allowed.

1.1.2 First setting: Sequential convex aggregation

Here, X is convex and the sequence of observations y1, y2, . . . is thought of as being fixed
in advance but revealed element by element at each time instance t. The statistician
is also constrained to only form forecasts ŷt obtained as convex combinations of the
experts forecasts fj,t.

Experts and nature. The generating process is independent of the statistician and is
therefore identified to nature. As for the terminology of “experts”, it stems from the
fact that in addition to possibly relying on statistical techniques, they may also resort
to contextual information, use numerical resources, and even call for human expertise.
They will essentially be considered as black boxes in the rest of this chapter. Later on,
when applications to real data will be discussed in Chapter 3, we will of course indicate
for each application how the experts were constructed in practice.

Definition of a strategy of prediction by convex aggregation. Such a strategy S associates
with the information available at the beginning of each time instance t (that is, to the
past observations and to the present and past forecasts of the experts) a convex weight
vector pt = (p1,t, . . . , pN,t) to be used to aggregate the experts forecasts in X as follows:

ŷt =
N∑
j=1

pj,tfj,t .

Formally, the weight vectors pt are chosen in the simplex P of RN , that is, they satisfy

∀i ∈ {1, . . . , N}, pi,t > 0 and
N∑
j=1

pj,t = 1 .

Figure 1.1 summarizes the prediction protocol considered in this setting.
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Parameters: Y, an arbitrary set of observations; X , a convex set of predictions; N experts
Initialization: nature chooses a sequence of observations y1, y2, . . . in Y
At each time instance t = 1, 2, . . .,

1. The experts publicly output forecasts fj,t ∈ X , for j = 1, . . . , N , based on the
observations y1, . . . , yt−1 and possibly on some own contextual information;

2. The statistician picks a convex weight vector pt ∈ P and forms the aggregated forecast
in X

ŷt =
N∑
j=1

pj,tfj,t ;

3. Nature reveals the observation yt ∈ Y.

Figure 1.1. The prediction protocol for the setting of sequential convex aggregation.

Assessment of the quality of a strategy via its regret

A strategy S cannot be assessed in an absolute way: when all experts are poor, no
strategy is likely to exhibit a good performance. This is why a relative criterion –called
the regret of a strategy S– is usually considered; it compares the performance of S to
the one of the best constant convex combination of the experts forecasts.

Notion of regret. We define the cumulative losses of S and of each convex weight vector
q ∈ P as, respectively,

L̂T (S) =
T∑
t=1

`
(
ŷt, yt

)
=

T∑
t=1

`

 N∑
j=1

pj,tfj,t, yt


and LT (q) =

T∑
t=1

`

 N∑
j=1

qjfj,t, yt

 .

The (convex) regret of S on the first T time instances is then defined as the difference
between these cumulative losses,

RT (S) = L̂T (S)− inf
q∈P

LT (q) .

The quantities L̂T (S), LT (q), and RT (S) depend of course on the observations y1, . . . , yT
and on the predictions of the experts even if, for the sake of simplicity, we do not explicitly
recall this dependency in the notation.

Upper bounds on the regret. The regret RT (S) is at most of the order of T whenever the
loss function is bounded. We aim at constructing strategies with vanishing per-round
regrets, i.e., with o(T ) regrets; we in fact aim at the more ambitious goal of obtaining
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uniform sublinear bounds on the regrets, where uniformity is over all sequences of
observations and experts forecasts. The latter uniformity indicates that all possible
sequences of observations in Y can happen; it gives rise to the terminology of arbitrary
(or individual) sequences on the one hand and of robust aggregation on the other hand.

Aim 1.1. Design strategies S of prediction by convex aggregation minimizing the regret,
that is, such that

lim sup
T→∞

sup
{
RT (S)
T

}
6 0 ,

where the supremum is over all possible sequences of observations and of experts
forecasts.

Interpretation as a meta-statistical problem

Trade-off between two errors: approximation versus estimation. The aim stated above
refers to the minimization of the regret while the ultimate goal is to ensure that the
cumulative loss of the statistician is small. But the decomposition

L̂T (S) = inf
q∈P

{
LT (q)

}
+RT (S)

indicates that this cumulative loss is the sum of an approximation error (given by
the cumulative loss of the best constant convex combination of the experts) and an
estimation error (given by the regret, which measures the difficulty induced by the
sequential constraint to come close to the performance of this best constant convex
combination). We recall in passing that the value of the optimal constant convex weight
vector over the time instances from 1 to T may vary with T .

In practice there exists a dilemma between the use of a sufficiently large number
N of experts with varied enough behaviors (to ensure a small enough approximation
error) and the fact that the regret RT (S) (the estimation error in some sense) of course
increases with N . However we will see that in general this increase is mild enough: of
the order of

√
lnN . It thus seems that in practice the use of quite large a number of

experts is beneficial.

How to cook up experts? The main question at hand is then to design the experts. For
the time being we only identified each expert with a forecasting black box. We will
explain in detail on the data sets studied in Chapter 3 how the experts were constructed
but allude now to a generic mechanism to produce experts; the latter illustrates why
the problem of sequential aggregation is of a meta-statistical nature.

In a classical statistical problem where the observations (yt) are the realizations of
some underlying stochastic process (Yt), stochastic methods lead to random predictions:
we denote by fj,t the realization of the forecast of the j–th stochastic method at time
instance t. Put differently, we identify each method with an expert. Instead of selecting
a given method we consider several of them and aggregate their predictions. This
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aggregation is performed in a robust way not taking into account the possible stochastic
nature of the observations. The advantage is that the stochastic methods usually
crucially rely on one or more user parameter(s); the considered methodology is to create
several instances of them, each with different sets of user parameters, which makes the
precise tuning of these parameters less crucial.

In a nutshell. We considered in this section the robust and non-stochastic aggregation of
base forecasters (the experts) that may however depend on stochastic methods. In this
sense the problem at hand is of a meta-statistical nature: we do not aim at improving
the individual performance of the predictors but at combining well their forecasts.

1.1.3 Second setting: Randomized prediction

When the prediction set X is not convex, it is not always possible or easy to form a
legal aggregated forecast based on the experts forecasts. A simple way out of it to
allow prediction strategies to pick an expert and follow its forecast. The following
counter-example proves that it is necessary in general to pick the expert at random:
let X = Y = {0, 1}, consider a loss function ` given by a distance on {0, 1}2 and two
experts with constant forecasts over time, 0 and 1 respectively. Because of this random
choice, the forecasts of the statistician themselves are random, hence the terminology of
“randomized prediction.”

Another modification of the previous setting: reactions to the forecasts. We also assume
now that the generating process of the outcomes may react to the forecasts output by
the statistician. The statistician is playing against an adversary that has also a strategy.
One can even have this adversary control the experts and choose their forecasts.

Random draws of experts forecasts. The statistician still chooses in this setting an
element pt = (p1,t, . . . , pN,t) in P , but the latter is now interpreted as a true probability
distribution. The index of an expert is then drawn at random according to pt and the
statistician simply outputs the forecast of this expert. The corresponding prediction
protocol is summarized in Figure 1.2.

Hidden random dependencies. We denote by σ and τ the respective strategies of the
statistician and of the adversary. We do not define them formally in this general
framework yet but will do it in a simplified randomized setting in Section 2.1. The last
item of the description in Figure 1.2 indicates however (though in an informal way) that
they associate with some past information their choices for the present time instance.
For now we underline some difficulties thanks to an example. For instance, the choice
of yt at a given time instance t > 2 depends, among others, on ŷ1, . . . , ŷt−1, hence on
the random variables I1, . . . , It−1. Thus, even when the strategy τ is deterministic,
the resulting observations yt are random variables; we call a deterministic strategy
any strategy that associates with the available information a deterministic element
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Parameters: Y, an arbitrary set of observations; X , an arbitrary set of predictions; N
experts
At each time instance t = 1, 2, . . .,

1. Based on the information provided by past time instances, the adversary picks an
observation yt ∈ Y and the forecasts fj,t ∈ X of the experts j = 1, . . . , N ;

2. Only the experts forecasts are revealed to the statistician for now;
3. Based on the latter and on the information provided by past time instances, the

statistician chooses a probability distribution pt ∈ P, draws an expert index It at
random according to pt, and outputs the forecast

ŷt = fIt,t ;

4. The adversary and the statistician publicly reveal their choices, that is, the observation
yt ∈ Y and the forecast ŷt ∈ X (as well as the probability distribution pt and the
index It); both of them will recall these quantities in the next rounds and will be able
to base their decisions on them.

Figure 1.2. The prediction protocol for the setting of randomized prediction.

of XN × Y in the first item of the description in Figure 1.2. This argument extends
to all quantities at hand, namely, to the experts forecasts fj,t and to the probability
distributions pt used for the random draws of experts indexes.

Extension of the definition of the regret

Here again –and for the same reasons as above– the evaluation of a strategy σ cannot
be carried out in an absolute manner: if the adversary only picks poor experts forecasts
no randomized prediction strategy is likely to perform well.

Regret with respect to the best expert, all things being equal. The cumulative losses of
the statistician and of each expert j depend on the strategies σ and τ they respectively
use: they are defined as

L̂T (σ, τ) =
T∑
t=1

`
(
ŷt, yt

)
=

T∑
t=1

`
(
fIt,t, yt

)
and Lj,T (σ, τ) =

T∑
t=1

`(fj,t, yt) .

The regret of σ against τ on the first T time instances is then given by the difference
between these cumulative losses,

RT (σ, τ) = L̂T (σ, τ)− min
j=1,...,N

Lj,T (σ, τ) . (1.1)
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Upper bounds on the regret. The regret RT (σ, τ) is at most of the order of T when
the loss function is bounded. Here again, we aim at constructing strategies σ with a
vanishing per-round regret, no matter what the strategy τ of the adversary is. However,
it is not possible in general to ensure a uniform bound on the regret, where uniformity
would be with respect to all possible strategies τ .

Aim 1.2. Design randomized prediction strategies σ minimizing the regret, that is,
such that

sup
τ

{
lim sup
T→∞

RT (σ, τ)
T

}
6 0 a.s.,

where the supremum is over all possible strategies of the adversary (and where the
almost-sure qualification is with respect to the auxiliary randomizations used by the
statistician and possibly by his adversary).

A setting with a somewhat uneasy interpretation

The issue: what the regret does not measure. We underline that the comparison to the
best expert is performed in hindsight all things being equal, which raises an interpretation
issue in the present setting where the adversary reacts to the forecasts of the statistician.
Indeed, for a given expert j, if the statistician has consistently output the forecast of
this expert, he would not have got in general Lj,T (σ, τ) as his cumulative loss –but
rather Lj,T

(
σj , τ

)
, where σj is the notation for the strategy that picks pt = δj , the

Dirac mass on j, independently of the past and of the index of the time instance. In
particular, one would ideally wish to bound the difference between

L̂T (σ, τ) and min
j=1,...,N

Lj,T
(
σj , τ

)
;

but this is –in general– not feasible and this is why the definition of the regret according
to RT (σ, τ) is considered.

Solutions. On the one hand [dFM03] suggests to restrict the set of possible strategies τ
of the adversary to a subclass formed by the strategies with bounded rationality. On the
other hand, if one is not ready to perform this restriction –as is my case– the defense of
the notion of regret RT (σ, τ) will not be intrinsic and elementary anymore, as was the
case in the setting of sequential convex aggregation; several pages at the beginning of
Chapter 2 will therefore be devoted to such a defense by means of convergences to sets
of equilibria in the context of repeated games.

1.1.4 A brief history of the sequential prediction of non-stochastic sequences

The first contributions to the sequential prediction of arbitrary sequences (chosen or not
by an adversary) were published in the 50s by Hannan [Han57] and Blackwell [Bla56],
two statisticians who stated fundamental results for the theory of repeated games in these
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two articles. Cover [Cov65] proposed the first study of the minimax orders of magnitude
of the regret, in the context of the prediction of binary sequences A related setting is the
compression of arbitrary sequences in information theory, where the pioneering results
were written by Ziv [Ziv78, Ziv80] and Lempel and Ziv [LZ76, ZL77]; they showed how
to compress an arbitrary data sequence as well as the best finite automaton. Finally,
the introduction of the problem in machine learning was performed by Littlestone
and Warmuth [LW94] and Vovk [Vov90]; Cesa-Bianchi, Freund, Haussler, Helmbold,
Schapire and Warmuth [CBFH+97], Foster [Fos91], Freund and Schapire [FS97], and
Vovk [Vov98] conceived some of the most fundamental results in the field. A thorough
and detailed state of the art as well as an historical survey of the advances between the
50s and 2006 can be found in the monography [CBL06].

1.2 Regret minimization with exponentially weighted averages

Never put all the weight on the current best expert! A natural strategy –but that fails
to achieve the aims stated above as its regret can be of the order of T– is to use at time
instance t the forecast of the expert that turned out to be best on the instances 1 to t−1.
The issue with this strategy is essentially that it may assign far away weights, namely,
0 and 1, to two experts with very close cumulative performance. A wiser idea is to
assign weights (or probabilities) pj,t which depend in a smoother way on the cumulative
performance of expert j on the instances 1, . . . , t− 1; the better the performance (the
smaller the cumulative loss), the larger the weight –but as a precaution no weight should
be null.

1.2.1 A fundamental result in a generic setting

The lemma stated below is one of the most fundamental –and also one of the most
celebrated– results in prediction of individual sequences.

A generic setting. It is stated in a generic, non strategic, setting where only fixed-in-
advance sequences of instantaneous losses are considered; we study therein bounds on a
pseudo-regret defined in terms of convex weight vectors sequentially constructed based on
the past instantaneous losses only. We will explain later on how to instantiate the results
presented here to derive regret-minimizing strategies for both the settings of sequential
convex aggregation and of randomized prediction (see Sections 1.2.2 and 1.2.3).

References. Several versions of this lemma were successively given by [LW94, Vov90,
Vov98, CBFH+97, FS97]. We reproduce below an elementary proof suggested by [CB99]
and that can also be found in [CBL06, Section 2.2]. The strategy defined in the following
lemma is called the exponentially weighted average strategy (with learning rate η > 0).
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Lemma 1.3. Fix two real numbers m 6 M . For all η > 0 and for all arbitrary
sequences of elements `j,t ∈ [m,M ], where j ∈ {1, . . . , N}, and t ∈ {1, . . . , T},

T∑
t=1

N∑
j=1

µj,t`j,t − min
i=1,...,N

T∑
t=1

`i,t 6
lnN
η

+ η
(M −m)2

8 T , (1.2)

where for all j = 1, . . . , N , we let µj,1 = 1/N and for t > 2,

µj,t =
exp

(
−η

∑t−1
s=1 `j,s

)
∑N
i=1 exp

(
−η

∑t−1
s=1 `i,s

) . (1.3)

Proof. The proof is based on Hoeffding’s lemma, which we recall first. Consider a
bounded random variable X with values in [m,M ]; then, for all s ∈ R,

lnE
[
esX

]
6 sE[X] + s2

8 (M −m)2 . (1.4)

In particular, for all t = 1, 2, . . ., with the convention (for the case where t = 1) that a
sum over no element is null,

−η
N∑
j=1

µj,t`j,t > ln
∑N
j=1 exp

(
−η

∑t
s=1 `j,s

)
∑N
i=1 exp

(
−η

∑t−1
s=1 `i,s

) − η2

8 (M −m)2 ;

summing these inequalities over t and dividing both sides by −η < 0 yield

T∑
t=1

N∑
j=1

µj,t`j,t 6 −
1
η

ln
∑N
j=1 exp

(
−η

∑T
s=1 `j,s

)
N

+ η
(M −m)2

8 T .

The proof is concluded by lower bounding the sum of positive terms in the logarithm of
the right-hand side by the largest of these terms. �

Optimal theoretical tuning of η when the number of instances T is fixed and known...

All regret bounds exhibited in the sequel will be of the form of the right-hand side
of (1.2). It is thus crucial to check that the latter is indeed sublinear.

Optimization of the theoretical bound. When the number of instances T as well as the
bounds m and M on the losses are known beforehand one can resort to the tuning
η =

(
1/(M − m)

)√
(8 lnN)/T , which minimizes the right-hand side of (1.2). The

obtained uniform regret bound then equals (M −m)
√

(T/2) lnN . But this tuning is
barely feasible in practice: first, there is often no reason to know m and M beforehand;
second and most importantly, T cannot be thought of as being fixed.
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... But in fact T →∞

The aims 1.1 and 1.2 both require that the number of time instances T tends to infinity.
But for all constant choices of η > 0, the right-hand side of (1.2) grows then linearly
fast so that none of these aims can be fulfilled.

Automatic and sequential tuning of the learning rates. The trick to solve the issues above
is to have the learning rate η depend on the past. The weights µt ∈ P are now defined
(component-wise) in the following way: for all experts j, we choose µj,1 = 1/N and for
t > 2,

µj,t =
exp

(
−ηt

∑t−1
s=1 `j,s

)
∑N
i=1 exp

(
−ηt

∑t−1
s=1 `i,s

) , (1.5)

where the learning rate ηt > 0 at instance t may depend on the past elements `i,s, where
s ∈ {1, . . . , t− 1} and i ∈ {1, . . . , N}. In fact, ηt must even depend on these elements
since, for instance, no a priori knowledge on the values m or M is available in general.

Existence of a suitable strategy. The key result of [ACBG02] and [5] is stated somewhat
informally below but will be made formal later on, in Section 1.4.

Theorem 1.4. There exists an explicit definition of each of the learning rates ηt > 0
based solely on the elements `i,s, where s ∈ {1, . . . , t− 1} and i ∈ {1, . . . , N}, such that
the strategy (1.5) ensures the following uniform bound. For all real numbers m 6M ,
for all arbitrary sequences of elements `j,t ∈ [m,M ], where j ∈ {1, . . . , N} and t ∈ N?,
for all values of T ∈ N?,

T∑
t=1

N∑
j=1

µj,t`j,t − min
i=1,...,N

T∑
t=1

`i,t 6 2(M −m)
√
T lnN + 6(M −m)(1 + lnN) .

Remark in passing. We focus on upper bounds on the regret in the rest of this
chapter. They will all be optimal in some sense as the upper bounds of Lemma 1.3
and of Theorem 1.4 are also optimal in some sense. Such an optimality statement
will only be detailed in the case of label-efficient prediction of Section 1.3.1.

1.2.2 Application to randomized prediction

Assumption 1.5. We assume in this section that the loss function ` : X × Y → R
is bounded, with values in an interval denoted by [m,M ] (but that is not necessarily
known beforehand).

Analysis when the parameters T , m, and M are known beforehand

In this case it suffices to consider a constant learning rate η > 0.
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Statement of the strategy. The strategy Eη –called randomized exponentially weighted
average strategy– resorts to the uniform distribution for p1, that is, pj,1 = 1/N for
j = 1, . . . , N ; and for time instances t > 2, it chooses the probability distributions pt
defined component-wise as follows: for all j = 1, . . . , N ,

pj,t =
exp

(
−η

∑t−1
s=1 `(fj,s, ys)

)
∑N
i=1 exp

(
−η

∑t−1
s=1 `(fi,s, ys)

) . (1.6)

It then draws an expert index It at random according to pt and outputs the forecast
ŷt = fIt,t.

Analysis. By applying Lemma 1.3 (which holds in a deterministic manner for all
sequences of real numbers `j,t) to the random variables `(fj,t, yt), one gets the almost-
sure bound

T∑
t=1

N∑
j=1

pj,t`(fj,t, yt)− min
i=1,...,N

T∑
t=1

`(fi,t, yt)

6
lnN
η

+ η
(M −m)2

8 T = (M −m)

√
T

2 lnN (1.7)

when η is properly tuned as a function of N , m, M , and T . We denote by Et the
conditional expectation with respect to the choices made by the statistician and the
adversary in the past time instances 1 to t− 1. Since this conditional expectation fixes
the value of pt but not the one of the random choice of It according to pt, we get

Et
[
`
(
fIt,t, yt

)]
=

N∑
j=1

pj,t`(fj,t, yt) .

Remark in passing. When the adversary’s strategy τ is deterministic, i.e., when
he does not resort to an auxiliary randomization, the conditional expectation Et is
exactly the one with respect to the past indexes I1, . . . , It−1.

The Hoeffding–Azuma inequality next ensures that with probability at least 1− δ,

T∑
t=1

`
(
fIt,t, yt

)
−

T∑
t=1

N∑
j=1

pj,t`(fj,t, yt) 6 (M −m)

√
T

2 ln 1
δ
. (1.8)

Combining (1.7) and (1.8) shows that for all time instances T , there exists a tuning η?T
for the learning rate (as a function of T , N , m, and M , even if only the dependency in
T is made explicit in the notation) such that the regret of Eη?

T
is bounded as follows.

For all strategies τ of the adversary and with probability at least 1− δ,

RT
(
Eη?

T
, τ
)
6 (M −m)

√
T

2

(
√

lnN +
√

ln 1
δ

)
. (1.9)
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How to minimize the regret (how to fulfill Aim 1.2)

We denote by Eadapt the strategy obtained by instantiating the strategy of Theorem 1.4
to the random variables `(fj,t, yt), exactly as we derived above the strategies Eη from
Lemma 1.3.

This theorem and the Hoeffding–Azuma inequality show that for all strategies τ of
the adversary, all time instances T , and all confidence levels 1− δT ∈ ]0, 1[,

RT
(
Eadapt, τ

)
6 (M −m)

√
T

(
2
√

lnN +
√

1
2 ln 1

δT

)
+ 6(M −m)(1 + lnN) .

In particular, taking δT = 1/T 2, the Borel–Cantelli lemma implies that for all strategies
τ of the adversary,

lim sup
T→∞

RT
(
Eadapt, τ

)
(M −m)

√
T lnT

6 1 a.s.,

which shows among others that Eadapt minimizes the regret (that it fulfills Aim 1.2).

Remark in passing. By resorting above to a maximal version of the Hoeffding–
Azuma inequality, by applying it at the instances of the form Tr = 2r, and by
combining it with the Borel–Cantelli lemma, one even gets that for all strategies τ
of the adversary,

lim sup
T→∞

RT
(
Eadapt, τ

)
(M −m)

√
2T ln lnT

6 1 a.s.,

which resembles the law of the iterated logarithm (the latter states that the
√

ln lnT
term is necessary). This is to be compared with the results in the setting of convex
aggregation, where the order of magnitude of the regret in T is

√
T , without any

additional logarithmic factor in T .

1.2.3 Application to sequential convex aggregation

Assumption 1.6. We assume in this section that X is a bounded convex subset of Rd
and that for all y ∈ Y, the functions `( · , y) are convex and differentiable over X , with
gradients denoted by ∇`( · , y); in addition, these gradients are uniformly bounded in
the supremum norm as y varies.

Plain linearization is not sufficient. To apply Lemma 1.3 we need to upper bound the
regret by a a quantity linear in the convex weight vectors pt. However the linear bound
that proceeds from the convexity of ` in its first argument,

T∑
t=1

`

 N∑
j=1

pj,tfj,t, yt

 6 T∑
t=1

N∑
j=1

pj,t `(fj,t, yt) ,

is too crude to allows a control of the cumulative loss of the statistician against smaller
quantities than the cumulative loss of the best single expert.
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Parameter : learning rate η > 0
Initialization : p1 is the uniform weight vector, that is, pj,1 = 1/N for j = 1, . . . , N
For all time instances t = 2, 3, . . . , T , the convex weight vector pt is defined component-wise
as follows: for all j = 1, . . . , N ,

pj,t =
exp

(
−η
∑t−1
s=1

˜̀
j,s

)
∑N
i=1 exp

(
−η
∑t−1
s=1

˜̀
i,s

) ,
where the pseudo-losses equal

˜̀
j,s = ∇`

(
N∑
i=1

pi,sfi,s, ys

)
· fj,s .

Figure 1.3. The strategy Egrad
η uses an exponentially weighted average of the cumulative

gradients of the losses.

Use of a slope inequality. What follows was proposed by [KW97, CB99] and can also
be found in [CBL06, Section 2.5]. We stated an explicit condition of differentiability
in Assumption 1.6 –despite the fact that all convex functions are subdifferentiable
on the interior of the convex sets on which they are defined, a property that would
(almost) have been sufficient here. In any case, these (sub)differentiability properties
lead to so-called slope inequalities: for all convex weight vectors p et q, for all forecasts
f1, . . . , fN ∈ X , and all observations y ∈ Y,

`

 N∑
j=1

pjfj , y

− `
 N∑
j=1

qjfj , y

 6 ∇`
 N∑
j=1

pjfj , y

 ·
 N∑
j=1

pjfj −
N∑
j=1

qjfj

 . (1.10)

We next define the following pseudo-losses, for each expert j ∈ {1, . . . , N} at each time
instance t ∈ {1, . . . , T}:

˜̀
j,t = ∇`

(
N∑
i=1

pi,tfi,t, yt

)
· fj,t (1.11)

and consider the family of aggregation strategies of Figure 1.3; each of them is parame-
terized by η > 0 and will be referred to as Egrad

η . The regret of Egrad
η is then bounded

by

RT
(
Egrad
η

)
= sup

q∈P

T∑
t=1

`
 N∑
j=1

pj,tfj,t, yt

− `
 N∑
j=1

qjfj,t, yt


6 sup

q∈P

T∑
t=1

 N∑
j=1

pj,t ˜̀j,t − N∑
j=1

qj ˜̀j,t
 =

T∑
t=1

N∑
j=1

pj,t ˜̀j,t − min
i=1,...,N

T∑
t=1

˜̀
i,t ,
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where the inequality follows from (1.10) and the second equality from the fact that the
obtained upper bound is linear in q, hence is maximized by a weight vector equal to a
Dirac mass on a given expert. A straightforward application of Lemma 1.3 leads to the
main result of this section.

Theorem 1.7. When Assumption 1.6 is satisfied, the pseudo-losses defined in (1.11)
are bounded, with values in some interval [−C,C], and for all η > 0,

sup
{
RT
(
Egrad
η

)}
= sup

{
L̂T
(
Egrad
η

)
− inf

q∈P
LT (q)

}
6

lnN
η

+ η
C2

2 T ,

where the supremum is over all possible sequences of observations and of experts forecasts.
In particular, the tuning η? = (1/C)

√
(2 lnN)/T leads to the upper bound

sup
{
RT (Eη?)

}
6 C
√

2T lnN .

Calibration and Aim 1.1. Here again, a calibration issue is raised for the tuning of
η, whose theoretical optimal value in the theorem above depends on C and T ; C is
the bound on the range of the values of the pseudo-losses and is possibly unknown
beforehand, while the number of time instances T is to tend to infinity. The same
patch as in the previous section can be applied, namely, instantiating the strategy of
Theorem 1.4 on the pseudo-losses (1.11) instead of resorting to Lemma 1.3. (We note
that of course the values of the pseudo-losses strongly depend on the strategy used.)
Aim 1.1 is then fulfilled with a uniform upper bound on the regret of the order of
C
√
T lnN .

Remark in passing. Strong convexity assumptions (that follow, e.g., from a uniform
upper bound on the gradients and a uniform lower bound on the eigenvalues of the
Hessian matrices) yield sharper bounds on the regret, of the order (in T ) of lnT .

1.3 Contributions to randomized prediction [2, 12]

We present rather briefly two such contributions. Their common feature from a theo-
retical viewpoint is that they both rely on the use of exponentially weighted averages.
The techniques used in the article [2] are similar to the ones needed later on in the
articles [3, 6] discussed in the next chapter.

1.3.1 Label-efficient randomized prediction [2]

Presentation. This variation of the setting of plain randomized prediction was introduced
by [HP97]. Here, querying the outcomes yt after outputting his forecast is costly for the
statistician. He has a limited budget to do so, the (dynamic) budget being modeled by
a non-decreasing function B : N? → N? indicating that at each time instance t > 1, not
more than B(t) queries of yt have been issued. The prediction protocol of Figure 1.2
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is then modified as follows. The function B is added to the parameters known to the
statistician and the item 4. of the iterations is replaced by the following two items:

4. The statistician reveals his choices ŷt, It, and pt to the adversary, who will recall
them in the next rounds;

5. If the statistician has accessed less than B(t) observations up to now, and only in
this case, he may issue a query for yt ∈ Y , whose value he will then recall in the next
rounds; this is the only way for him to compute his loss and the losses of the experts.

Aim. The target is still to fulfill Aim 1.2. This, of course, is only feasible when the
function B grows quickly enough: for instance, when B is identically null, the statistician
gets no feedback and no strategy can fulfill the prescribed aim.

A simple trick: estimate the unobserved quantities

Simplifying assumptions to have a gentle start. We start with a simplified framework
where the number of time instances T is fixed and known, where the loss function `
takes its values in a known range of the form [0,M ], and where the budget function
satisfies B(1) = B(2) = . . . = B(T ), the common value of these budgets being denoted
by BT .

Estimators of the losses. We denote by Z1, . . . , ZT a sequence of independent random
variables (they are also independent of all other considered random variables, e.g., of
the other auxiliary randomizations used). Their common distribution is chosen to be a
Bernoulli distribution with parameter p ∈ ]0, 1[; the latter will be defined (thanks to
Bernstein’s inequality) such that with a prescribed confidence level, Z1 + . . .+ZT 6 BT .
Our strategy issues a query for yt depending on the auxiliary randomization: it does so if
and only if Zt = 1 and the budget has not been overrun yet. For all time instances t > 1
and all expert indexes j ∈ {1, . . . , N}, the following random variable is an estimator of
`(fj,t, yt):

̂̀
j,t =


`(fj,t, yt)

p
if Zt = 1 and 1 +

t−1∑
s=1

Zs 6 BT ;

0 otherwise.

Conditionally unbiased estimators. We denote by Et the conditional expectation with
respect to the information gathered by the statistician on the time instances 1 to t− 1
(including the auxiliary randomizations Z1, . . . , Zt−1) and with respect to the choices of
the adversary at time instance t (i.e., with respect to the experts forecasts fj,t and the
observation yt). By construction,

Et
[̂̀
j,t

]
= `(fj,t, yt) on

{
1 + Z1 + . . .+ Zt−1 6 BT

}
.

The exhibited estimators are therefore expected to perform well.
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Substitution of these estimators for the losses in the weighted averages. The considered
strategy picks the uniform probability distribution at t = 1 and in the subsequent time
instances t > 2, it uses the probability distributions pt with components defined by
substituting the above-introduced estimators for the true losses in (1.6), that is,

pj,t =
exp

(
−η

∑t−1
s=1

̂̀
j,s

)
∑N
i=1 exp

(
−η

∑t−1
s=1

̂̀
i,s

) ;

and as was already discussed, the auxiliary randomizations Zt dictate the queries of
the observations. The strategy thus defined depends on two parameters η and p; it is
denoted by ¤η,p (the euro symbol is used because the strategy maintains a budget).

Reference. [ACBFS02] already exhibited conditionally unbiased estimators of unob-
served losses in another setting of limited feedback: the multi-armed bandit problems
of Chapter 4.

Analysis (under the simplifying assumptions). It relies quite crucially on the fact that
losses are nonnegative (and are bounded by a known quantity M). Indeed, Lemma 1.3
is adapted as follows: the inequalities

∀x ∈ R+, e−x 6 1− x+ x2

2 and ∀u > −1, ln(1 + u) 6 u

are used instead of Hoeffding’s lemma to replace the right-hand side of (1.2) by
T∑
t=1

N∑
j=1

µj,t`j,t − min
i=1,...,N

T∑
t=1

`i,t 6
lnN
η

+ η

2

T∑
t=1

N∑
j=1

pj,t `
2
j,t . (1.12)

Now, since this inequality is deterministic, it can be instantiated on the random quantitieŝ̀
j,t to provide an almost-sure bound. Some elementary concentration results (among
others, the maximal version of Bernstein’s inequality) and a proper tuning of p? and η?
as functions of T , BT , M , and δ then ensure that the following statement is true with
probability at least 1− δ and for all strategies τ of the adversary:

max
t6T

Rt
(
¤η∗,p? , τ

)
6 8MT

√
ln(4N/δ)
BT

. (1.13)

Back to Aim 1.2

We use the so-called doubling trick. The corresponding strategy ¤ is obtained from the
base strategies described above by considering regimes indexed by integers r > 1, of
lengths 2r, and thus starting at time instances Tr = 2r − 1, and by taking a fresh start
of ¤ηr,pr (where pr and ηr are adequately chosen) at the beginning of each regime. The
intermediate bounds (1.13), which are uniform over time, then lead to the main result
of this section.
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Theorem 1.8. Whenever B(T )� lnT ln lnT , there exists a strategy ¤ (based on the
doubling trick and which requires only the knowledge of the budget function B and
of the range [0,M ] in which the loss function ` takes its values) ensuring that the
regret-minimization Aim 1.2 is fulfilled and that at each time instance T > 1, no more
than B(T ) queries have been issued since the beginning.

Brief mention of an optimality result

Because all quantities at hand (cumulative losses, regret) are homogeneous in m and
M , we fix their values in this subsection and choose, for simplicity, m = 0 and M = 1.

Upper bounds on the expectation of the regret. By integration over δ, the high-probability
bounds on the regret (1.9) and (1.13) yield in particular uniform upper bounds on the
expectation of the regret, where the uniformity is with respect to all strategies τ of the
adversary; they are of the respective orders of

√
T lnN and T

√
(lnN)/BT . (The former

order of magnitude would also follow directly from the combination of Theorem 1.4
with the tower rule.)

Optimality of the stated label-efficient bound. The plain setting of randomized prediction
follows from the label-efficient one by taking BT = T , from which the order of magnitude√
T lnN is recovered. It thus suffices to focus on the optimality of the stated label-

efficient bound. The following theorem shows that a simple and non strategic adversary
may already force the regret of any forecasting strategy to be of the above-mentioned
orders of magnitude. This adversary is denoted by τ

(
yT1
)
, fixes beforehand a sequence

yT1 = (y1, . . . , yT ) of observations, and picks constant experts, which output forecasts
equal to, say, their indexes: fj,t = j for all time instances t > 1 and all j ∈ {1, . . . , N}.

Theorem 1.9. Consider the prediction and observation sets X = N and Y = [0, 1].
There exists a loss function ` with values in [0, 1] such that for all N > 2 and all pairs
(T,BT ) with T > BT > 15 ln(N − 1), the regret of any strategy σ of the statistician
bound to query at most BT observations during the first T time instances satisfies

sup
yT

1 ∈YT

{
E
[
RT
(
σ, τ

(
yT1
))]}

>
T

10

√
lnN
BT

.

Proof techniques. The main ingredient in [2] to prove the theorem above is Fano’s
lemma. A similar result based on a different proof technique (the use of lower bounds
on the classification error of binary outcomes) is provided by [CBL06, Theorem 6.4].

References. In the case where BT = T , the first (asymptotic) proof of the optimality of
the orders of magnitude

√
T lnN was provided by [CBFH+97]; it is based on the central

limit theorem and uses that the expectation of the maximum of N independent standard
Gaussian random variables is equivalent to

√
lnN . A non-asymptotic optimality result
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based on Pinsker’s inequality was also stated by [ACBFS02] in a different setting of
limited feedback, namely, the multi-armed bandit problems of Chapter 4.

1.3.2 Simultaneous predictions (multi-task learning) [12]

A structured prediction problem. This section focuses on an instance of a so-called
structured prediction problem. The latter problems correspond to settings where there
are many experts that can however be compactly described by a small number of
parameters: the class of experts is a structured class. For example, in the shortest path
problem, each expert is identified with a path from a root node to a destination node;
in the compound expert problem (also known as tracking the best expert) there are few
base experts and each expert of the class is a meta-expert given by an infinite sequence
of these base experts; see Section 3.5.1. Here, the structured problem at hand is to
forecast simultaneous observations.

A simple but computationally costly strategy. In all the problems mentioned above a
brute force strategy can be used: exponentially weighted averages over all elements of the
structured experts class, whose cardinality N is usually large. The regret bound scales
like
√

lnN as a function of N , which is often acceptable. However the computational cost
of this naive strategy that allocates a weight to each expert is in general prohibitive as it
scales linearly with N . Thus, the question reduces to finding an efficient implementation
of the mentioned strategy; this efficient implementation can no longer consider each
expert separately and needs in particular to group the experts into subclasses.

Description of the model

We deal with K prediction tasks indexed by k ∈ {1, . . . ,K}. To each of the latter
correspond a prediction set X (k), an observation set Y(k), and a loss function `(k) :
X (k) × Y(k) → R. In addition N experts are available; each expert j ∈ {1, . . . , N}
outputs at each time instance t > 1 a forecast f (k)

j,t for each task k.

Prediction protocol (initial unconstrained version). The prediction protocol of Figure 1.2
is adapted to this setting as follows. At each time instance t > 1, the adversary chooses
for each expert j a vector of forecasts fj,t (these vectors are revealed to the statistician)
and a vector of observations (that remains hidden for the time being):

fj,t =
(
f

(1)
j,t , . . . , f

(K)
j,t

)
and yt =

(
y

(1)
t , . . . , y

(K)
t

)
.

The statistician draws at random an element of {1, . . . , N}K , according to a probability
distribution denoted by pt. We denote by

It =
(
I

(1)
t , . . . , I

(K)
t

)
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the drawn element; it indicates for each task k the index I
(k)
t of the expert whose

forecast is to be followed. That is, the statistician outputs the vector of forecasts

ŷt =
(
f

(1)
I

(1)
t ,t

, . . . , f
(K)
I

(K)
t ,t

)
. (1.14)

The statistician and the adversary then publicly reveal all quantities introduced above
and they will recall them in the next time instances.

Assessment of the quality of the predictions. The individual losses of all tasks lead to a
global loss function ` via an evaluation function ψ : RK → R in the following way. The
quality of the prediction provided by a vector of forecasts fj,t on the observations yt is
assessed by

`(fj,t,yt) = ψ

(
`(1)

(
f

(1)
j,t , y

(1)
t

)
, . . . , `(K)

(
f

(K)
j,t , y

(K)
t

))
.

Some examples of evaluation functions for which we have been able to provide an
efficient implementation are the sum, the minimum, and the maximum of the individual
losses; they are respectively defined by

ψ(x1, . . . , xK) =
K∑
k=1

xk , ψ(x1, . . . , xK) = min
{
x1, . . . , xK} ,

and ψ(x1, . . . , xK) = max
{
x1, . . . , xK} .

For the sake of concision of the notation, the global loss at time instance t of each
K–tuple j = (j1, . . . , jK) in {1, . . . , N}K (meaning that the forecast of expert jk is
followed in each task k) is denoted by

`t(j) = ψ

(
`(1)

(
f

(1)
j1,t
, y

(1)
t

)
, . . . , `(K)

(
f

(K)
jK ,t

, y
(K)
t

))
;

the choices of the adversary are therefore put in the notation `t. For instance, with the
shorthand notation (1.14), one gets

`
(
ŷt,yt

)
= `t(It) .

Addition of a constraint between the prediction tasks. For the time being the different
tasks are K unrelated prediction problems. When the evaluation function is the sum
of the individual losses it even suffices to run in parallel K base prediction strategies,
one for each task; this yields a procedure with a computational complexity of the order
of NK when, e.g., the base strategies are given by exponentially weighted average
strategies.

Therefore we need to relate the tasks and our way out of it is to define a concept of
legal predictions. Legal predictions are identified with the choice of a vector of experts
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indexes in a strict subset L of {1, . . . , N}K : at each time instance t > 1, the drawn
indexes need to satisfy It ∈ L. In the definition of the regret the cumulative loss of
the statistician will then also be compared to the best constant element in L. As is
illustrated below the definition and the structure of L model in some sense the links
between the different prediction tasks at hand.

Adaptation of the notion of regret. The definition (1.1) is adapted as follows in the
context of simultaneous predictions with constraints: the regret of a strategy σ of the
statistician against a strategy τ of the adversary when being bound by the constraint L
equals

RSP(σ, τ) =
T∑
t=1

`t(It)−min
j∈L

T∑
t=1

`t(j) . (1.15)

The aim is still to exhibit a (computationally efficient) strategy σ such that

sup
τ

{
lim sup
T→∞

RSP(σ, τ)
T

}
6 0 a.s., (1.16)

where the supremum is over all strategies τ of the adversary.

Example of a set of constraints L. We work out four examples in [12] but only reproduce
one here (the easiest to describe), in which there is a cost for changing the expert from
a task to the next one. A integer parameter m 6 K − 1 is fixed and legal K–tuples j
are those abiding by

K−1∑
k=1

I{jk 6=jk+1} 6 m.

There are at least (NK)m/m! such K–tuples.

Comparison with previous work

There is no easy or natural definition of a multi-task setting for arbitrary sequences.
Two models were proposed by [ABR07] and [DLS07].

The model of [ABR07]. At each time instance only one prediction task is to be performed;
this task is chosen by the adversary and the statistician is not constrained in choosing
his forecast. The relation betweens the tasks thus does not appear in the way the
statistician forms his forecasts but only in the comparison class used in the definition of
the regret. The latter is indeed taken as a strict subclass L′ of the T–tuples of experts
indexes, in a way similar to (1.15). However, since the statistician does not have to
take into account the constraints of L′ in making his own forecasts, it is not completely
clear that the prediction tasks are sufficiently linked the ones to the others –parallel
strategies could be employed (though they lead to suboptimal regret bounds).
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The model of [DLS07]. It is formed by K (sub)problems of linear classification, where
the losses are each measured by the hinge loss x 7→ (1 − x)+ and are combined all
together via an evaluation function ψ given by the Euclidian or the supremum norm over
RK . The subproblems are only related through this global evaluation of the individual
losses and through the comparison class in the definition of the regret, which is given
by the consideration of the same linear hyperplane in all the (sub)problems.

Conclusion. The distinguishing feature of our model is that it limits the possible
forecasts output by the statistician, who has to abide by the same constraints as the
one used to form the comparison class in the definition of the regret.

Bound on the regret

Strategy. The exponentially weighted average strategy of Section 1.2.2 (tuned with a
data-driven learning rate ηt as indicated in Theorem 1.4) forms at each time instance
t > 2 the probability distribution pt over L obtained as the following convex combination
of Dirac masses δj :

pt =
∑
j∈L

exp
(
−ηt

∑t−1
s=1 `s(j)

)
∑

i∈L exp
(
−η

∑t−1
s=1 `s(i)

) δj ; (1.17)

and for the first instance, p1 is the uniform distribution over L. We denote byM the
strategy thus obtained (M stands for multi-task learning).

Associated bound. We assume that the loss functions `t take uniformly bounded values,
say in the range [m,M ]. It then suffices to instantiate Théorème 1.4 as we already did
in Section 1.2.2. For all strategies τ of the adversary and with probability at least 1− δ,
the regret ofM is less than

RT (M, τ) 6 2(M −m)
√
T

(√
ln |L|+

√
1
2 ln 1

δ

)
+ 6(M −m)

(
1 + ln |L|

)
,

where |L| denotes the cardinality of L; note that the log–cardinality ln |L| is small (it
is always smaller than K lnN). A straightforward application of the Borel–Cantelli
lemma next ensures thatM achieves the prescribed aim (1.16).

Computationally efficient implementation in some cases

Random draws according to the pt are sufficient. It only remains to see how to efficiently
draw a vector of indexes It according to the distribution pt in (1.17). This is of course
to be performed without an explicit computation of pt (the space complexity to store
the values of the components of the latter would already be proportional to L, hence be
prohibitive!).
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A hidden state space. We show in [12] how this computational cost depends on the
structure of a hidden (inhomogeneous) Markov chain that can be set on L, each element
of the latter being seen as a realization of the first K states of this chain. We denote by
S the cardinality of this hidden state space.

The random draw of It is then performed recursively: the last component I(K)
t is

first drawn according to the last marginal of pt, then I
(K−1)
t is drawn according to the

(K − 1)–th marginal of pt conditionally to I(K)
t , and so on. The main result is that

to implement the described scheme it suffice to combine and update at most NKS
quantities. The space complexity is thus proportional to NKS, while the computational
complexity is slightly larger (by a multiplicative factor taking into account the number
of possible transitions from a hidden space to another).

Back to the example (cost for changing the expert). Here, the space and computational
complexities of the procedure described above are respectively of the orders of NKm
and N2Km. This is to be compared to the complexities of the order of (NK)m/m!
suffered in the case of a direct computation and storage of (1.17).

1.4 Data-driven tuning of the parameters and data-dependent bounds [5]

A first desirable property: adaptive (data-driven) tuning of the parameters. This section
is devoted, among others, to stating formally and providing elements of proof for
Theorem 1.4. The latter is a fundamental result that was used to design fully automatic
strategies minimizing the regret both in the settings of sequential convex aggregation
and of randomized prediction. This feature of being fully automatic is obtained thanks
to the sequence (ηt) of learning rates, which is constructed online based on the data (the
past observations and experts forecasts). We detail this construction in this section and
then state the regret bound: without knowing beforehand neither the number T of time
rounds nor the range [m,M ] of the loss function (nor the bound C on the gradients of
the losses), the statistician can guarantee that the regret is bounded by something of
the order of (M −m)

√
T lnN (or C

√
T lnN), which is the optimal order of magnitude

in all parameters.

A second desirable property: sharper (data-dependent) bounds on the regret. The uniform
regret bounds discussed in the previous sections are sometimes criticized for being too
pessimistic: when one of the experts is much better than the other ones and has a small
cumulative loss, the situation is simple enough to grasp and the regret should be much
smaller than

√
T . One therefore aims at replacing the uniform bounds (that are valid

for all sequences of losses) by data-dependent bounds (that depend strongly on the
sequences of losses); of course, the worst-case values of the latter bound yield back the
former bounds.
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Aims of this section. We indicate how these two desirable properties can be met, based
on [5] and on prior contributions. We will formulate all results to that end in the generic
setting of Section 1.2.1 as we showed that all its results could be easily instantiated
to the settings of convex aggregation and of randomized prediction. We recall that
this generic setting consists of defining at each time instance t > 1 convex weight
vectors µt over {1, . . . , N} that only depend on the past losses `j,s, where s 6 t− 1 and
j ∈ {1, . . . , N}, so as to upper bound the generic regret

T∑
t=1

N∑
j=1

µj,t`j,t − min
i=1,...,N

T∑
t=1

`i,t . (1.18)

The bound we prove in this section may depend on the sequence of losses encountered,
which can be assumed in the generic setting to be deterministic and fixed beforehand.

1.4.1 Review of the contributions prior to [5]

No tuning issue when polynomially weighted averages are used

The polynomially weighted average strategy essentially corresponds to the strategy
exhibited in [Bla56] and was recently revisited by [CBL03]; it picks at time instances
t > 2 the convex weight vectors µt defined component-wise by

µj,t =

(∑T
t=1

∑N
i=1 µi,t`i,t −

∑T
t=1 `j,t

)α−1

+∑N
k=1

(∑T
t=1

∑N
i=1 µi,t`i,t −

∑T
t=1 `k,t

)α−1

+

for all j = 1, . . . , N , where ( · )+ denotes the nonnegative part of a real number and
where the exponent satisfies α > 1. The latter is the only parameter of this strategy.
When the sequence of losses is bounded between m and M its generic regret is uniformly
bounded by

(M −m)
√

(α− 1)TN2/α 6 (M −m)
√

6T lnN

for the theoretical (almost) optimal choice α = 2 lnN ; this tuning only depends on
the number N of experts, a quantity always known beforehand, and not on possibly
unknown parameters like m, M , and T as was the case for the simplest version of the
exponentially weighted average strategy. The orders of magnitude of the bound on the
generic regret of this strategy are furthermore optimal in all parameters. It is thus
natural to wonder whether exponentially weighted average strategies (1.3) are worth
the trouble.

Key point: exponentially weighted averages are useful when limited feedback only is available.
Things get trickier for the polynomially weighted average strategies when the losses
are not fully revealed at the end of a prediction round and when the thus unobserved
losses need to be estimated as was the case in Section 1.3.1 and will be the case in
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Section 2.2. It is true that [CBL06, Theorem 6.9] shows that polynomially weighted
average strategies can have vanishing per-round regret in the context of the multi-armed
bandit problems of Chapter 4 but this result is quite long and tedious to prove and is
not associated with clear convergence rates of this per-round regret towards 0. This is
to be compared to the simple arguments that led, e.g., to the upper bound (1.13) for an
exponentially weighted average strategy.

Tuning of the parameters via periodic fresh starts

A folk solution to the tuning issues of the exponentially weighted average strategies (1.3)
is called the doubling trick and is presented, e.g., in [CBL06, Section 2.3]. It consists
of periodic fresh starts of this strategy with learning rates ηr that become smaller and
smaller as the number r of already taken fresh starts increases. (Such a trick was used
above in Theorem 1.8.) The learning rates ηr in each regime are taken of the form of the
theoretical optimal value indicated by Lemma 1.3, that is,

(
1/(Mr −mr)

)√
(8 lnN)/2r,

where mr and Mr denote estimates of the range of the losses computed in the r − 1
past regimes. Each regime takes an end (and a new fresh start is taken) according to a
stopping condition based on the value of T and/or linked to some severe violation of
the estimated range [mr,Mr].

Key issue: loss of information and periodic lacks of efficiency. At each fresh start almost
all information provided by past time instances is thrown out; only a small fraction of
it is kept (the one summarized in the estimates mr and Mr). In addition –and maybe
most importantly– the statistician then uses again for a while convex weight vectors
that are close the uniform weight vector, which is inefficient in practice.

Sharper regret bounds and partial calibration of the parameters for nonnegative losses

The analysis of the exponentially weighted average strategy (1.3) provided by [FS97]
ensures the following data-dependent upper bound on its generic regret (1.18):

√
2ML?T lnN , where L?T = min

i=1,...,N

T∑
t=1

`i,t ; (1.19)

the losses need to take bounded values in some (known) range [0,M ] and the parameter
η of the exponentially weighted average strategy is (illegally) tuned as a function of L?T
(which cannot be known in advance) and of M . A legal tuning is however possible
via a doubling trick but it still requires the knowledge of M . This bound is called the
improvement for small losses.

The breakthrough: online tuning of the learning rates. [ACBG02] introduced the form (1.5)
and provided an analysis of its performance. In particular it indicates, under the same
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assumptions as in the previous paragraph (that is, knowing M and facing nonnegative
losses), that choosing online learning rates ηt proportional to√√√√√√√

lnN

M
t−1∑
s=1

N∑
i=1

µi,s`i,s

(1.20)

implies the bound (1.19) up to essentially a multiplicative factor of 2 while no doubling
trick or no beforehand knowledge of L?T is needed this time. The proof of this important
result is sketched below.

What remains to be done. An online tuning not requiring the knowledge of the range of
the losses needs to be developed; the assumption of nonnegativity of the losses must also
be relaxed for the generic bounds to be instantiated in the setting of convex aggregation
as we explain below.

The case of signed losses is crucial

[ANN04] was the first to consider the case where the losses `j,t are not necessarily
nonnegative but are simply assumed to lie in a bounded range [m,M ], where m 6M
are two real numbers. We do not assume that m and M are known; otherwise, the
case of nonnegative losses would be recovered as soon as the strategies at hand would
perform a straightforward translation of the losses.

Importance of this case. [ANN04] does not defend the interest of signed losses. To
me it lies in the possibility of instantiating the generic regret bounds in the setting of
convex aggregation via the pseudo-losses (1.11); the latter are indeed not necessarily
nonnegative but they are usually bounded.

Target. It is thus desirable to deal with the online calibration of the parameters ηt
when the bounds m and M are unknown and possibly negative numbers; ideally, we
would like to recover bounds on the regret with the same orders of magnitude as when
these parameters are known.

A remark: deviations around the generic regret bound in randomized prediction

In this section we only consider the generic regret but the bounds on it need to be
instantiated to yield regret bounds, e.g., in the setting of randomized prediction. In
the latter an additive term accounting for the high-probability deviations around the
expected regret bound has to be considered. If the Hoeffding–Azuma inequality is applied
as in (1.8), then the deviations are controlled by something of the order of

√
T ln(1/δ).

But this terms annihilates any data-dependent improvement exhibited on the generic
regret: sharper concentration inequalities need to be used. For instance, Bernstein’s



1.4 Data-driven tuning of the parameters and data-dependent bounds [5] 27

inequality for martingale difference sequences provides bounds on the likely deviations
that are of the same order as the generic regret bound formed by the improvement for
small losses stated above; for further details, see my PhD thesis [Sto05, pages 38–39].

1.4.2 Online calibration of the parameters with signed losses [5]

The core idea is to replace the denominator of (1.20) by a quantity that only depends
on information collected in the past (and not on M); this quantity is expected to
be homogeneous to square losses. This denominator actually came as the result of a
first-order upper bound on a Laplace transform: we will replace this crude bound by a
sharper second-order bound.

Modification of the proof of Lemma 1.3. [ACBG02] –see also the posterior simplifications
in the proof provided by [CBL06, Section 2.3] and [GO07, Lemma 1]– states the following
performance bound for the strategy (1.5): for all non-increasing sequences (ηt), possibly
tuned online, the generic regret is bounded by

T∑
t=1

N∑
j=1

µj,t`j,t − min
i=1,...,N

T∑
t=1

`i,t 6
lnN
ηT

+
T∑
t=1

Φ
(
µt, (`j,t)j , ηt

)
, (1.21)

where the function Φ takes as arguments a convex weight vector µ, a loss vector
(`1, . . . , `N ), and a learning rate η:

Φ
(
µ, (`j)j , η

)
= 1
η

ln
(

N∑
i=1

µi e
−η
(
`i−̂̀)) where ̂̀=

N∑
j=1

µj`j .

Assume that we already could upper bound the Φ terms by quantities of the form ηt zt,
with zt > 0; that is, assume we face the following bound:

T∑
t=1

N∑
j=1

µj,t`j,t − min
i=1,...,N

T∑
t=1

`i,t 6
lnN
ηT

+
T∑
t=1

ηtzt .

A natural online choice would then be given by

ηt =
√

lnN
z1 + . . .+ zt−1

for it yields the bound on the generic regret
T∑
t=1

N∑
j=1

µj,t`j,t − min
i=1,...,N

T∑
t=1

`i,t 6 4

√√√√( T∑
t=1

zt

)
lnN . (1.22)

(The multiplicative constant 4 in front of the right-hand side can be improved.) The
only question at hand is therefore to exhibit good zt, that is, to sharply upper bound
quantities of the form

Ψη(X) = 1
η2 ln E

[
e−η

(
X−E[X]

)]
for all η > 0 and all random variables X taking finitely many values.
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Uniform bounds (zero-order bounds). The bound (1.2) in Lemma 1.3 corresponds to a
constant sequence (ηt) and to the derivation of an upper bound on Ψη via Hoeffding’s
lemma –as indicated in (1.4). We want to improve on that.

Bounds for nonnegative losses (first-order bounds). We already noticed in (1.12) that for
nonnegative losses bounded by M ,

Ψη(X) 6 η

2 E
[
X2
]
6
ηM

2 E[X] ,

which corresponds (with the notation above) to

zt = M

2

N∑
j=1

µj,t`j,t ;

hence, by application of (1.22), the inequality

T∑
t=1

N∑
j=1

µj,t`j,t − min
i=1,...,N

T∑
t=1

`i,t 6 2
√

2

√√√√√M
 T∑
t=1

N∑
j=1

µj,t`j,t

 lnN . (1.23)

To get an improvement for small losses of the form (1.19) it then suffices to solve a
second-order inequality; an extra multiplicative factor comes in front of the right-hand
side of (1.19) and it measures the price for not knowing M and L?T .

Second-order bounds with signed losses. The basic inequality ex 6 1 + x + (e − 2)x2

(valid for x 6 1) yields that for all pairs (η,X) such that η > 0 and ηX 6 1 a.s.,

Ψη(X) 6 1
η

ln
(
1 + (e− 2)η2 Var(X)

)
6 (e− 2)ηVar(X) . (1.24)

In particular, introducing for all t (respectively, T ) a pseudo-variance vt of the losses at
time instance t (respectively, a cumulative pseudo-variance VT of the losses up to time
instance T ),

vt =
N∑
j=1

µj,t

(
`j,t −

N∑
i=1

µi,t`i,t

)2

and VT = v1 + . . .+ vT ,

we expect a bound on the generic regret of the form
√
VT lnN , via (1.22) and the

choice zt = vt. However, a difficulty is that (1.24) requires a domination condition by 1,
which is not always satisfied in practice; when it is not, one can still apply Hoeffding’s
bound (1.4). Based on these elements, we then show the following fundamental result,
which is a more formal and more detailed statement of Theorem 1.4 above. We reproduce
the result as it is stated in [5] even if [Ger10] recently realized that the multiplicative
factor of 4 in the bound could be improved to

2
√

(e− 2)
(√

2− 1
)
6 2.64 .
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Theorem 1.10. We consider the fully automatic strategy (1.5), where the learning
rates are defined, for t > 2, as sole functions of the past losses according to

ηt = min
{

1
Et−1

, γ

√
lnN
Vt−1

}
,

where γ =
√

2
(√

2− 1
) /

(e− 2) and

Et−1 = min
{

2k : k ∈ Z and max
s6t−1

max
i 6=j

∣∣`i,s − `j,s∣∣ 6 2k
}
.

Then, for all (possibly signed) real numbers m 6 M , for all arbitrary sequences of
elements `j,t ∈ [m,M ], where j ∈ {1, . . . , N} and t ∈ N?, for all T ∈ N?,

T∑
t=1

N∑
j=1

µj,t`j,t − min
i=1,...,N

T∑
t=1

`i,t 6 4
√
VT lnN + 6(M −m)(1 + lnN) .

Corollaries and applications of this bound. In the theorem above the upper bound on the
regret is in terms of VT , which is not an intrinsic quantity but depends on the strategy.
We explain here how to deal with that and recover bounds that only depend on the
sequences of losses. A first straightforward idea is to note that the vt are variance terms
and hence are bounded by the squared half-range (M −m)2/4. The substitution of
the latter bound implies the bound initially stated in Theorem 1.4. On the other hand,
since a variance is smaller than the expectation of the square quantity, one gets

VT 6
T∑
t=1

N∑
j=1

µj,t`
2
j,t ,

which implies a bound on the regret similar to (1.23) when the losses are nonnegative,
and hence an improvement for small losses. We actually show a stronger result in [5]:
an improvement for small or large nonnegative losses.

Other comments. We underline that the regret bound of Theorem 1.10 is stable by
translations of the losses, which is not the case of many regret bounds like, e.g., the
improvement for small losses as it crucially relies on a nonnegativity assumption. In
addition, as uncomfortable might seem to work with the

√
VT term, we stress that in the

setting of randomized prediction it naturally comes into the picture when Bernstein’s
inequality for martingale difference sequences is used as a concentration argument
in replacement of the Hoeffding–Azuma inequality in (1.8). This term is therefore
unavoidable in some sense, the question being to determine whether there are even
better ways to deal with it as the ones exposed in the previous paragraph.
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1.5 Perspectives for future research

In this section the � symbols denote universal constants whose value is not computed
explicitly and may even change from one occurrence of � to the next one.

Back to the cumulative loss...

We now stop considering the minimization of the regret as the final aim and get back to
our initial wish: ensuring that the cumulative loss of the strategy is as small as possible.

Correspondance between the best approximation error and the best estimation error. The
bounds on the cumulative losses that can be deduced from the regret bounds exhibited
above are of the form

T∑
t=1

N∑
j=1

µj,t`j,t 6 min
i=1,...,N

T∑
t=1

`i,t︸ ︷︷ ︸
approximation error

+D

(
min

i=1,...,N

T∑
t=1

`i,t

)
︸ ︷︷ ︸

estimation error

(1.25)

where the function D is either constant, equal to � (M −m)
√
T lnN (in the case of

uniform zero-order bounds), or is given by the mapping x 7→ �
√
x lnN +�M lnN (in

the case of the improvement for small nonnegative losses).
The term being a function of D provides the regret bound. In the above-mentioned

cases D is nondecreasing so that there is a correspondance between the expert with the
smallest approximation error and the one with the smallest estimation error. There is
no trade-off to perform between the two errors, since both are minimized by the same
expert. This is not very realistic.

Desired form of the regret bound on the cumulative regret. This is why more general
bounds of the form

T∑
t=1

N∑
j=1

µj,t`j,t 6 min
i=1,...,N

{
T∑
t=1

`i,t +D
(
`i,1, . . . , `i,T

)}
(1.26)

are desired, where the function D : RT → R now has a more general form: it takes T
values as arguments and though it is probably nondecreasing in each of its components,
it is not necessarily a function of the sums of the losses.

A promising attempt... that however failed.

The initial motivation to [5] was to prove (1.26) with

Dsq
(
x1, . . . , xT

)
= 2

√√√√ T∑
t=1

x2
t lnN +� (M −m) lnN
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while [HK08] (whose aim was inspired by the open questions at the end of [5]) attempted
to do so with

Dvar
(
x1, . . . , xT

)
= �

√√√√√ T∑
t=1

(
xt −

1
T

T∑
s=1

xs

)2

lnN +� (M −m) lnN .

Of course, both would have yielded upper bounds of the form (1.25) as special cases
but could have brought substantial improvements over them.

A retrospective tuning would do the job. In [5] a new strategy called Prodη is introduced;
it is based on a parameter η > 0 but the convex weight vectors it prescribes do not
depend solely on the cumulative losses (in particular, they are not given by exponentially
or polynomially weighted averages of the cumulative losses). The generic regret of this
strategy is bounded as follows: for all arbitrary sequences of elements `j,t ∈ [m,M ],
where j ∈ {1, . . . , N} and t ∈ N?, for all values of η such that 0 < η 6 1/(2M), for all
T ∈ N?,

T∑
t=1

N∑
j=1

µj,t`j,t 6 min
i=1,...,N

{
T∑
t=1

`i,t + lnN
η

+ η
T∑
t=1

`2i,t

}
. (1.27)

A proper retrospective tuning of η implies (1.26) with D = Dsq: denoting

i?T ∈ arg min
i=1,...,N


T∑
t=1

`i,t + 2

√√√√ T∑
t=1

`2i,t lnN

 ,

it suffices to tune η as

η?T =
√√√√√√

lnN
T∑
t=1

`2i?T ,t

,

provided that the latter quantity is smaller than 1/(2M). One could think that routine
online calibration techniques (as the ones described in the previous section) would yield
almost the same bound in a true online fashion, i.e., with an online calibration of the
learning rates. But a severe issue arose.

What we could prove (only). The online calibration techniques described above (the
doubling trick or some online tuning of the learning parameters depending on the past
losses) are based on quantities that increase with T (e.g., the cumulative loss of the
strategy, the cumulative pseudo-variance, etc.). But the quantities at hand here, the

Q?T =
T∑
t=1

`2i?T ,t
,
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are not necessarily increasing with T (because the values of i?T may change with T ).
One way around it is to consider the smallest non-decreasing upper bounds that are
associated with them: maxt6T Q?t . This explains why our final bound on the generic
regret of a fully automatic strategy based on the Prodη strategies is of the form

min
i=1,...,N

T∑
t=1

`i,t +�
√

max
t6T

Q?t lnN +� (M −m) lnN ;

the bound above is rather of the form (1.25) than of the desired form (1.26).

Similar issue for [HK08]. Even if the strategy described in the latter article can guar-
antee (1.26) for D = Dvar thanks to a suitable retrospective tuning (and based on
exponentially weighted averages of the penalized cumulative losses), its online adapta-
tion suffers of the same problem as described above for Prodη.

Statement of the open problem

The question at hand is therefore either to prove inequalities of the form (1.26) or to
show that no strategy can guarantee bounds of this kind. My intuition would rather be
that they are achievable but a fundamental conceptual hurdle needs to be passed in
terms of online calibration techniques.



CHAPTER 2

Interactions with the theory of repeated games

Introduction. This chapter focuses on a variant of the setting of randomized
prediction studied in the previous chapter. Instead of a statistician facing an
adversarial environment and trying to forecast its evolution, we now consider a
couple of players each reacting to the other player’s behavior. In addition rewards
instead of losses will be received; each player will aim at maximizing the sum of
obtained rewards. Finally, the prediction protocol is somewhat simplified: no expert
is available and each player only has a finite number of actions at his disposal.

The underlying heuristic presented in this chapter is that whenever each player
follows a strategy with good performance –in the sense that its regret (to be re-
defined) is small– then some equilibrium situation is asymptotically reached. We
will essentially discuss three such notions of equilibrium: first, in the case of a
zero-sum game, the convergence of the mean payoffs of each player towards the
value of the game; or, in the general case of more than two players, the convergence
of the empirical frequencies of action profiles towards, second, the set of Hannan
equilibria or towards, third, the set of correlated equilibria.
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2.1 Definition and defense of the notion of regret

We actually will only state and study the problem in the case of two players; we do so
for the sake of simplicity and indicate that all the results of this chapter (but the ones
for zero-sum games) can be extend in a straightforward manner to the case of a finitely
many players.

Notation. The two players are called players A and B and have finite action sets
respectively denoted by A = {1, . . . , N} and B = {1, . . . ,M} The payoff functions
A× B → R are denoted by r for player A and s for player B. These functions r and s
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are linearly extended on the simplexes ∆(A) and ∆(B) of probability distributions over
A and B: for all p = (pi)i∈A ∈ ∆(A) and q = (pj)j∈B ∈ ∆(B),

r(p, q) =
∑
i∈A

∑
j∈B

pi qj r(i, j) and s(p, q) =
∑
i∈A

∑
j∈B

pi qj s(i, j) .

Protocol of the repeated game. At each round t = 1, 2, . . ., players A and B simultane-
ously pick their respective actions It ∈ A and Jt ∈ B; the two actions are then revealed
and the players obtain the respective payoffs r(It, Jt) and s(It, Jt). We call the pair
(It, Jt) the action profile played at round t. The choices of It and Jt are made based
on the past and thanks to an auxiliary randomization; that is, these actions are drawn
at random according to probability distributions pt and qt over A and B that depend
measurably on the history of action profiles (I1, J1), . . . , (It−1, Jt−1) played in the past.

The strategies of A and B are given by sequences of mappings that for each t > 1,
associate with all histories in (A×B)t−1 an element respectively in ∆(A) or ∆(B); they
will typically be denoted by σ and τ in the sequel. Many quantities to be introduced
later on will depend on these strategies σ and τ but for the sake of simplicity, these
dependencies will be omitted in the notation.

The empirical frequencies of the played actions are defined by

pT = 1
T

T∑
t=1

δIt and qT = 1
T

T∑
t=1

δJt .

Aims and quantities of interest. Each player aims at obtaining an (asymptotic) per-round
payoff that is as large as possible; that is, the players A and B are respectively interested
in the quantities

rT = 1
T

T∑
t=1

r(It, Jt) and sT = 1
T

T∑
t=1

s(It, Jt)

as T →∞.

Auxiliary quantities: the regrets. The respective regrets RT and ST of A and B till
round T are defined as in (1.1) –up to the remplacement of the losses by payoffs– in
terms of the best constant action of a given player all things being equal:

RT = max
i∈A

T∑
t=1

r(i, Jt)−
T∑
t=1

r(It, Jt) and ST = max
j∈B

T∑
t=1

s(It, j)−
T∑
t=1

s(It, Jt) .

The corresponding per-round regrets are denoted by

RT = max
i∈A

r
(
i, qT

)
− rT and ST = max

j∈B
s
(
pT , j

)
− sT . (2.1)

By linearity, the maxima over i ∈ A and j ∈ B in the definitions above can be replaced
by maxima over p ∈ ∆(A) and q ∈ ∆(B).
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Minimize the regret in order to get a large per-round payoff? The interpretation of
the notion of regret is less clear than in the setting of convex aggregation studied in
the previous chapter, where some approximation error had to traded off with some
estimation error (given by the regret). Therein, since the forecasts of the statistician
do not influence the environment, one can define an intrinsic notion of best convex
combination and could exploit oracle knowledge if some was available. But in the model
of this chapter, if at each round the player A had played the optimal action against the
realized sequence of actions J1, . . . , JT , the latter would have been different! We already
underlined this issue in Section 1.1.3.

The defense of the notion of regret will rather rely on arguments of convergence in
some sense towards sets of equilibria, where this convergence takes place as soon as both
players ensure that their per-round regrets are small. Now, by definition, in a situation
of equilibrium each player obtains his maximal mean payoff (where the maximality
depends on the notion of equilibrium at hand).

In this respect the very interest of the notion of regret is that it is a quantity that
each player can minimize on his own without the real need of interacting with his
adversary; in particular no assumption on the rationality or the will to cooperate of the
latter is required.

Outline of this introductory section. We first indicate how players can minimize their
regrets and then study the consequences of a simultaneous minimization of the regrets:
in general, convergence of the empirical frequencies of played action profiles towards
the set of Hannan equilibria is achieved. In the special case of a zero-sum game one
gets even stronger convergence results: the per-round payoffs tend to the value of the
game and the pairs of empirical frequencies of played actions tend to the set of minimax
equilibria (which corresponds here to the set of Nash equilibria).

2.1.1 Each player can control his regret, independently of the other player

We provide a straightforward adaptation of the results of the previous chapter to the
case of payoffs instead of losses. We denote by ‖r‖∞ an upper bound on the function
|r|, we let

ηt = 1
‖r‖∞

√
8 lnN
t− 1

for all t > 2, and we assume that player A, for instance, uses the following strategy: he
chooses the action I1 at random according to the uniform distribution p1 over A, and
for all t > 2, draws his actions It at random according to the probability distribution pt
whose components are given by

pi,t =
exp

(
ηt
∑t−1
s=1 r(i, Js)

)
∑
k∈A exp

(
ηt
∑t−1
s=1 r(k, Js)

) (2.2)
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for all i ∈ A. An easy adaptation of the calculations around (1.22) then shows the
following deterministic (i.e., with probability 1) inequality between random quantities:
for all strategies τ of player B,

T∑
t=1

r(pt, Jt) > max
i∈A

T∑
t=1

r
(
i, Jt

)
− ‖r‖∞

√
2T lnN .

In particular, the Hoeffding–Azuma inequality implies that at each round T and with
probability at least 1− δ,

rT > max
i∈A

r
(
i, qT

)
− ‖r‖∞

(√
2
T

lnN +
√

1
2T ln 1

δ

)
. (2.3)

Via a final application of the Borel–Cantelli lemma, we conclude that for all strategies τ
of player B,

lim inf
T→∞

{
rT −max

i∈A
r
(
i, qT

)}
> 0 a.s., that is, lim sup

T→∞
RT 6 0 a.s. (2.4)

All convergence results developed later in this chapter rely only on asymptotic
statements of the form of (2.4); the statements like (2.3) give an idea of the rates of
convergence. The strategies ensuring (2.4) are still called regret-minimizing strategies
in this chapter.

Conclusions in terms of upper bounds on the regret. Player A has a strategy that solely
relies on the knowledge of the payoff function r and on the observation of the actions Jt
of his adversary player and that has a small regret as asserted by (2.3). In particular,
player A does not have to know the other player’s payoff function s nor to assume
anything (like bounded rationality) on the strategy τ followed by player B.

The literature calls such strategies myopic: player A only pays attention to quantities
that are close to him –namely, his own payoffs– and discards somehow farer away
quantities –e.g., the strategy τ of his adversary. The rest of this chapter is devoted to
illustrating the interest of such seemingly crude strategies: when the players minimize
simultaneously their regrets, a convergence towards a set of equilibria takes place.

Other regret-minimizing strategies. We mention only two other families of strategies
ensuring (2.4). Playing at each round the action with the best cumulative payoff so
far can be disastrous as the associated regret can be linearly large. But a simple twist
proposed by Hannan [Han57] leads to the minimization of the regret: the so-called
“follow the perturbed leader” strategies add random perturbations to the cumulative
payoffs and pick the action with the best perturbed cumulative payoff. They were
recently re-introduced and re-studied by [KV03] and other researchers.

Another family proceeds from Blackwell’s approachability theorem [Bla56], which
we recall in the insert below. Here also the analysis was recently re-visited by [CBL03].
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Insert: The approachability theorem.
Letm : A×B → Rd be a vector function, which is linearly extended on ∆(A)×∆(B).
Players A and B play repeatedly together, choosing simultaneously at each round
t > 1 respective actions It ∈ A and Jt ∈ B.
A set C ⊂ Rd is said m–approachable by player A if the latter has a strategy σ such
that, for all strategies τ of player B,

lim
T→∞

inf
c∈C

wwwwwc− 1
T

T∑
t=1

m(It, Jt)

wwwww = 0 a.s. (2.5)

The following characterization of the approachability of closed convex sets follows
from Neumann’s minimax theorem (a special case of Sion’s lemma, see Defini-
tion/Theorem 2.4). Even better, Blackwell also provided a strategy that approaches
C; it relies on convex projections and requires solving a linear program at each
round.

Theorem 2.1 (Reference: [Bla56, Theorem 3]). A closed convex set C of Rd
is m–approchable if and only if

∀q ∈ ∆(B), ∃p ∈ ∆(A), m(p, q) ∈ C .

The existence of a regret-minimizing strategy then follows from the consideration
of the non-positive orthant C = ]−∞, 0]N and of the vector function m defined by

m(i, j) =
(
r(k, j)− r(i, j)

)
k∈A

for all i ∈ A and j ∈ B.

2.1.2 Convergence towards the set of Hannan equilibria

The strategy of Hannan [Han57] is actually anterior to the one of Blackwell [Bla56] and
it was the first one to ensure (2.4). This is why the following set of equilibria was named
in honor of Hannan.

It is in terms of joint distributions π =
(
π(i, j)

)
(i,j)∈A×B ; we denote by ∆(A× B)

the simplex of all possible joint distributions.

Definition 2.2. The set of Hannan equilibria of a two-player game is given by the
following (non empty) set of joint distributions:

H =
{
π ∈ ∆(A× B) : ∀i ∈ A,

∑
k,`

π(k, `) r(k, `) >
∑
k,`

π(k, `) r(i, `)

and ∀j ∈ B,
∑
k,`

π(k, `) s(k, `) >
∑
k,`

π(k, `) s(k, j)
}
.
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Such a joint distribution π can indeed be interpreted as an equilibrium: suppose
that an action profile (I, J) is drawn at random according to π by a mediator and that
each player is recommended to play the action I or J that has been drawn for him.
Then, in average, if a player abides by this recommendation, the other player has no
incentive to replace his recommended action by another one that he would have set
beforehand (i.e., before accessing the recommendation). Put differently, there are no
profitable unilateral deviations given by fixed-in-advance actions.

An addition assumption on the game (its zero-sum character: r + s = 0) will
be needed to ensure convergence results on the pairs

(
pT , qT

)
of separate empirical

distributions of actions taken. For the time being the quantities of interest are given by
the empirical distributions of action profiles,

πT = 1
T

T∑
t=1

δ(It,Jt) ;

their marginal distributions are pT and qT . We assume that both players minimize
their regrets, which rewrites as

lim inf
T→∞

{
rT −max

i∈A
r
(
i, qT

)}
> 0 a.s. and lim inf

T→∞

{
sT −max

j∈B
s
(
pT , j

)}
> 0 a.s.

The defining conditions of H being given by closed constraints, the above asymptotic
inequalities ensure that each limit point π of the sequence of the πT is a Hannan
equilibrium: π ∈ H. Now, since the set ∆(A× B) of all joint distributions is compact,
a proof by contradiction finally shows that the sequence of the πT indeed converges
towardsH. We underline that the convergence takes places towardsH and not necessarily
towards a given point in H (the limit points do no necessarily have a unique value).

Proposition 2.3. When both players minimize their regrets, the sequence
(
πT
)
of the

empirical distributions of action profiles converges almost surely towards the set H of
Hannan equilibria.

2.1.3 Zero-sum games: convergence towards the set of minimax equilibria

This section considers the special case of zero-sum games, where r + s = 0 or, put
differently, r = −s. That is, the players have strictly opposite incentives. When both
players know that they are playing such a game, they may use a simple optimal strategy
which we describe next.

Some elementary results on zero-sum games

To state them we first need to define the value of a game; its definition follows from a
special case of Sion’s lemma, called von Neumann’s minimax theorem.
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Definition/Theorem 2.4 (von Neumann, 1928). The equalities

v = max
p∈∆(A)

min
q∈∆(B)

r(p, q) = min
q∈∆(B)

max
p∈∆(A)

r(p, q)

define the value of a zero-sum game r : A× B → R.

This notion leads by definition to the set of minimax equilibria (which are in fact the
instantiation to this special case of the more general and historically posterior concept
of Nash equilibria). In the next definition we identify the pairs (p, q) ∈ ∆(A)×∆(B) of
probability distributions with the product distributions that they induce in ∆(A× B).

Definition/Theorem 2.5. The set N of minimax equilibria of a zero-sum game
r : A× B → R is given by the following (non empty) set of product distributions:

N = H ∩
(
∆(A)×∆(B)

)
=

{
(p, q) : ∀i ∈ A, r(p, q) > r(i, q) and ∀j ∈ B, r(p, q) 6 r(p, j)

}
.

In particular, each pair (p, q) ∈ N achieves the value of the game: r(p, q) = v.

Fix a pair of distributions (p?, q?) in N . If player B resorts to qt = q? at all rounds,
that is, if he draws his actions Jt all independently at random according to the same
distribution q?, then the per-round payoff of all strategies σ of player A is bounded
from above by v: indeed,

lim sup
T→∞

rT = lim sup
T→∞

1
T

T∑
t=1

r(It, Jt) = lim sup
T→∞

r
(
pT , q?

)
6 v a.s.,

where we applied the Hoeffding–Azuma inequality as well as Borel–Cantelli lemma to
get the second equality. Of course, the inequality in the display above can be an equality,
for instance, when A draws his actions all independently at random according to the
same distribution p?. A similar result holds when A resorts to pt = p? at all rounds
and when the strategies τ of B are under inspection: in this case player A obtains at
least v as his asymptotic per-round payoff.

Conclusion and limitation. Whenever a player knows that the game is zero sum, he can
use a strategy that is optimal in the sense that it guarantees an asymptotic per-round
payoff that is as large as possible in the worst case; this strategy consists of computing a
minimax equilibrium (p?, q?) and drawing his actions in an independent and identically
distributed fashion, according to his marginal distribution of this equilibrium.

The limitation is of course that the setting of interest is myopic –as indicated in
the previous section– and that players only know their own payoff function; they in
particular ignore whether the game is zero sum or not.
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Convergence towards the set of minimax equilibria

We now show that the stated limitation can be circumvented: when both players use
regret-minimizing strategies (which can be myopic and work independently) the results
of the previous section hold. Namely, on the one hand player A (respectively, B) cannot
have more than v as an asymptotic per-round payoff (respectively, more than −v) but
on the other hand he can ensure that the latter is at least v (respectively, −v). These
asymptotic per-round payoffs thus equal exactly v and −v.

Moreover we show that not only the sequence
(
πT
)
converges towards H but also

that the sequence
(
(pT , qT )

)
of its marginal distributions converges towards N .

Each player can guarantee the value of the game. When (2.4) is satisfied, the per-round
payoffs of player A are in particular such that

lim inf
T→∞

rT > lim inf
T→∞

max
i∈A

r
(
i, qT

)
= lim inf

T→∞
max

p∈∆(A)
r
(
p, qT

)
> v a.s. ; (2.6)

by symmetry, when player B minimizes his regret, his per-round payoffs satisfy

lim inf
T→∞

−rT > lim inf
T→∞

max
q∈B
−r
(
pT , q

)
> −v a.s.,

that is, lim sup
T→∞

rT 6 lim sup
T→∞

min
q∈∆(B)

r
(
pT , q

)
6 v a.s. (2.7)

We therefore proved the following result.

Proposition 2.6. When both players of a zero-sum game with value v minimize their
regrets, the almost-sure convergence rT → v takes place as T →∞.

Consequences. The above proposition actually shows that all inequalities in (2.6) and
in (2.7) are equalities; in particular, a sandwich argument yields

lim
T→∞

r
(
pT , qT

)
= v a.s., hence lim

T→∞
rT − r

(
pT , qT

)
= 0 a.s.

By getting back to the fact (2.4) that both players minimize their regrets, we get

lim inf
T→∞

{
r
(
pT , qT

)
−max

i∈A
r
(
i, qT

)}
> 0 a.s.

and lim sup
T→∞

{
r
(
pT , qT

)
−min

j∈B
r
(
pT , j

)}
6 0 a.s.

The same proof techniques as for Proposition 2.3 –namely, the fact that N is defined by
closed constraints together with a compacity argument and a proof by contradiction–
lead to the following statement of convergence, which is, here again, towards a set and
not towards a given point of the set.

Proposition 2.7. In a zero-sum game, when both players minimize their regrets, the
sequence

(
(pT , qT )

)
of the pairs of empirical distributions of actions taken by each

player converges almost surely towards the set N of minimax equilibria.
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2.2 Regret minimization in games with partial monitoring [3, 6]

We deal in this section with the setting where one of the players –say player A– has
only a partial monitoring of the actions taken by his opponent player. Formally, we
introduce in addition to the notation and objects considered above a finite set S of
signals and a feedback function H : A× B → ∆(S); the latter associates with each pair
(i, j) of actions in A× B a probability distribution H(i, j) over S. The function H is
linearly extended on ∆(A)×∆(B)→ ∆(S) as follows: for all distributions p ∈ ∆(A)
and q ∈ ∆(B),

H(p, q) =
∑
i∈A

∑
j∈B

pi qj H(i, j) ∈ ∆(S) .

Protocol of the repeated game with partial monitoring. We consider the viewpoint of
player A. At each round t > 1, players A and B choose respective actions It and Jt,
possibly at random according to probability distributions pt and qt that can depend
on the information collected in the past. Player A obtains the payoff r(It, Jt) but does
not get to see neither Jt nor even the value of his payoff: he only observes a random
variable Kt drawn independently at random according to H(It, Jt). Player B –on the
contrary– has a full monitoring: he observes It.

Outline of this section. We only extend the results of Section 2.1.3 to this setting of
partial monitoring. More precisely, we introduce and defend an extension of the notion
of regret such that whenever the corresponding criterion is minimized by all players and
the game is zero sum, then the convergences stated in Propositions 2.6 and 2.7 still take
place. The extended notion of regret of course also applies to the general case of finite
games but for the sake of simplicity we focus on the special case of zero-sum games.

2.2.1 Extension of the notion of regret

Indistinguishability of certain randomized actions. Player A cannot distinguish between
all probability distributions used by player B to draw his actions: two distributions q
and q′ with the equalities H(i, q) = H(i, q′) for all i ∈ A are identical to him as far
as the received feedback is concerned. The short-hand notation for these equalities is
H( · , q) = H( · , q′), where we defined the vector of probability distributions induced
over the signals by a probability distribution q over B as

H( · , q) =
(
H(i, q)

)
i∈A ∈

(
∆(S)

)A
.

We denote by
V =

{
H( · , q), q ∈ ∆(B)

}
the set of these vectors as q varies. A generic element of V will usually be referred to as
h in the rest of this section.
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Because of the above-mentioned indistinguishability we introduce the mapping

ρ : (p, h) ∈ ∆(A)× V 7−→ min
{
r(p, q) : q ∈ ∆(B) such that H( · , q) = h

}
∈ R .

It indicates the minimal expected payoff when player A draws his action at random
according to p and when player B does so with a probability distribution q inducing
the vector of probability distributions over the signals h. The function ρ is concave in
its argument in ∆(A) and is convex in the one in V.

Rewriting of the value of the game. The first key observation is as follows. In a zero-sum
game, the value can be rewritten in terms of ρ as

v = max
p∈∆(A)

min
q∈∆(B)

r(p, q) = max
p∈∆(A)

min
h∈V

ρ(p, h) = min
h∈V

max
p∈∆(A)

ρ(p, h) , (2.8)

where the first two equalities hold by definition of ρ while the third equality follows
from a direct application of a generalized minimax theorem (that can still be expressed
as a special case of Sion’s lemma).

A suitable notion of regret. Given this rewriting of the value of the game we now aim
at defining an extended notion of regret with which the guarantee given by (2.6) still
holds: player A should be able to impose by minimizing his regret that his asymptotic
per-round payoff is at least equal to v. Given the equalities above, to do so it suffices
for player A to ensure that for all strategies τ of player B,

lim inf
T→∞

{
rT − max

p∈∆(A)
ρ
(
p, H

(
· , qT

))}
> 0 a.s. (2.9)

We thus define the (per-round) regret of A on the first T rounds in the setting of partial
monitoring as

R
PM
T = max

p∈∆(A)
ρ
(
p, H

(
· , qT

))
− rT .

In this section minimizing the regret and ensuring (2.9) mean that lim sup
T→∞

R
PM
T 6 0 a.s.

2.2.2 Results anterior to our contributions

The fundamental result stated below is an additional defense of the notion of regret
just introduced: not only a player only needs to minimize this regret to guarantee the
value of the game as his asymptotic per-round payoff but also it is indeed possible to do
so. (It would not be the case here, in general, for the original notion of regret RT .)

Theorem 2.8 (Reference: [Rus99]). There exists a strategy for player A with van-
ishing per-round regret:

lim sup
T→∞

R
PM
T 6 0 a.s.



2.2 Regret minimization in games with partial monitoring [3, 6] 43

As states [Rus99] in the conclusion an open question was to exhibit an explicit
regret-minimizing strategy –an expected by-product of this being to provide a simpler
and constructive proof of Theorem 2.8. The original proof of the latter indeed relies on
an abstract approachability theorem stated by [MSZ94] and with which (in contrast to
Theorem 2.1) no natural strategy is associated. In addition the intuition was that the
study of such an explicit strategy would lead to convergence-rates results (explicit upper
bounds on the per-round regrets). A final desired property is that this explicit strategy
admits a computationally efficient implementation. These various aims motivated the
contributions posterior to [Rus99], which we now review.

Use of the simplest version of the approachability theorem in a special case. [MS03]
designed a simple and explicit strategy relying on the approachability theorem (The-
orem 2.1) in the case where the feedback function H does not depend on the actions
of player A; but in the general case this strategy ensures a weaker result than the one
of (2.9).

Detailed overview of the case of sufficient feedback

We consider in this section the games with partial monitoring such that the aims (2.4)
and (2.9) coincide, that is, such that for all probability distributions q over B,

max
p∈∆(A)

ρ
(
p, H( · , q)

)
= max

p∈∆(A)
r(p, q) = max

i∈A
r(i, q) .

Notion of sufficient feedback. The word “sufficient” here has the same meaning as,
e.g., in the notion of sufficient statistics. In the present case it in particular holds true
that the equality of the distributions over the signals H( · , q) = H( · , q′) entails the
equalities of the target quantities

max
i∈A

r(i, q) = max
i∈A

r(i, q′) .

Examples of such games are, for instance, the games in which H reveals the probabil-
ity distribution chosen by player B, that is, feedback functions satisfying the following
property: H( · , q) = H( · , q′) if and only if q = q′. This property can be equivalently
characterized in terms of a certain matrix representation of H being of full rank.

Reconstruction of the payoff function in terms of the feedback function. A more general
situation arises when the payoff function r can be reconstructed from the feedback
function H. It was made formal by [PS01]; we only discuss it in the simpler case where
for all pairs (i, j) ∈ A × B, the probability distribution H(i, j) over the signals is a
Dirac mass, on a signal that we denote by h(i, j). With no loss of generality we then
re-encode the set of signals S into a finite subset of [0, 1]; the reconstruction condition
can then stated as the existence of a function f : A×A → R such that

∀ (i, j) ∈ A× B, r(i, j) =
∑
k∈A

f(i, k)h(k, j) . (2.10)
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[PS01] actually shows that all games with sufficient feedback can be algorithmically
cast into to the above-mentioned framework of deterministic feedback associated with
the reconstruction property (2.10); this reduction is performed via suitable elementary
transformations of the underlying game (like the duplication of actions and/or signals).

Estimation of the unobserved payoffs. Player A may then estimate at each round his
own payoff r(It, Jt) and the payoffs r(i, Jt) that he would have obtained by playing
other actions i ∈ A, based on the sole piece of information he receives: the deterministic
feedback Kt = h(It, Jt). More precisely, for all actions i ∈ A, he computes the statistic

r̂i,t = f(i, It)Kt

pIt,t
= f(i, It)h(It, Jt)

pIt,t
,

where the action It was drawn at random according to the probability distribution pt
(which we assume had full support A) and where pIt,t denotes the It–th component of
pt. These statistics are conditionally unbiased:

E
[
r̂i,t
∣∣∣pt, Jt] =

∑
k∈A

f(i, k)h(k, Jt)
pk,t

pk,t = r(i, Jt) ,

where we used the reconstruction property (2.10).
[ACBFS02] was actually the first to propose such an unbiased estimation of unob-

served payoffs, in the simpler case of multi-armed bandit problems of Chapter 4. (We also
detailed posterior similar estimation techniques for unobserved losses in Section 1.3.1.)

Associated strategy. The strategy then proposed by [PS01] generalizes the exponentially
weighted average strategy (2.2) of the case of full monitoring; it resorts, for all rounds
t > 2, to probability distributions pt whose components are given by

pi,t = (1− γt)
exp

(
ηt
∑t−1
s=1 r̂i,s

)
∑
k∈A exp

(
ηt
∑t−1
s=1 r̂k,s

) + γt
N

(2.11)

for all i ∈ A, where ηt > 0 and γt > 0 are two parameters to be set by the analysis.
The interpretation is, on the one hand, that the unobserved payoffs are replaced by
their estimators and, on the other hand, that some minimal exploration of all actions is
enforced via the mixing with the uniform distribution; in contrast, the first term in the
right-hand side of the definition (2.11) is called the exploration term and a trade-off
(measured by the value of γt) has to be made here between exploration and exploitation.

From a more technical viewpoint the lower bound of γt/N imposed by (2.11) is useful
to control the deviations of the estimators r̂i,t around their conditional expectations.
Based on this [PS01] proposes an upper bound on the original notion of regret RT –the
one defined in (2.1)– of the order of T−1/4 up to logarithmic factors. (This is of course
stronger than simply bounding the regret RPM

T .)



2.2 Regret minimization in games with partial monitoring [3, 6] 45

2.2.3 Explicit and efficient general strategy [3, 6]

Our contributions took place in two steps.

First step: warm-up [3]. We first re-visited the results of [PS01] and showed that the
analysis of the strategy described above could be improved to yield an upper bound
of the order of T−1/3 on the per-round regret RT . We also exhibited an example of
partial information game with sufficient feedback in which this convergence rate towards
0 could not be improved –hence proving the optimality of the procedure as far as RT
was concerned. However, the constructive general minimization of RPM

T (when it is not
possible to minimize RT ) was left unsolved.

Second step: analysis in the general case [6] and minimization of RPM
T . We realized after

a while (and this was the key observation) that we should not focus too much on the
individual payoffs r(i, Jt) but only keep in mind the target quantity

max
p∈∆(A)

ρ
(
p, H

(
· , qT

))
.

It thus suffices to estimate H
(
· , qT

)
and to do so we used here again the conditionally-

unbiased estimation trick proposed by [ACBFS02] in the context of multi-armed bandit
problems. Whenever it is necessary we identify the probability distributions over S with
vectors in RS .

Our estimator for the distribution H(i, Jt) over the signals is the statistic

ĥi,t = δKt

pi,t
I{It=i} ,

where we recall that Kt denotes the feedback available at round t: a signal drawn at
random according to H(It, Jt). This estimator is conditionally unbiased with respect to
the random variables pt and Jt :

E
[
ĥi,t

∣∣∣pt, Jt] = 1
pi,t

E
[
δKtI{It=i}

∣∣∣pt, Jt] = 1
pi,t

E
[
H(It, Jt) I{It=i}

∣∣∣pt, Jt]
= 1
pi,t

pi,tH(i, Jt) = H(i, Jt) ,

where we first considered expectations with respect to Kt and then with respect to It.
We now use the (Euclidian) convex projection operator onto V , which we denote by

Π. A concentration-of-the-measure argument applicable in Hilbert spaces [CW96] then
shows that for a given large enough integer m and for all integers b > 0,

ĥ
b = Π

 1
m

(b+1)m∑
t=bm+1

[
ĥi,t
]
i∈A

 is a good estimator of hb = 1
m

(b+1)m∑
t=bm+1

H( · , Jt) .

(2.12)
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Parameters: an integer m > 1, two real numbers η, γ > 0
Initialization: w0 = (1, . . . , 1)
For each round t = 1, 2, . . .,

1. Compute the integer b such that bm+ 1 6 t 6 (b+ 1)m;
2. Resort to the probability distribution pb = (1 − γ)p̃b + γu, where p̃b is defined

component-wise by

p̃bi = wbi∑
k∈A w

b
k

, for i ∈ A,

and where u denotes the uniform distribution over A;
3. Draw the action It at random according to pt = pb;
4. Get the feedback Kt;
5. If t = (b+ 1)m, perform the update

wb+1
i = wbi exp

(
η

(
∂ρ
(

pb, ĥ
b
))

i

)
for i ∈ A,

where ĥ
b
is defined in (2.12) and where ∂ρ denotes a subgradient of ρ with respect to

its first argument.

Figure 2.1. A strategy minimizing the regret in the case of a game with partial
monitoring.

The remaining two ingredients to design our strategy are the following ones. First, a
trade-off between exploitation and uniform exploration needs to set here as well. Second,
the fact that the pessimistic payoff function ρ is concave and uniformly Lipschitz in its
argument in ∆(A) entails a (uniform) linear upper bound of the form of (1.10). To that
end, for all interior points p in ∆(A) and all elements h in V, we denote by ∂ρ

(
p, h

)
a

subgradient of ρ
(
· , h

)
at p. This subgradient is a vector in RN and we refer to its i–th

component by a subscript i.
Our strategy is based on these three ingredients and is formally defined in Figure 2.1.

It is simple and computationally efficient; it also provides a constructive proof of
Theorem 2.8, together with convergence rates towards 0 of the per-round regret. We
now detail somewhat informally these rates results; in [6] we of course indicated how to
tune the parameters of the strategy and only stated explicit finite-time performance
bounds, which we do not here for the sake of simplicity.

Theorem 2.9. The strategy of Figure 2.1 –when tuned with adequate parameters–
ensures that with probability at least 1− δ,

R
PM
T 6 O

(
T−1/5

√
ln(T/δ)

)
.
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Simplified versions of this strategy entail in addition the following improvements on
the convergence rates towards 0. These rates are indeed upper bounded with probability
at least 1− δ and up to a

√
ln(T/δ) factor: by T−1/4 in the case where the feedback is

random but only depends on the action taken by player B; by T−1/3 in the case where
the feedback is deterministic but depends on the action profile chosen by players A and
B; by T−1/2 in the case where the feedback is deterministic and only depends on the
action taken by player B. The minimax lower bounds stated in [CBFH+97] and [3]
also indicate that the convergence rates obtained in the above cases of deterministic
feedback are optimal, up to logarithmic factors.

2.2.4 Results posterior to our contributions and perspectives for future research

Optimal convergence rates (in all cases) for other efficient strategies

In [6] we were unable to tell whether the convergence rates T−1/5 and T−1/4 exhibited
in the cases of random feedback mentioned above were optimal or not. [Per09c] showed
recently that this was not the case by constructing a strategy with regret bounded with
probability at least 1 − δ by something of the order of T−1/3 ln(1/δ) in all games of
partial monitoring. A simplified variant of this strategy in the case of a random feedback
only depending on the action taken by player B leads to the bound T−1/2 ln(1/δ). These
convergence rates are optimal as already discussed above. Moreover, the proposed
strategies are also computationally efficient as they rely on a finite subset of the
simplex ∆(A) containing for each vector h ∈ V a best reply of player A to h in the
sense of ρ; [Per09c] proves that such a finite subset always exists and provides insights
to compute it algorithmically.

Extension of the approachability theorem

We described in the previous section how the approachability theorem (Theorem 2.1)
guarantees the existence of regret-minimizing strategies in the case of a full monitoring.
We discussed in this section the existence of regret-minimizing strategies in the case of
partial monitoring; but this result corresponds to the approachability of some convex set
for some vector payoff function. More precisely, as indicated by [Rus99], achieving (2.9)
is ensuring that the closed convex set

C =
{

(z, q) ∈ R×∆(B) : z > max
p∈∆(A)

ρ
(
p, H( · , q)

)}
is approachable for the vector payoff function m : A×B → R×∆(B) defined as follows:
for all action profiles (i, j) ∈ A× B,

m(i, j) =
[
r(i, j)
δj

]
.

[Per09a] states and proves an extension of the approachability theorem to games
with partial monitoring –that however suffers from two drawbacks. First, the obtained
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characterization of approachability comes without an efficient associated strategy (a
direct implementation of the semi-explicit strategy proposed in his proof would require
a computation time exponential in T , more information is provided in Section 2.4.3).
Second, no rate is worked out for the convergence (2.5). It would be interesting to deal
with these two issues.

Theorem 2.10 (Reference: [Per09a]). Let C ⊂ Rd be a closed convex set and m :
A× B → Rd be a vector function. Then C is m–approachable if and only if

∀h ∈ V, ∃p ∈ ∆(A), ∀q ∈ ∆(B) such that H( · , q) = h, m(p, q) ∈ C .

The proof of this deep result relies on the one hand on various concepts and
technical elements developed in [6] and on the other hand on the existence of strategies
minimizing the so-called internal regret in games with partial monitoring, where the
mentioned existence follows from the existence of another class of strategies called
calibrated strategies. The next sections of this chapter will deal with these two notions
of calibration and internal regret.

Remark in passing. Historically the first calibrated strategies were constructed
based on strategies minimizing the internal regret of some auxiliary game with full
monitoring and these calibrated strategies were the keystone to design strategies
minimizing the internal regret in games with partial monitoring. Presenting the
various strategies in the order in which they should be constructed the ones based
on the other ones thus required switching between internal regret and calibration.
But one of our recent contributions exhibits an intrinsic proof of calibration by
approachability. This is why one can since then discuss first calibration and then
the minimization of internal regret –in two distinct sections with no cross-reference–,
which we do next.

2.3 Direct construction of calibrated strategies based on approachability [9]

In the game of calibration player A has to predict the actions of player B. The latter
still picks his actions in a finite set denoted by B but the actions of player A are now
given by the set ∆(B) of the probability distributions over B. We equip ∆(B) with the
topology induced by the canonical inclusion in RB and in particular consider the Borel
σ–algebra generated by this topology.

Protocol of the repeated game. At each round players A and B choose simultaneously
and based on past information respective actions Pt ∈ ∆(B) and Jt ∈ B. These actions
are actually drawn at random according to probability distributions νt over ∆(B) and
qt over B.

Calibration aim. We fix a norm ‖ · ‖ on ∆(B), for instance, the `1–norm. The aim of
player A is to design a strategy σ which delivers calibrated forecasts, that is, which



2.3 Direct construction of calibrated strategies based on approachability [9] 49

ensures that for all strategies of player B,

∀ε > 0, ∀p ∈ ∆(B), lim
T→+∞

wwwww 1
T

T∑
t=1

I{
‖Pt−p‖6ε

}(Pt − δJt

)wwwww = 0 a.s. (2.13)

The quantity tending to 0 above is called the calibration error (at round T ). The
interpretation is as follows: player A wants to ensure that for all distributions p on the
behavior of player B, the empirical distribution of the actions of the latter on rounds
when the former had predicted a behavior close to p is indeed close to p. It is a matter
of an in-hindsight coherence of the forecasts of the distributions with respect to their
realizations.

Calibrated strategies will be used in the next section as auxiliary strategies. In
particular when player A actually has an own set of actions A and an own payoff
function r : A × B → R, he can choose his action It ∈ A at round t as a function of
the forecast Pt of the behavior of player B output by an auxiliary calibrated strategy.
Since its forecasts Pt are accurate in the sense of (2.13), the average payoff of player A
is likely to exhibit interesting properties with this two-step prediction scheme.

Literature review. With his sense of humor Foster [Fos99] was already writing:

“Over the past few years many proofs of the existence of calibration have been
discovered. Each of the following provides a different algorithm and proof of
convergence: Foster and Vohra [FV91, FV98]; Hart [Har95]; Fudenberg and Levine
[FL99]; Hart and Mas-Colell [HMC00]. Does the literature really need one more?
Probably not.”

But despite all he then could publish his calibrated strategy for the binary case (i.e.,
where B contains only two elements) as it was more direct and shorter than all previously
exhibited calibrated strategies which he listed exhaustively above. His strategy relies on
the approachability theorem (Theorem 2.1). Actually all known calibrated strategies rely
to some extent on approachability results, sometimes in an indirect or hidden manner
or through auxiliary (sub)strategies. For instance, the calibrated strategy of [FV98] is
based on an auxiliary internal-regret-minimizing strategy and the latter can be obtained
in a natural way by approachability.

[FL99] and [HMC00] consider the case of action sets B with a finite (but arbitrary)
number of outcomes; they do not exhibit convergence rates towards 0 of the calibration
error (2.13). On the contrary, the strategies of [FV91, FV98, Fos99] are only valid
for the binary case but lead to such convergence rates, of the order of T−1/4 up to
logarithmic factors.

Our contribution. We deal with the general case of a finite number of actions in B and
exhibit a simple strategy –to our knowledge, the simplest strategy among all known
calibrated strategies– based on a direct application of the approachability theorem. In
this respect it captures the essence of the previous proofs of existence of calibrated
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strategies. In addition we are able to work out explicit convergence rates towards 0 of
the calibration error; as expected these rates depend on the cardinality of B.

2.3.1 Preliminary construction of an ε–calibrated strategy

Most of the contributions mentioned above, e.g., [FV91, FV98, Fos99, FL99], do not
tackle (2.13) directly and consider first a relaxed criterion called ε–calibration, where
ε > 0 is a parameter chosen by player A. To that end they consider an ε–grid of ∆(B),
that is, a finite set of distributions Gε =

{
p1, . . . ,pNε

}
such that the balls with centers

pk and radius ε cover ∆(B) as k varies in {1, . . . , Nε}.
Definition 2.11. A strategy of player A is ε–calibrated if it only picks forecasts in
some ε–grid Gε and if it ensures that for all strategies τ of player B,

lim sup
T→+∞

Nε∑
k=1

wwwww 1
T

T∑
t=1

I{Pt=pk}
(
pk − δJt

)wwwww 6 ε a.s. (2.14)

We could then prove the following fundamental result.
Theorem 2.12. With each ε–grid Gε of ∆(B) can be associated an ε–calibrated strategy
based on the approachability theorem.

Proof. The game of interest is a finite game: the actions of player A are indexed
by the finite set Gε while the ones of player B are still given by the action set B. We
define the following vector function m : Gε × B → RGε×B, where we identify probability
distributions over B with vectors in RB: for all k ∈ {1, . . . , Nε} and j ∈ B,

m
(
pk, j

)
=
(
0, . . . , pk − δj , 0, . . . , 0

)
,

which is a vector composed by k − 1 occurrences of the zero element 0 ∈ RB, followed
by a non-null element in RB, and completed by another series of Nε − k zero elements.

We now define the closed convex target set C as the closed ball centered at
(
0, . . . , 0

)
and with radius ε for the norm ‖ · ‖. Now, the condition (2.14) of ε–calibration can be
rewritten exactly as the fact that

1
T

T∑
t=1

m(Pt, Jt) =
(

1
T

T∑
t=1

I{Pt=p1}
(
p1 − δJt

)
, . . . ,

1
T

T∑
t=1

I{Pt=pNε
}
(
pNε
− δJt

))
converges to C almost surely.

The existence of an ε–calibrated strategy is then equivalent to the m–approachability
of C, which we prove next by resorting to the characterization stated in Theorem 2.1.
Let q ∈ ∆(B) be a distribution over the actions of player B. By the defining properties
of the ε–grid Gε, there exists k ∈ {1, . . . , Nε} such that ‖pk − q‖ 6 ε, which in turn
entails that

m
(
pk, q

)
∈ C .

(The distribution over Gε of the approachability theorem can thus be taken as a Dirac
mass.) �
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Discussion of the memory and computational complexities. We state in [9] the strategy
associated with Theorem 2.12: we first indicate how to compute at each round t the con-
vex projection prescribed by the strategy canonically associated with the approachability
theorem and second explain how the (approximate) solution of some linear program
enables to associate with this projection a suitable probability distribution νt over Gε.
Up to logarithmic factors the per-round complexity of the proposed implementation is
of the the order of ε−|B|−1, where |B| denotes the cardinality of B.

2.3.2 Construction of a calibrated strategy

By following the methodology sketched in [CBL06, Section 4.5 and Exercise 7.23], which
relies on concentration-of-the-measure techniques in Hilbert spaces [CW96], we could
prove the following result. To the best of our knowledge, it is the first convergence rates
result for the calibration error when the action set B contains more than two elements.
(In the statement of the theorem by playing a given strategy in blocks we mean using
the doubling trick of Section 1.4.1 with this strategy.)

Theorem 2.13. A strategy playing the strategies of Theorem 2.12 in blocks ensures
that

lim sup
T→∞

T 1/(|B|+1)
√

lnT
sup

p∈∆(B)
sup
ε>0

wwwww 1
T

T∑
t=1

I{
‖Pt−p‖6ε

}(Pt − δJt

)wwwww 6 Γ|B| a.s.,

where Γ|B| denotes a constant that only depends on |B|.

The obtained rates are uniform over the elements of ∆(B) and the ε–balls centered
at them. Actually, a stronger uniformity holds: the calibration error can be defined in
terms of indicator functions Pt ∈ L, where L is a given Borel set, and the supremum in
the definition of the uniform calibration error can then hold over all Borel sets.

2.3.3 Comparison with anterior and posterior contributions; perspectives for future research

Detailed comparisons with anterior and posterior contributions

In terms of convergence rates. The only anterior convergence rates result that is stated
explicitly and that we are aware of is the following one. In the case where |B| = 2
(only this case is worked out) [CBL06, Section 4.5] indicates how to obtain a (uniform)
convergence rate for the calibration error of a strategy based on the ε–calibrated strategies
exhibited by [FV98]. This rate is of the order of T−1/4 up to logarithmic factors and it
should be compared to the corresponding rate T−1/3 provided by Theorem 2.13.

It did not seem easy to us to extend the strategy based on [FV98] to the non-binary
case where |B| > 2; but [Per10] did so, based on a significant modification of the base ε–
calibrated strategies and by exploiting techniques developed in [9]. (A brief word on that,
for experts only: the modified strategies do not minimize anymore their internal regrets
with respect to all elements of the ε–grid, they do so only with respect to some nearest
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neighbors.) He obtained the same convergence rates as in Theorem 2.13. He proved in
addition that a rate of T−1/2 –independent of the cardinality of B– could be obtained
for a uniform calibration error defined only in terms of a countable neighborhood base
of ∆(B).

In terms of the memory and computational complexities of the ε–calibrated strategies.
[Per10] does not study the complexity of the implementation of his strategy, which we
recall is suited for the general case of a finite action set B. What we can say is that
this implementation requires memory and computational complexities which on the one
hand are at least of the order of ε1−|B| and on the other hand are bounded by something
of the order of ε2(1−|B|).

In the binary case, which is the most studied one, the best memory and computational
complexities for an ε–calibrated strategy are of the order of 1/ε and are achieved by
the simple and explicit strategy introduced by [Fos99]. This is to be compared to the
complexities 1/ε2 and 1/ε3 obtained respectively by the strategies of [FV98] and [9] in
this case.

Perspectives for future research

To the best of our knowledge no minimax lower bound result is available for the
calibration error; such a lower bound could be either on the convergence rate of the
calibration error towards 0 or on the (memory and/or computational) complexities
required to implement ε–calibrated strategies. The latter may be obtained via a trade-off
between the memory complexity and the computation complexity. The underlying open
question is to determine whether there exist efficient calibrated strategies, i.e., whose
complexities do not increase exponentially fast with the cardinality of B as is currently
the case. The aim in terms of convergence rates is maybe clearer: one could hope that
the convergence rates T−1/(|B|+1) exhibited both by [9] and [Per10] are optimal up to
logarithmic factors.

2.4 Convergence towards the set of correlated equilibria [1, 4]

After this (technical but useful) digression on calibration we get back to our main point:
convergences towards sets of equilibria like the ones exhibited in Sections 2.1.2 and 2.1.3
and which justified the associated notions of regret. We consider again their associated
framework and notation, at least to start this section.

2.4.1 Games with finite action sets A and B

Another (and more popular) notion of equilibrium. The equilibrium notion of Section 2.1.2
is not much considered in game theory; preferred equilibrium notions are Nash equilibria –
which the minimax equilibria are a special case of– and correlated equilibria. However
the first equilibria are (NP–)hard to compute in general: therefore, one cannot expect
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that there exist simple and efficient strategies such that, when all players follow them, a
convergence (in some sense) to the set of Nash equilibria of the game takes place.

This is in contrast with correlated equilibria [Aum74, Aum87], which are, similarly
to the Hannan equilibria, a subset of the joint distributions given by polynomially many
(in the numbers of actions) linear constraints. These constraints are expressed in terms
of functions ϕ : A → A and ψ : B → B called departure functions.

Definition 2.14. The set of correlated equilibria of a finite two-player game is given
by the following (non empty) set of joint distributions:

E =
{
π ∈ ∆(A× B) : ∀ϕ : A → A,

∑
i,j

π(i, j) r(i, j) >
∑
i,j

π(i, j) r
(
ϕ(i), j

)
and ∀ψ : B → B,

∑
i,j

π(i, j) s(i, j) >
∑
i,j

π(i, j) s
(
i, ψ(j)

) }
.

Such a joint distribution π can indeed be interpreted as an equilibrium: suppose
that an action profile (I, J) is drawn at random according to π by a mediator and that
each player is recommended to play the action I or J that has been drawn for him.
Then, in average, if a player abides by this recommendation, the other player has no
incentive to replace his recommended action by another one that he would choose only
based on this recommendation (via a departure function). Put differently, there are no
profitable unilateral deviations given by functions of the recommended actions.

This interpretation should be compared to the one provided after Definition 2.2:
the only difference is that for correlated equilibria the deviation from the recommended
action can be expressed as a function of the latter while for Hannan equilibria it has to
be fixed beforehand, which corresponds to constant departure functions only. Therefore
the inclusion E ⊆ H holds, which shows that the aim stated below is in general more
ambitious than the one pursued in Section 2.1.2 –but less ambitious, in the case of
zero-sum games, than the aim of Section 2.1.3 since N ⊆ E .

Aim. The quantities of interest are the empirical distributions of the action profiles,

πT = 1
T

T∑
t=1

δ(It,Jt) ,

and we will show that when both players minimize simultaneously their so-called internal
regrets, the sequence

(
πT
)
converges towards the set E of correlated equilibria.

This is quite a remarkable result: while each of the two players uses a myopic
strategy and pays only limited attention to the behavior of the other player, a strong
correlation between their behaviors is obtained in the limit.
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Definition and interest of the internal regret

A straightforward observation is that in the definition of E the attention can be restricted
to departure functions ϕ and ψ that only differ from the identity in one point; therefore,
E can be rewritten in a somewhat simpler way as

E =
{
π ∈ ∆(A× B) : ∀(i, k) ∈ A2,

∑
j∈B

π(i, j) r(i, j) >
∑
j∈B

π(i, j) r(k, j)

and ∀(j, `) ∈ B2,
∑
i∈A

π(i, j) s(i, j) >
∑
i∈A

π(i, j) s(i, `)
}
.

Based on this observation, we could define the (per-round) internal regret of the
strategy of player A as

max
(i,k)∈A2

1
T

T∑
t=1

(
r(k, Jt)− r(i, Jt)

)
I{It=i} ; (2.15)

but the Hoeffding–Azuma inequality together with the Borel–Cantelli lemma shows
that the asymptotic behavior of the previous quantity is the same as the one of the
following quantity, which is slightly simpler to minimize:

R
int
T = max

(i,k)∈A2

1
T

T∑
t=1

pi,t
(
r(k, Jt)− r(i, Jt)

)
.

The latter quantity defines the (per-round) internal regret of player A. The per-round
internal regret of player B is defined symmetrically as

S
int
T = max

(j,`)∈B2

1
T

T∑
t=1

qj,t
(
s(It, `)− s(It, j)

)
.

We show in the rest of this section how the players can minimize their internal regrets,
that is, we exhibit strategies such that

lim sup
T→∞

R
int
T 6 0 a.s. and lim sup

T→∞
S

int
T 6 0 a.s.

A straightforward adaptation of the proof techniques leading to Propositions 2.3 and 2.7
yields to the following convergence result.

Proposition 2.15. When both players minimize their internal regrets, the sequence(
πT
)
of the empirical distributions of action profiles converges almost surely towards

the set E of correlated equilibria.
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Automatic conversion of external-regret minimizing strategies into internal-regret
minimizing strategies [1]

The original notion of regret defined in Section 2.1 is henceforth referred to as the
external regret. In [1] we propose a reinterpretation of the first known internal-regret
minimizing strategy, exhibited by [FV99], as a strategy minimizing some external regret.

For all probability distributions p over A and all pairs (i, k) ∈ A2 with i 6= k, we
denote by pi→k the image of p by the departure function ϕi→k : A → A that only differs
from the identity at i, where ϕ(i) = k. Put differently, the probability distributions
pi→k and p only differ in the probability masses associated with i and k, which are
respectively equal to 0 and pi for i on the one hand and pi + pk and pk for k on the
other hand.

The key observation is then that the internal regret can be rewritten as the (external)
regret with respect to the modifications of the strategy of player A parameterized by
the ϕi→k:

R
int
T = max

i 6=k

T∑
t=1

r
(
pi→kt , Jt)−

T∑
t=1

r(pt, Jt) .

Besides, this rewriting explains the etymology of the notion of internal regret: the
comparison class in the definition of the regret is no longer intrinsic and external to the
strategy of the player but depends on the contrary on this strategy.

Things are thus equivalent here to player A having meta-actions indexed by the ϕi→k.
To minimize the corresponding external regret it suffices to choose at each round t a
distribution pt satisfying the fixed-point equation

pt =
∑
i 6=k

exp
(
ηt
∑t−1
s=1 r

(
pi→ks , Js)

)
∑
i′ 6=k′ exp

(
ηt
∑t−1
s=1 r

(
pi′→k′s , Js)

) pi→kt , (2.16)

which is obtained by mimicking (2.2) and considering the same learning rates (ηt) as
therein. Such a distribution pt always exists as can be seen by identifying it with a
stationary probability distribution of a certain finite Markov chain. The results recalled
after (2.2) then show that the per-round internal of this strategy is bounded with
probability 1 by

R
int
T 6 ‖r‖∞

√
2
T

ln
(
N(N − 1)

)
.

Remark in passing. The argument above can be generalized to convert any external-
regret minimizing strategy (not only the exponentially weighted average strategy
with time-varying learning rates) into an internal-regret minimizing strategy; it
is even applicable in the setting of sequential convex aggregation. Another such
conversion trick (only applicable in the setting of randomized prediction, though)
was proposed independently by [BM07].
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2.4.2 Extension to games with convex and compact action sets A and B [4]

We consider in the rest of this section the case where the action sets A and B are
general topological spaces, each equipped with its Borel σ–algebra, and where the payoff
functions r : A× B → R and s : A× B → R are measurable functions. We still denote
by It and Jt the respective actions picked by the players at each round t, possibly at
random according to probability distributions pt and qt over A and B.

Extension of the definition of correlated equilibrium

We first recall the extension of the definition of correlated equilibria of a finite game (see
Definition 2.14) to the more general case considered here; this extension was formulated
by [HS89]. To that end we denote respectively by L0(A) and L0(B) the sets of all
measurable functions A → A and B → B.

Definition 2.16. The set of correlated equilibria of a two-player game in which the
action set of each player is given by a topological space equipped with its Borel σ–algebra
is defined as the following (non empty) set of joint distributions:

E =
{
π ∈ ∆(A× B) : ∀ϕ ∈ L0(A), Eπ

[
r(I, J)

]
> Eπ

[
r
(
ϕ(I), J

)]

and ∀ψ ∈ L0(B), Eπ
[
s(I, J)

]
> Eπ

[
s
(
I, ψ(J)

)] }
, (2.17)

where the notation Eπ indicates that the random vector (I, J) with values in A× B is
distributed according to π.

At least at first sight, E is in general a subset of ∆(A× B) defined by uncountably
many constraints while reasonable notions of internal regret (i.e., which can be minimized
easily enough by suitable strategies) are built on at most countably many constraints.
But under suitable regularity conditions stated in the lemma below, the set E can be
equivalently defined by at most countably many constraints. We denote by C(A) and
C(B) the sets of all continuous functions A → A and B → B.

Lemma 2.17. When the action sets A and B are convex and compact subsets of some
normed vector spaces, the vector subspaces C(A) and C(B), equipped each with the
supremum norm, are separable. Let D(A) and D(B) be two respective countable dense
subsets in C(A) and C(B). When the payoff functions r and s are moreover continuous,
the set of correlated equilibria E can then be defined equivalently by considering only
in (2.17) the departure functions ϕ ∈ D(A) and ψ ∈ D(B).

This lemma is proved in two steps. First an ad-hoc version of Luzin’s theorem –which
states that every measurable function is a continuous function except on a set of small
Lebesgue measure– shows that it suffices to consider all continuous functions in (2.17).
Next, a dominated-convergence argument guarantees that one can even restrict the
attention to the dense subsets D(A) and D(B).
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Minimization of a generalized internal regret

Convergence towards the set of correlated equilibria. We enforce the assumptions of
Lemma 2.17 in the rest of this section. Player A is said to minimize his internal regret
when he can ensure that in the limit none of the departure functions in a countable
dense subset D(A) in C(A) provides a profitable deviation, that is,

∀ϕ ∈ D(A), lim inf
T→∞

1
T

T∑
t=1

(
r(It, Jt)− r

(
ϕ(It), Jt

))
> 0 . (2.18)

A similar definition holds for player B. Here –unless extra regularity and topological
assumptions are made, see [4, Section 5]– no uniform minimization can be achieved in
general and in particular no convergence rates results hold.

But the convergence itself is still guaranteed as asserted by the lemma below. Its
proof is based on Prohorov’s lemma, which states that when A and B (and hence, A×B)
are compact metric spaces, the set ∆(A× B) of all joint distributions is still a compact
metric space for the weak– ? topology. The same arguments that led to Propositions 2.3
and 2.7 (the fact that the set of equilibria is defined by closed constraints, the use
of sequential compactness properties, and a proof by contradiction) then entail the
following result.

Proposition 2.18. Under the assumptions of Lemma 2.17, when both players minimize
their internal regrets, the sequence

(
πT
)
of the empirical distributions of action profiles

converges almost surely towards the set E of correlated equilibria.

Fixed-point strategies to perform the minimization. We now only need to indicate how
each player can minimize his internal regret; we consider player A, for instance, and still
enforce the assumptions of Lemma 2.17. What follows is a slight simplification of the
presentation in [4], which was concerned with families of strategies defined by potential
functions and had to resort to the doubling trick. Here, we restricted our attention to
the exponential potential throughout this chapter, which is able to deal with a countable
number of experts (departure functions) without the need of a doubling trick.

To that end we fix a probability distribution µ = (µϕ)ϕ∈D(A) over D(A) and resort
to the strategy that at each round t chooses a probability distribution pt ∈ ∆(A) which
satisfies the fixed-point equation

pt =
∑

ϕ∈D(A)

µϕ exp
(
ηt
∑t−1
s=1 r

(
pϕs , Js)

)
∑
φ∈D(A) µφ exp

(
ηt
∑t−1
s=1 r

(
pφs , Js)

) pϕt , (2.19)

where for each probability distributions p over A and each departure function ϕ ∈ L0(A),
the image distribution of p by ϕ, that is, the law of ϕ(I) when the random variable I
follows the law p, is denoted by pϕ.

It only remains to see that such a fixed point always exists. To that end, we equip
∆(A) with its weak- ? topology, which is metrizable; all mappings p 7→ pϕ are continuous
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for this topology, so that the left-hand side of (2.19) is a continuous function of pt. The
existence of the fixed point of interest is then ensured by the Schauder–Cauty fixed-point
theorem, which we recall in its most general and most accomplished statement.

Theorem 2.19 (Schauder–Cauty fixed-point theorem [Cau01]). Let C be a non-
empty convex and compact subset of a topological Hausdorff vector space. Then each
continuous map T : C → C has a fixed point.

The results around (2.2) can be adapted straightforwardly enough to the case of a
countable number of actions to show that the strategy picking probability distributions
satisfying the equations (2.19) ensures with probability 1 the following (non-uniform)
lower bound:

∀ϕ ∈ D(A), 1
T

T∑
t=1

(
r(pt, Jt)− r

(
pϕt , Jt

))
> Γϕ

√
T ,

where the constant Γϕ depends on each ϕ. A joint application of the Hoeffding–Azuma
and Borel–Cantelli lemmas concludes the proof that player A indeed minimizes his
internal regret in the sense of (2.18).

2.4.3 Extensions to finite games with partial monitoring

This section is motivated by the proof of Theorem 2.10; we indicated after the statement
of the latter that it relies on strategies minimizing their internal regrets in some finite
games with partial monitoring. We present briefly the fundamental ideas behind the
construction of such strategies. To do so, we get back to the notation of Section 2.2.

Review of the (most important) results in [LS07, Per09a, Per09b, Per09c]

Since the pessimistic payoff function ρ is concave (and in general is not linear) in its
argument p ∈ ∆(A), the best reply to a vector h ∈ V is (in general) a probability
distribution over ∆(A) whose support is not reduced to a single action. Based on
this observation the mentioned articles consider the mixed extension of the original
finite game, where at each round the players pick respective probability distributions
pt ∈ ∆(A) and qt ∈ ∆(B), now called mixed actions; but instead of drawing actions It
and Jt at random according to these distributions as in the original game they obtain
directly the respective payoffs r(pt, qt) and s(pt, qt). Of course, a simple application of
concentration results shows that the per-round payoffs obtained in the original game
and in its mixed extension are asymptotically equal.

The definition (2.15) of the internal regret for finite games is then extended as follows
to their mixed extensions. By symmetry we only detail it for player A. We assume that
the latter can only pick distributions within a given finite subset

{
pf , f ∈ F

}
of ∆(A),

which is a strong restriction at first sight but seems however reasonable whenever, for
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instance, this subset forms a thin enough grid of ∆(A). For all mixed actions pf played
at least once in the first T rounds, we denote by

qT
(
pf
)

= 1∑T
t=1 I{pt=pf}

T∑
t=1

qt I{pt=pf}

the empirical average of the mixed actions picked by player B on the rounds when
player A resorted to the mixed action pf . Minimizing the internal regret then consists
of ensuring that no consistant replacement of a mixed action of player A by another
one –the mixed actions of player B being fixed– improves significantly the per-round
payoff; that is, we aim at ensuring that for all strategies τ of player B, for all mixed
actions f ∈ F ,

lim inf
T→∞

(
1
T

T∑
t=1

I{pt=pf}

)(
max

p∈∆(A)
ρ

(
p, H

(
· , qT

(
pf
)))
− ρ

(
pf , H

(
· , qT

(
pf
))))

> 0

almost surely.
[LS07, Per09b, Per09c] propose strategies minimizing the internal regret defined

above; the constructions of [Per09b, Per09c] are based on auxiliary calibrated strategies.
The direct implication of Theorem 2.10 is then proved in [Per09a] thanks to such
internal-regret minimizing strategies.

Criticisms and perspectives

On the definition of internal regret. The extension of the notion of internal regret is
performed by considering a criterion similar to (2.15) up to the replacement of the
single actions by mixed actions. To do so an important restriction on the behavior of
player A needs to be enforced: he can only pick finitely many different actions during
the course of the repeated game. In addition, in the case of sufficient feedback the
extended definition does not necessarily coincide with (2.15) while we showed in [3]
how to minimize the internal regret defined in (2.15) in this case. There actually exists
in all these cases a natural (almost canonical) finite set of mixed actions to be played:
[Per09c] proved –as already mentioned earlier in this chapter– that there always exists
a finite set that contains, for each vector h ∈ V, a best reply against h in the sense of
ρ. For instance, in the case of sufficient feedback, this subset is formed by the Dirac
masses on the actions in A.

However, a main objection remains: the link between the minimization of the internal
regret and the convergence towards some set of equilibria (e.g., the set of correlated
equilibria of the mixed extension) is not established here. In contrast, the definitions of
the regrets introduced in the previous sections heavily relied on convergence results: we
could only provide the right notions of regret to minimize by studying the structure
and the defining constraints of the sets of equilibria at hand. (The reader may compare
on the one hand (2.8) and (2.9) for the external regret in games with partial monitoring
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and on the other hand (2.18) and Lemma 2.17 for the internal regret in games with
convex and compact action sets.)

The definition and the study of the possible set of limit equilibria are not straight-
forward; we recall in passing that [4, footnote 3] shows the identity between the set of
correlated equilibria of a finite game and the one of its mixed extension, in the sense
that there exists a canonical surjection from the latter onto the former.

Notes about the (memory and computational) complexities. The strategies proposed
by [LS07, Per09b] have direct implementations with complexities exponential in T .
On the contrary the strategy designed in [Per09c] is efficient (as far as the orders of
magnitude in T are concerned); it is based on some common ingredients with the efficient
strategy achieving the optimal rates of convergence for the external regret in games
with partial monitoring, which we alluded at in Section 2.2.4.

However, this does not imply that an efficient or natural strategy is associated
with Theorem 2.10 –in contrast to Theorem 2.1– as the construction of the strategy
in [Per09a] relies on the minimization of an internal regret with respect to a grid of
an exponential size (in some discretization parameter other than T ). An interesting
open question would be to design a more satisfactory and more natural approachability
strategy associated with Theorem 2.10.

2.5 Perspectives for future research

In this chapter we stated open problems at the end of each of the three main sections,
after presenting our contributions and discussing them (see Subsections 2.2.4, 2.3.3,
and 2.4.3). All these open problems are rather short-term projects that would sharpen
the comprehension or develop the appreciation of existing results. They are to be tackled
with Shie Mannor and Vianney Perchet.



CHAPTER 3

Methodological advances in sequential aggregation of experts
and empirical studies of their performance

Introduction. New theoretical results in prediction of individual sequences are
often assessed on artificial data. In fact, to the best of our knowledge, only few
studies on real data were conducted up to now. This is in contrast with the highly
general meta-statistical framework of sequential aggregation of experts forecasts
introduced in Chapter 1; this framework can indeed be applied to all practical
situations in which several experts may be constructed –that is, to virtually all
problems of sequential prediction.
The first series of such empirical studies dealt with sequential investment in the
stock market and was initiated by [Cov91]; in this chapter we review the achieved
contributions in this field. A second –more recent– series considers sports bets,
see [DMP+06] or [VZ08]. The forecasts of the experts are given by the odds on the
various competitors provided by a set of bookmakers or generated by the bets of
the users of a sports-betting website.
The applications on real data that we performed are the following ones: the
prediction of electricity consumption on the one hand, where Goude [Gou08a,
Gou08b] first illustrated the interest of sequential aggregation methods, and the
prediction of air quality on the other hand, for which Mallet and Sportisse [MS06]
provided a set of experts and conducted a preliminary study of the performance of
simple aggregation strategies.
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3.1 Summary of the methodological advances [10]

This chapter is based on the survey article [10] (in French), which summarizes some
methodological advances in prediction of individual sequences stated in passing in the
articles [7, 13]. This is because the former article is intended to mathematicians and
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computer scientists while the latter ones were written for specialists of a given field, e.g.,
atmospheric sciences. We consider the framework and the notation of Section 1.1.2 to
describe these methodological advances.

3.1.1 Practical empirical online tuning of the parameters

Theoretical tunings are too cautious. As we will illustrate on real data the theoretical
optimal values of η (the ones that minimize the theoretical bounds) usually exhibit bad
practical performance; this is the case for the off-line tuning proposed in Theorem 1.7 or
the online tuning described in Section 1.4. An explanation of these disappointing results
is that the theoretical bounds are with respect to all individual sequences and thus
correspond to too cautious algorithms, which have too long a reaction time. A natural
idea therefore consists of increasing the values of the learning rates ηt, the question at
hand being to find a powerful and adaptive way to do so.

But theory is useful despite all! Before proceeding, note that these remarks about a
desired faster learning do not call into question the general methodology of sequential
aggregation of experts forecasts. The applications to real data will indeed show that
aggregation strategies tuned with fast enough learning rates perform much better than
the best single expert and even than the best constant convex combination of the experts
forecasts –while, in addition, both are only known at the end of the forecasting period.
This is illustrated by the weight vectors qt chosen round after round: they absolutely
neither look like Dirac masses nor are all similar to a given convex weight vector.

Sequential tuning with the best parameter in the past

We describe the method on an exemple, namely, the family Egrad
η of strategies performing

exponentially weighted averages of the cumulative gradients of the losses, which was
described in Figure 1.3. The tuning method relies on all the strategies of this family (as
η varies) and this is why it is called a tuned meta-strategy (here, based on the Egrad

η ).
To state it formally we now need to write explicitly the dependency of the weight vector
pt on the strategy Egrad

η that prescribes it, which we do by denoting it by pt
(
Egrad
η

)
.

Statement. The tuned meta-strategy chooses at each time instance t the parameter ηt
whose associated strategy obtained the best performance in the first t− 1 time instances
and then resorts to the weight vector pt

(
Egrad
ηt

)
. Formally,

ηt ∈ arg min
η>0

L̂t−1
(
Egrad
η

)
. (3.1)

No theoretical guarantee yet. This online tuning achieves in practice the performance
that was intuitively expected, namely, its cumulative loss up to time instance T is often
close to the one of Egrad

ηT
, which is by definition the best strategy within the family Egrad

η

on the data. We have however no corresponding theoretical guarantee to offer yet.
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Issues in the practical implementation. In addition, the computation of the argument of
the minimum in (3.1) or even of an ε–minimum is tricky. A simplifying idea is to restrict
the minimization to a finite grid of points within the set R?+ of all parameters, where
the grid can be constructed or modified online. We will often use logarithmically evenly
spaced points between two endpoints. Our empirical studies show that the discretization
step has not too strong an influence over the performance, in contrast to the values
of the endpoints. [13, 10] propose (without implementing it) a procedure to set these
values adaptively over time according to the performance obtained in the past by the
previously considered grids. The validation on real data of this procedure needs however
to be performed.

3.1.2 Two generic variants of the strategies based on cumulative losses

A frequently overheard criticism. Practitioners often have the following criticism against
the strategies described in the previous chapters: they care too much about the far away
past since the cumulative losses used at time instance t to compute the weight vectors
give the same importance to recent losses and to remote-past losses. The intuition
suggests that the knowledge of the most recent past is useful while the one of the
remote past seems less profitable (in particular to practitioners familiar with stochastic
frameworks, especially when the latter rely on stationary distributions). This is another
illustration of the cautious prediction behavior of our robust strategies.

Windowing of the losses: a method with no theoretical guarantee

This is the first generic variant, it discards the past losses as follows. We fix an integer
parameter H and only consider the losses obtained in the last H time instances to
compute the cumulative losses. For instance, for the strategies Egrad

η , this variant consists
of replacing the definitions of the components of pt provided in Figure 1.3 by

pj,t =
exp

(
−η

∑t−1
s=max{1,t−H}

˜̀
j,s

)
∑N
k=1 exp

(
−η

∑t−1
s=max{1,t−H}

˜̀
k,s

)
for all t > 2 and j = 1, . . . , N .

Unfortunately it seems unlikely that the existence of uniform regret bounds with
respect to all individual sequences of experts forecasts and observations be preserved by
windowing.

Reconciliation of the viewpoints: discounted losses

It suffices to consider that the importance of the losses is in proportion of their distances
to the present: more recent losses are more significant but the remote past still counts
(a little). This is made formal by discounting past losses by a positive multiplicative
factor that is smaller as the past is less recent.
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Statement. We illustrate again the method on the family of strategies Egrad
η . It is

parameterized by two non-increasing sequences of positive numbers, the discount factors
(βt) and the learning rates (ηt). The definitions of the components of pt provided in
Figure 1.3 are replaced by

pj,t =
exp

(
−ηt

∑t−1
s=1(1 + βt−s) ˜̀j,s)∑N

k=1 exp
(
−ηt

∑t−1
s=1(1 + βt−s) ˜̀k,s) (3.2)

for all t > 2 and j = 1, . . . , N .

Existence of theoretical guarantees on the performance. We could prove uniform regret
bounds for the instantiation above of this second variant, these bounds depending, of
course, on the sequences (ηt) and (βt). The latter sequence should, for instance, not
decrease too quickly towards 0.

Theorem 3.1. The exponentially weighted average strategy with discounted losses in-
troduced in (3.2) minimizes the regret in the sense of Aim 1.1 whenever the learning
rates and the discount factors satisfy

t ηt →∞ and ηt

t−1∑
s=1

βs −→ 0

as t→∞ and Assumption 1.6 is satisfied.

Proof. A detailed proof can be found in the technical report [MMS07, Chapter 6]. The
idea is to consider an approximation scheme in which the –not too large– discrepancies
between the weight vectors with and without discounting –defined respectively in (3.2)
and in Figure 1.3 up to the replacement of the fixed learning rates by online values
ηt– are quantified. These discrepancies are then added to the regret bound of an
adaptive version of the strategy of Theorem 1.7 (alluded at in the comments following
the statement of the theorem). �

Literature review. Discounting factors were introduced in prediction of individual
sequences by [CBL06, Section 2.11]; but it was crucial for the analysis carried therein
that the number of time instances T be fixed and known beforehand, which is not
a restriction that we could consider here. In game theory discount factors model in
particular the interest rates and give consequently more importance to less recent
payoffs.

3.1.3 Sequential linear regressions with regularization factors

The framework of sequential linear regression. In this section we restrict our attention to
the case where the observation and prediction sets are given by the real line, Y = X = R,
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and where the loss function ` is the quadratic loss, `(x, y) = (x− y)2. The statistician is
now allowed to pick at each time instance arbitrary weight vectors ut = (u1,t, . . . , uN,t)
in RN ; no nonnegativity or summation-to-1 constraints are enforced anymore. The
forecasts output by the statistician are then given by the linear combinations

ŷt =
N∑
j=1

uj,tfj,t . (3.3)

Possible reduction of the bias but lack of interpretation. The advantage of this framework
is that by removing the constraint that the weights should sum up to 1 we now allow the
aggregation strategies to compensate some bias that would be common to all experts.
We actually observe such a compensation for some data sets, on which the obtained
weights sum up to a quantity slightly smaller than 1, like 0.99. The drawback is however
that in general the weight vectors ut have many negative components, which makes
them less interpretable than their convex counterparts pt.

`2–regularization factors: the ridge regression forecaster

The first strategy of interest is based on the ridge regression, which was introduced
by [HK70] in a stochastic context and later imported by [AW01] and [Vov01] into the
setting of prediction of individual sequences.

Statement. This strategy relies on a `2 regularization; to state it we denote by

‖u‖2 =

√√√√ N∑
j=1

u2
j

the Euclidian norm of a vector u ∈ RN . The ridge regression forecaster is parameterized
by a parameter λ > 0 and will be referred to as Rλ. It chooses at each time instance
t > 1 a weight vector ut satisfying

ut ∈ arg min
v∈RN

λ‖v‖22 +
t−1∑
s=1

ys − N∑
j=1

vjfj,s

2
 (3.4)

with the convention that a sum over no element is null (so that, for instance, u1 is the
null vector).

Theoretical performance bound. To state it in a compact way we define the (line) vector
ft = (f1,t, . . . , fN,t) of the experts forecasts at time instance t.

Theorem 3.2 (see [CBL06, Section 11.7]). Consider the matrix MT =
∑T
t=1 f T

t ft
and denote by µ1,T , . . . , µN,T its eigenvalues. For all sequences of experts forecasts
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f1, . . . ,fT and all sequences of observations y1, . . . , yT , the regret of Rλ with respect to
each weight vector v ∈ RN is bounded from above as follows:

T∑
t=1

yt − N∑
j=1

uj,tfj,t

2

−
T∑
t=1

yt − N∑
j=1

vjfj,t

2

6
λ

2 ‖v‖
2
2 +

 N∑
j=1

ln
(

1 + µj,T
λ

)max
t6T

yt − N∑
j=1

uj,tfj,t

2

.

Remarks and comments. To drop all dependencies of the bound in the sequences of
experts forecasts fj,t and observations yt it suffices to restrict X and Y to a bounded
domain [−B,B] (at the cost, however, of a deterioration of the orders of magnitude
of the regret bound; details are omitted). We end this paragraph by underlining that
here again, a tuning issue arises for λ. The computation of its theoretical optimal value
with respect to the bound of Theorem 3.2 is tricky; in practice, we advise the reader to
resort to the sequential data-based tuning proposed in Section 3.1.1.

`1–regularization factors: the sequential Lasso forecaster

We recently introduced the following other variant of the sequential linear regression,
which is in the spirit of some modern regularized regression methods of the stochastic
case.

Statement. We replace the `2–regularization factor used in (3.4) by an `1–regularization:
to that end we denote by

‖u‖1 =
∑
j=1
|uj |

the `1–norm of a vector u ∈ RN . For a given regularization constant λ > 0, the
sequential Lasso forecaster chooses at each time instance t > 1 a weight vector

ut ∈ arg min
v∈RN

λ‖v‖1 +
t−1∑
s=1

ys − N∑
j=1

vjfj,s

2
 . (3.5)

We denote this strategy by Lλ.

Remarks and comments. [Tib96] introduced and studied the Lasso regression in a
stochastic setting, with a booming success. It in particular turned out to be remarkably
suited to high-dimensional regression problems. Indeed, the advantage of the `1–
regularization in (3.5) is that it leads to weight vectors ut with only few non-zero
components. A drawback is however that these vectors cannot be given in closed
form –but there exists algorithms, like the LARS algorithm of [EHJT04], that provide
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an efficient computation of their values on the data. This is to be compared to the
minimization problem (3.4) for which it is easy to exhibit such a closed form expression
of ut as a function of λ and of past data.

Perspective for future research. To the best of our knowledge there exists no regret
bound yet for the sequential Lasso regression with respect to individual sequences; the
desired form of the bound would be similar to the one stated in Theorem 3.2.

3.2 Interlude: Outline of the empirical studies

We provide a standardized outline of the treatment of a new data set. Since our aim
in this thesis is only to assess in hindsight the interest of using sequential aggregation
strategies (the operational performance of the latter), we assume that all observations
are available. Of course, the ultimate goal is to design fully automatic strategies but
doing so we can also study the performance of semi-automatic strategies.

Outline of the empirical studies of performance of the sequential aggregation methods
1. Design some experts.
2. Choose a loss function and evaluate the performance of the experts.
3. For each family of strategies compute the performance corresponding to the best

constant choices of the parameters in hindsight.
4. Measure the cost of the automatic tuning and assess the quality of the operational

performance.

1. Design some experts. The guideline is to design them so that –as much as possible–
they exhibit varied enough behaviors in order that the aggregation strategies have a
sufficient flexibility in the output aggregated forecasts. Constructing the experts is
usually the responsibility of the partner of the statistician because of his knowledge
of the field of application and of the methods –classical and more modern ones– that
are likely to exhibit a good performance. These methods can rely on some tuning
parameters that were set on data sets anterior to the data set at hand (see, for instance,
the construction of the experts for the electricity consumption in Section 3.5.2).

2. Choose a loss function and evaluate the performance of the experts. By evaluation
of the performance of the experts we mean the assessment of the accuracy obtained
by some simple strategies like the uniform average of the experts forecasts (which is a
strategy that is easy to implement online) or by some oracles; this assessment is given by
their cumulative losses. By oracles we mean strategies that cannot be defined online and
that require the beforehand knowledge of the whole data set: the best single expert, the
best constant convex combination of the experts, the best constant linear combination
of the experts. Finally, the prescient strategy is the strategy that is only constrained
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by outputting at each time instance a convex (or linear) combination of the experts; it
indicates a bound on the performance that no aggregation strategy can improve given
the data set (given the experts forecasts and the observations).

3. For each family of strategies compute the performance corresponding to the best constant
choices of the parameters in hindsight. The aggregation strategies often require the
tuning of a small number (usually, one or two) of user parameters. For instance, the
family Egrad

η of strategies performing exponentially weighted averages of the cumulative
gradients of the losses relies on one parameter η. What we do here is to tabulate
the performance on a thin grid of possible parameters and compare the best accuracy
obtained in this way to the performance of the reference strategies and oracles of the
previous step –with the hope that the aggregation strategies will perform better than
the oracles in addition of being implementable online.

4. Measure the cost of the automatic tuning and assess the quality of the operational
performance. We then implement the tuned meta-strategy of Section 3.1.1 based on the
families considered in the previous step and look how different is its performance with
respect to the best of the underlying strategies (the ones computed in the previous step).
This is the most crucial step of the empirical study since it indicates the performance
that would have been achieved for real by outputting sequentially aggregated forecasts
based on the experts constructed in the first step –hence the notion of operational
performance.

3.3 Sequential investment in the stock market [1]

The first series of empirical studies on the practical interest of the sequential aggregation
techniques was about sequential investment in the stock market and was initiated
by [Cov91]. The observations are formed by the daily evolutions of 36 assets of the
New-York stock exchange between 1963 and 1985 while the experts are simply identified
with each of these assets. Twenty articles at least studied the performance obtained
by sequential aggregation strategies on this data set but we only discuss in the rest of
this section the results obtained by [HSSW98, BEYG00, GLU06, AHKS06] and by our
contribution [1].

Warning! In this section we briefly describe why this simplified framework and its
associated data set were criticized by academic researchers as well as by some professional
R&D researchers in the finance industry; I had direct conversations with members of
both groups (and was also reported additional conversations of colleagues with members
of the second group).

Brief overview of the obtained results. [BEYG00] shows that the returns obtained by the
aggregation strategies of [Cov91] are close to the ones achieved by the allocation strategy
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that redistributes its capital everyday evenly among the 36 assets; the latter strategy
corresponds to the constant use of the uniform weight vector. [HSSW98] (by considering
the family Egrad

η ), [1] (by minimizing some internal regret), and later [AHKS06] (by a
convex aggregation relying on the optimization of a criterion via Newton’s method)
gradually improved the financial performance of sequential aggregation strategies com-
ing with theoretical guarantees on their regrets with respect to individual sequences.
[GLU06] and some posterior contributions obtain returns larger by several orders of
magnitude but resort to do so to strategies exploiting a stochastic assumption on the
behavior of the market: that it can be modeled by a stationary process.

Criticisms formulated over time. To the best of our knowledge most of the empirical
studies –including ours– do not fully implement the outline described above in Section 3.2
and only consider its steps 2 and 3. In particular they do not design real experts (step 1)
and merely identify each asset with an expert, which is the most important criticism. On
the contrary they should ask R&D departments of the finance industry to provide them
with a set of true base investment strategies and aggregate the investment portfolios
recommended by the latter.

On the one hand these studies also tabulate the performance only for a set of constant
choices of the tuning parameters and never discuss the operational performance obtained
via an automatic sequential tuning (step 4). On the other hand even the non-operational
returns of the considered strategies are far from the ones of the best constant convex
combination of the assets, which is in strong contrast with the improvements obtained
by the former on the latter in other settings, which are presented in the next two sections
of this chapter.

To these academic criticisms on the methodology can be added other ones on the
data set itself, which suffers from what is known as the “survivor bias” as it only contains
assets that did not go bankrupt during the considered period of time. In addition –and
maybe most importantly– researchers, see, e.g., [GLU06], quickly realized that the
most impressive returns obtained by sequential strategies were essentially linked to two
specific assets, “Kin Ark” and “Iroquois”, which have cyclic, correlated, and highly
foreseeable behaviors.

Finally, the exchanges with the financial industry are sometimes one-sided: the
obtained feedback on the performance and on the interest of the sequential aggregation
strategies is vague and non informative, the R&D researchers of the finance industry are
reluctant to detail their operational constraints, but they are always eager for learning
new and original strategies. All in all, it is difficult to design the experts hand in hand,
as true partners –while this step 1 of the outline detailed in Section 3.2 is crucial.

Conclusion. This is why I never went back to the problem of sequential aggregation of
portfolios after my PhD thesis. I instead preferred working in two other fields, in which
the preliminary step consisted of identifying solid and renowned partners that were able
to provide experts of good quality.
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3.4 Air quality forecasting [7]

We present in this section the context and the data set relative to the problem of air
quality forecasting. We briefly explain how to adapt the general strategies presented
above and in the previous chapters to this setting and then provide an overview of their
performance. All related details can be found in the articles [7, 10], as well as in the
technical reports [GMS08, MMS07] on which these articles rely.

3.4.1 Description of the considered data set and of the experts used

The data set at hand corresponds to the time period between April 28 and August
31, 2001, which contains thus T = 126 days, and to a geographical localization over
France and Germany: 241 sites (also called stations in the sequel) are available –116
in France and 81 in Germany– and they are uniformly distributed over each of the
countries. We only discuss in this section the results obtained for the forecasting of
daily ozone peaks: with each day t and each site s we associate the quantity yst , which is
the maximal value of the ozone concentration during day t at site s. The indexes t and
s take respective values in the sets {1, . . . , 126} and N = {1, . . . , 241}. The measures
are given in micrograms per cubic meter (µgm−3), a unit that will generally be omitted
in the sequel. In this respect we recall that typical concentrations are of the order of 40
µgm−3 to 150 µgm−3 and that French authorities need respectively to inform and to
alert people whenever the concentrations are expected to be above 180 µgm−3 and 240
µgm−3.

Missing data. About 30 000 peaks are therefore to be predicted but only about 27 500
of them could be measured within the period of interest (missing values correspond,
among others, to temporary failures of some meteorological stations). In the sequel
we denote by Nt the set of stations that are active at day t –so that for all t, only the
observations yst with s ∈ Nt are available.

Other data sets. Two other data sets are considered in [7]: a Europe-wide and a
France-wide ones. The hourly forecasting of the ozone concentration is also studied for
the three mentioned data sets.

Construction of the experts

We use N = 48 experts constructed in [MS06] and integrated in the modeling system
Polyphemus1. Each expert results from three choices: a physical formulation (how the
chemical species evolve all together); a numerical discretization scheme (since the physical
formulation is in terms of partial differential equations, of which an approximate solution
needs to be computed); a set of input data (meteorological data and measurements of

1 See http://cerea.enpc.fr/polyphemus/
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Figure 3.1. Profiles of the forecasts of the ozone concentration (µgm−3) output by the 48
experts, averaged over space and time; x–axis: hours of the day; y–axis: concentrations.

other polluting species). The possible sets of choices are detailed in [MS06, Section 2.2]
and lead to 48 experts. In our meta-statistical view, however, experts are simply
forecasting black boxes whose accuracies can be improved in some automatic way by
aggregation of their forecasts. These experts are indexed by j ∈ {1, . . . , 48} and offer
each a forecast f sj,t for the peak that will occur on day t at site s. They actually even
offer fields of forecasts over the entire European continent, that is, forecasts for each
point of a thin grid of locations over Europe.

The experts exhibit varied behaviors. Figure 3.1 shows that the experts forecasts are
scattered: even the averages of the hourly forecasts over time (over all days of the
prediction period) and space differ strongly between the experts, sometimes by a
multiplicative factor as large as 2. The shapes of the averages all correspond to the
typical concentration profile, with a peak measured at the end of the afternoon and
a minimum achieved at the end of the night. But this does absolutely not mean that
the experts are given by mere translations of a reference expert: the similarities in the
shown profiles are only due to the strong averaging over space and time. As we will
illustrate in the sequel the experts indeed have varied behaviors and performance, over
space as well as over time.

Aggregation: uniform over time but variable over space

In this section we restrict our attention to aggregation strategies that use the same
convex or linear weight vector pt or ut to aggregate the experts forecasts at all sites; that
is, this vector depends on t but not on s. This constraint can be relaxed to achieve a
better overall performance (see [7, Section A.1]) but its advantage is to provide stronger
and more interpretable forecasts: the experts provide fields of forecasts and the latter
can be combined to form an aggregated field of forecasts, thus providing predictions
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even between the sites (though the accuracy of these predictions cannot be evaluated
since no observation is available between the sites).

Assessment of the accuracy of the forecasts

Before proceeding we first need to define the loss function used to assess the accuracy
of the output forecasts.

Observation and prediction sets Y and X . The observations at each station lie in the
domain [0, 300]∪ {⊥}, where the symbol ⊥ denotes a missing value (when the station is
inactive) and the upper value 300 is a bound on the maximal ozone concentration that
can arise in France or Germany. Similarly, the experts forecasts for a given day and site
are assumed to lie in the interval [0, 300]. The stations being indexed by the set N , the
observation and prediction sets are then given by

Y =
(
[0, 300] ∪ {⊥}

)N and X = [0, 300]N .

Instantaneous losses. The loss function ` : X × Y → R equals, for all pairs y = (ys)s∈N
and x = (xs)s∈N of elements in Y and X ,

`(x,y) =
∑

s:ys 6=⊥
(xs − ys)2 .

This function satisfies Assumption 1.6 so that we can instantiate in the sequel the
strategies Egrad

η of Section 1.2.3.
The instantaneous loss at day t of an aggregation strategy resorting to the (convex

or linear) weight vector vt = (v1,t, . . . , vN,t) to combine the experts forecasts is then
equal, with the notation above, to a quantity that for the sake of concision we denote
by `t(vt):

`t(vt) =
∑
s∈Nt

yst − N∑
j=1

vj,tf
s
j,t

2

. (3.6)

The notation `t encompasses both the experts forecasts f sj,t and the observations yst ; by
using the formula `t(vt) we only make explicit the dependencies of the instantaneous
losses on the uniform weight vectors vt output by the aggregation strategies.

Global assessment: root mean squared error. In this section only, since the prediction
period is short (it lasts 126 days), the root mean squared error (rmse) of the experts and
of the reference strategies is not computed over the whole prediction period but only on
its last 96 days, which leaves 30 days to the strategies as an initial learning period. We
denote by {t0, . . . , T} = {31, . . . , 126} the indexes of the days when the evaluation thus
takes place. Formally, given the (linear or convex) weight vectors vt0 , . . . ,vT chosen by
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Figure 3.2. Graphical representation of the performance of the experts: root mean
squared errors of the experts on the considered data, sorted in increasing order (left)
and coloring of the map of Europe based on the index of the best local expert (right).

an aggregation strategy S, its root mean squared error is defined by

rmse(S) =

√√√√ 1∑T
t=t0 |Nt|

T∑
t=t0

`t(vt)

(where |Nt| denotes the cardinality of Nt).
Ensuring that a strategy has a small regret is equivalent to ensuring that its root

mean squared error is close, for instance, to the one of the best expert or of the best
constant convex combination of the experts forecasts. In the sequel we will report
the results only in terms of the rmses instead of the regrets as the former are the
performance criterion used by the practitioners and the latter are mostly used a tool to
get accurate forecasts via their minimization.

Additional notation. For all sequences v1, . . . ,vT ∈ RN of linear weight vectors, we
denote by vT1 the strategy that –independently of the observations and of the experts
forecasts– chooses the weight vector vt at time instance t; its root mean squared error
is denoted by rmse

(
vT1
)
. When all these weight vectors vt are equal to some common

value v, this error is simply denoted by rmse(v). We also recall that δj is referring to
the Dirac mass on j, which corresponds to following the forecast of expert j.

3.4.2 Performance of the considered experts and of some reference aggregation strategies

Another illustration of the varied behaviors exhibited by the experts. The stem plot of
Figure 3.2 shows the root mean squared errors suffered by the experts on the considered
data set; they lie between 22.43 and 35.79. One could think that an expert or a small
group of experts outperform clearly all other experts –but this is not the case. The map
of Europe shown in Figure 3.2 is colored according to the indexes of the best expert for
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Name of the reference strategy Formula Value

Uniform average rmse
(
(1/48, . . . , 1/48)

)
= 24.41

Best expert min
j=1,...,48

rmse(δj) = 22.43

Best convex combination min
q∈P

rmse(q) = 21.45

Best linear combination min
u∈RN

rmse(u) = 19.24

Prescient strategy min
u1,...,uT∈RN

rmse
(
uT1
)

= 11.99

Table 3.1. Performance of some reference strategies on the data set of ozone peaks.

each zone of Europe (the expert with the smallest root mean squared error); no expert
is uniformly the best one over the whole space and only a notion of best local expert
could be defined. We also note that many experts are best local experts for at least
one part of the space. This illustrates on the one hand that all experts are useful and
provide information and on the other hand that their behaviors and their performance
vary over space (we explain below why one can also say that they vary over time).

Performance of some reference strategies. Table 3.1 shows the performance of the
reference strategies indicated in Section 3.2.

3.4.3 Performance of some forecasting strategies (by aggregation)

In [7] and [GMS08] we studied about twenty strategies but reproduce only here a brief
summary of the performance obtained by three strategies (and variants thereof).

Exponential weighted averages of the gradients of the losses Egrad
η and ridge regression Rλ

We discuss in this paragraph the families of strategies Egrad
η (Section 1.2.3) and Rλ

(Section 3.1.3). The former family relies on the pseudo-losses (1.11) associated with
the gradients of the losses introduced in (3.6) and needs no further comments. In
contrast, the study of latter family required the extension of the definition (3.4) and of
its associated regret bound to the case where |Nt| quadratic loss terms (one for each
active site) instead of a single one are added at each time instance.

Performance for fixed parameters and operational performance. The first four columns
of Table 3.2 show the performance of these two families for various constant values of
the parameters (lots of other values than the ones shown were considered). The value
5× 10−7 approximatively corresponds to the theoretical optimal value η? recommended
by Theorem 1.7 but is far from being the best value in practice.
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Value for η 5× 10−7 5× 10−6 2× 10−5 10−4 Grid

rmse of Egrad
η 22.89 21.70 21.47 22.10 21.77

Value for λ 0 100 104 106 Grid

rmse of Rλ 20.79 20.77 21.13 21.80 20.81

Table 3.2. Performance of the families of strategies Egrad
η and Rλ for various constant

values of their parameters η and λ, as well as of the tuned meta-strategies based on
them. For each family the smallest rmse among those obtained for constant parameters
is underlined.

This is why –as explained in Section 3.1.1– we resort to an online tuning via a grid
of parameters. We use here its simplest version, in which the grid is fixed once for all
and does not changer over time. The respective grids for the families Egrad

η and Rλ
consist of 11 logarithmically evenly spaced points between 10−8 and 10−4 on the one
hand, 1 and 106 on the other hand. The results obtained this way are shown in the last
column of Table 3.2. The cost for this automatic tuning is small enough compared to
the performance obtained by the choices of the best parameters in hindsight.

Performing aggregation is not following a single expert. We conclude this paragraph
by noting that the considered aggregation strategies do not focus in practice on a
single expert and that on the contrary the weights associated with the vectors may
vary rapidly and significantly over time. This is illustrated by Figure 3.3, where we
considered the optimal-in-hindsight parameters η and λ. These variations occur because
the performance of the experts themselves change over time; we recall that Section 3.4.2
already underlined that they were varying also over space.

Variants of these two families of strategies: windowing and discounted losses

We consider in this paragraph the generic variants presented in Section 3.1.2 and apply
them to the families of strategies studied above; we recall that we only described formally
the variants for the case of exponentially weighted average strategies but that they can
be extended in a natural way to the case of sequential regressions. Table 3.3 summarizes
the results obtained. By original versions therein we mean the versions considered in
Table 3.2 and we only report the smallest rmse that was obtained for constant choices
of the parameters. Similarly, the rmses indicated in the table for the two variants
correspond to an optimization in hindsight of the parameters on the data set (more
details are provided in [10] like, for instance, the description of these parameters).
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Figure 3.3. Graphical representation of the convex weight vectors chosen by Egrad
2×10−5

(left) and of the linear weight vectors chosen by R100 (right), according to time.

Family Original Windowing Discounted losses

Egrad
η 21.47 21.37 21.31
Rλ 20.77 20.03 19.45

Table 3.3. rmses achieved by members of various families of strategies, each tuned
with the best parameter(s) in hindsight: original versions, windowing variants, variants
relying on discounted losses.

Conclusion. We note that giving a smaller weight to the past –either by windowing or by
considering discounted losses– improves the performance, as the practitioners suggested.
However, since the results for discounted losses are better than the ones achieved by
windowing, we conclude that the remote past should not be totally discarded.

Ridge regression: robustness and automatic reduction of the biases

Robustness. We perform in [7, Sections 4.3.2 and 4.3.3] a robustness study of the best
strategy obtained so far, the ridge regression forecaster with discounted losses. We check
that the excellent global performance (averaged over all sites and prediction days) does
not come at the price of some local disasters.

Automatic reduction of the biases. In addition the ridge regression forecaster (especially
its version with discounted losses) can be used to perform some pre-treatment on the
experts: in order to reduce their biases. We recall in passing that this ability to reduce
the biases was the motivation to resort to linear weight vectors instead of convex ones
and was a compensation for the loss of interpretability. Formally we fix an expert k
and propose at each time instance t the forecasts btfsk,t instead of the fsk,t, where bt is a
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Expert original rmse rmse after pre-treatment

Best 22.43 21.66
Reference 24.01 22.43
Worst 35.79 24.78

Table 3.4. Reduction of rmses obtained with the pre-treatment consisting of applying
to each single expert the optimal ridge regression forecaster with discounted losses
studied in Table 3.3.

multiplicative factor given by

bt ∈ arg min
b∈R

λ|b|2 +
t−1∑
t′=1

(1 + βt−t′)
∑
s∈Nt′

(
yst′ − bfsj,t′

)2 .

In this case bt is always nonnegative and is closer to 1 as the original forecasts of expert
k have smaller biases: the aim is indeed –as asserted by Theorem 3.2– to perform
almost as well as the best of the meta-experts forecasting bfsj,t at each site s and at each
time instance t, where the nonnegative parameters b are multiplicative scaling factors
indexing the meta-experts.

Table 3.4 illustrates the interest of this pre-treatment on three experts among the 48:
the best and worst ones (i.e., with smallest and largest rmses), as well as a reference
expert constructed by considering the most common values for the choices described in
Section 3.4.1 (see [MS06, Section 2.2] for further details). In all cases a reduction of the
rmse is achieved. An idea that we have not implemented yet would be to apply this
pre-treatment to all experts and to aggregate their corrected forecasts instead of the
original ones.

Sequential Lasso forecaster with discounted losses

To pave the way for future data sets that would correspond, for instance, to a huge
number of experts with respect to the length of the considered time period we performed
a preliminary study in [GMS08]. The topic was to perform simultaneously a selection
of a small subset of the experts and a linear combination of the forecasts of the selected
experts; the small subset is of course to change over time. We resorted to that end to
a variant of the sequential Lasso forecaster of Section 3.1.3 obtained by considering
discounted losses. After an optimization in hindsight of its parameters (see [10] for
the details) this strategy achieved a rmse of 19.31; the latter value lies between the
rmse of the linear oracle –which is equal to 19.24– and the one of the discounted
variant of the ridge regression forecaster –which is equal to 19.45. The simultaneous
selection & aggregation performed by this strategy is shown in Figure 3.4. We note that
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Figure 3.4. Graphical representation of the behavior of the sequential Lasso forecaster
with discounted losses tuned with its optimal-in-hindsight parameters: evolution of the
chosen linear weight vectors (left) and of the selected experts (right: a square means
that the expert has a zero weight).

typically about twenty experts are eliminated at each time instance and that the linear
aggregation is performed only over a subset of about thirty experts.

3.5 Forecasting of the electricity consumption [13]

We consider in this section the half-hourly forecasting of the global electricity consump-
tion of the customers of Electricité de France (EDF), the largest electricity provider
in France. The results presented here are extracted from the submitted article [13] as
well as from the corresponding technical report [DGS09]. Both also study the hourly
consumption of the customers of the Slovakian subbranch of EDF.

Specialized experts. The main difficulty –and chance, though– is that the experts of the
data set are specialized and only output forecasts in some contexts, hence, irregularly.
(Such experts were also called sleeping experts in the literature, see below the review of
the latter.) For instance, some experts may be designed to output forecasts expected to
be accurate in winter and rather crude in summer; there can be experts dedicated to
working days and others dedicated to week-ends and public holidays. Dealing with such
experts may be a chance as their specialization probably implies more accurate forecasts
on those time instances when they provide some. It is a difficulty however at first sight
since the definitions and results of Chapter 1 need to be adapted to this setting.

Outline of the study. We first indicate briefly how to mathematically deal with this
setting, present then the data set and in particular the constructed experts, and conclude
by describing the performance obtained by the considered aggregation strategies.
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3.5.1 How to take advantage of specialized experts

Literature review. To the best of our knowledge this setting was not much considered
in the field of prediction of individual sequences. The first references are [Blu97]
and [FSSW97]; they respectively introduce and formalize the framework of specialized
experts. Two other papers focusing on other topics but mentioning in passing results for
the case of specialized experts are [BM07, Sections 6–8] and [CBL03, Section 6.2]. All
these references deal with convex aggregation; there seems to be no result yet for linear
aggregation (e.g., for an adaptation of the ridge regression forecaster). Preliminary
attempts and partial results for the problem of linear aggregation in the context of
sleeping experts are provided in the technical report [DGS09] but are not satisfactory
and need to be rethought.

Mathematical statement of the problem. We use again the notation of Chapter 1. The
prediction set X is extended with the element ⊥, which has the following meaning. That
expert j ∈ {1, . . . , N} proposes at time instance t the value fj,t = ⊥ means that the
context is not the required one for it to output a forecast (i.e., some external conditions
are not met), in which case the expert refrains from forecasting. It is then said inactive.
In contrast experts proposing other forecasts in X are said active. We assume that at
each time instance t at least one expert is active and we denote by Et the non-empty
set of these active experts. As indicated above we restrict our attention in this thesis
to convex weight vectors. All in all each prediction strategy S thus chooses at each
time instance t a convex weight vector pt with support included in Et and outputs the
aggregated forecast

ŷt =
∑
j∈Et

pj,tfj,t .

Assessment of the accuracy. We still consider in this section the quadratic loss: we
define the cumulative loss and the rmse of a strategy S on the first T time instances as
in the previous section, that is, as, respectively,

L̂T (S) =
T∑
t=1

(
ŷt − yt

)2 and rmse(S) =

√√√√ 1
T

T∑
t=1

(
ŷt − yt

)2
.

In this section –unlike in the previous one– the evaluation of the accuracy takes place
over the whole prediction period, i.e., without a training period, as the length T of this
prediction period is large enough.

Comparison to the best expert or to the best constant convex combination of the experts

Things get more delicate when the corresponding quantities are defined for the experts
and for convex combinations thereof. We reproduce here the methodology and definitions
proposed by [FSSW97].
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For a given expert. The cumulative loss of a single expert j is not a meaningful quantity
but its rmse has a natural definition:

rmse(j) =
√√√√ 1∑T

t=1 I{j∈Et}

∑
t6T :j∈Et

(fj,t − yt)2 .

It is also easy to introduce a notion of regret, which depends strongly on the expert j
to which the strategy S is compared; this is why this regret is indexed by T and S –as
before– but also by j. To get a fair comparison between j and S we only perform it on
the time instances when j was active:

RT (S, j) =
∑

t6T :j∈Et

((
ŷt − yt

)2 − (fj,t − yt)2
)
.

For a given convex combination of the experts. The final step is to extend these definitions
to the case of constant convex weight vectors q so that when q = δj (the Dirac mass
on j) the definitions for single experts are recovered. To that end we introduce the
normalization qE of q on a subset E of {1, . . . , N} by considering first the weight given
by q to E,

q(E) =
∑
j∈E

qj ,

and second, by defining

qE =


(0, . . . , 0) when q(E) = 0;(
q1I{1∈E}

q(E) , . . . ,
qN I{N∈E}

q(E)

)
when q(E) > 0.

The extended definitions are then

rmse(q) =

√√√√√ 1∑T
t=1 q(Et)

T∑
t=1

∑
j∈Et

qEt
j fj,t − yt

2

q(Et)

and

RT (S, q) =
T∑
t=1

(ŷt − yt)2 −
( ∑
j∈Et

qEt
j fj,t − yt

)2 q(Et) .

Theoretical guarantees of some aggregation strategies. [13, Section 2.3] provides an
overview of the regret bounds proposed by the literature: the regrets with respect to all
convex weight vectors q can be uniformly bounded by something of the order of

√
T ,

where the uniformity is over q but also over all sequences of observations yt and experts
forecasts fj,t. The strategies providing such regret bounds are obtained by adapting the
exponentially weighted average strategies based on the gradients of the losses –which
where described in Section 1.2.3. The resulting strategies also rely on a parameter η > 0.
For the sake of concision we do not describe them in detail and simply denote them by
Wgrad
η .
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Comparison to the best compound expert

The empirical studies [Gou08a, Gou08b] showed the interest of aggregation strategies
tracking the best expert (via so-called compound experts) to forecast the electricity
consumption.

Formal statement of the problem for specialized experts. [HW98] introduced the class of
compound experts. For a given number of time instances T , this class can be identified
in the case of specialized experts with the set C′T = E1 × . . . × ET . For all elements
jT1 = (j1, . . . , jT ) in C′T , we denote by

LT
(
jT1
)

=
T∑
t=1

`
(
fjt,t, yt

)
the cumulative loss of its corresponding compound expert. Of course no strategy can
achieve a cumulative loss close to the one of the best compound expert since this
essentially amounts to knowing in advance the index of the best expert for the next time
instance. The compound experts thus need to be constrained; we require, for instance,
that they do not shift too often. Formally, the number of shifts of a given compound
expert jT1 equals

s
(
jT1
)

=
T∑
t=2

I{jt−1 6=jt}

and we will impose a maximal value. Shifts are also referred to as breaks in the stochastic
statistical literature.

Regret with respect to compound experts with a maximal number of shifts. We denote
by C′T,m the set of all compound experts with at most m shifts. Of course, for small
values of m the set C′T,m can be empty in the context of specialized experts. It is
straightforward to define the regret of a strategy S with respect to a compound expert
jT1 or the rmse of a compound expert since both the strategy S and the expert jT1
output a forecast at each round.

Upper bound on this regret in the case of non-specialized experts. The main reference
is [HW98] and is summarized in [CBL06, Section 5.2]. It proposes an efficient sequential
implementation of the strategy that essentially performs exponentially weighted averages
of the cumulative losses of all compound experts, where each of the later has an initial
weight that is not uniform but depends on its number of shifts. This strategy is known
as the fixed-share strategy and relies on two parameters, a learning rate η > 0 and a
mixing factor α ∈ [0, 1]. When both parameters are well tuned (according to T and m)
the regret of this strategy with respect to compound experts with at most m shifts is
uniformly bounded from above by something of the order of

√
mT lnN .



82 Chapter 3. Empirical performance of sequential aggregation of experts

Extension to specialized experts. It is straightforward to extend the fixed-share strategy
the setting of specialized experts; it can also use gradients of the losses (pseudo-losses)
instead of the true losses. The details of these extensions are omitted and we simply refer
the reader to [13, Section 2.3]; we underline that the extension of the fixed-share strategy
to the case of specialized experts is new but absolutely natural and straightforward.
Doing so we obtained two families of fixed-share strategies, Gη,α and Ggrad

η,α , where the
superscript indicates whether these strategies rely on the losses or on their gradients.

3.5.2 Presentation and characteristics of the data set

The data set considered in this section is the standard data set used for the calibration
of the EDF short-term models for the French electricity load. It is described in detail
in [DKO+08] and [13] and we only provide an overview of its content.

It includes half-hourly electricity data and meteorological observations (temperature
and cloud cover) over the whole French territory. Load data is built by EDF from
the French load data measured and provided by the French national grid company,
RTE (“Réseau de transport d’électricité”). Meteorological data is issued by the French
weather-forecasting institution Météo-France.

Training and validation sets. This data set is divided in two parts: the first part ranges
from September 1, 2002 to August 31, 2007 –we call it the training set; the second
part covers the period between September 1, 2007 and August 31, 2008 –we call it the
validation set. The experts we consider in this section are trained over the first part of
the data set and then provide forecasts (which the strategies will aggregate) over the
period corresponding to the validation set. Actually, we exclude some special days from
the validation set. Out of the 366 days between September 1, 2007 and August 31, 2008,
we keep 320 days. The excluded days correspond to public holidays (the day itself, as
well as the days before and after it), daylight saving days and winter holidays (that is,
the period between December 21, 2007 and January 4, 2008); however, we include the
summer break (August 2008) in our analysis as we have access to specialized experts that
are able to produce forecasts for this period. Other special days exist and correspond
to temporary changes of the prices in order to reduce expected high consumption
(mainly due to low temperature); they are included in the validation set whenever a
preprocessing based on EDF commercial data was available. The characteristics of the
consumptions yt of the validation set are summarized in Table 3.5.

Units. The observations and forecasts of the consumption are expressed in gigawatts
(GW), a unit that will generally be omitted in this section as well –in particular when
we provide the values of the rmses.
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Time intervals Every 30 minutes

Number of days D 320
Time instances T 15 360
Number of experts N 24 (= 15 + 8 + 1)

Median of the yt 56.33
Bound B on the yt 92.76

Table 3.5. Some characteristics of the observations yt of the French data set of
operational forecasting.

Construction of three families of experts

The experts we consider here are instances of the three main categories of statistical
models: parametric, semi-parametric, and non-parametric models. The reason for this
choice is two-fold: first, we believe that combining base forecasters is particularly useful
when they are heterogenous and exhibit significantly varied behaviors; and second, EDF
could provide these three types of models. We provide below a short description of
them but refer the reader to [DGS09, Section 4.1] and [13] for more details.

Parametric model. The parametric model used to generate the first group of experts is
described in [BDR05] and is implemented in an EDF software called “Eventail.” We
mention briefly that this model is based on a nonlinear regression approach that consists
of decomposing the electricity load into a main component accounting for all the season-
ality of the process and a weather-dependant component. To this nonlinear regression
model is added an autoregressive correction of the error of the short-term forecasts of
the last seven days. Changing the parameters (the gradient of the temperature, the
short-term correction) of this model, we derive 15 experts. For conciseness we refer to
them as the Eventail experts.

Semi-parametric model. The second group of experts stems from a generalized additive
model (henceforth referred to as the GAM model) implemented in the software R by
the mgcv package developed by [Woo06]. This model is presented in [PLG09] and
imports the idea of the parametric modeling presented above into a semi-parametric
modeling. One of the key advantages of this model is its ability to adapt to changes in
consumption habits where parametric models like Eventail need some a priori knowledge
on customers behaviors. Here again, we derive different experts from the GAM model
by changing the trend extrapolation effect (which accounts for the yearly economic
growth) or the short-term effects like the one-day-lag effect; these changes affect the
reactivity to changes along the run. Doing so, we obtain 8 experts, which we call the
GAM experts.
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Figure 3.5. Graphical representations of the performance of the experts: sorted rmses
(left) and rmse–frequency-of-activity pairs (right); Eventail experts are depicted by the
symbols •, GAM experts are represented by 4 while ? stands for the similarity expert.

Non-parametric model. The last expert is drastically different from the two previous
groups of experts and its construction is presented in [APS06] and [ABCP10]. It relies
on a univariate method (i.e., it does not require any exogenous factor like weather
conditions); the key idea is to assume that the load is driven by an underlying stochastic
curve and to model each day as a discrete recording of this functional process at
half-hourly instances. Forecasts are then performed according to a similarity measure
between days. We call this expert the similarity expert.

Performance of the experts. The characteristics of the experts presented above are
depicted in Figure 3.5. The bar plot represents the (sorted) values of the rmses of
the 24 available experts. The scatter plot relates the rmse of each of the expert to its
frequency of activity, that is, it plots the pairs(

rmse(j),
∑T
t=1 I{j∈Et}

T

)

for all experts j.
Out of the 15 Eventail experts, 3 are permanently active; they correspond to the

operational model used by EDF and to two variants of it based on different short-term
corrections. The other 12 Eventail experts are inactive during the summer as their
forecasts are redundant with the operational model (they were obtained by changing
the value of the gradient of the temperature, which affects the winter forecasts only).
GAM expert are active on an overwhelming fraction of the time and are sleeping only
during periods when R&D practitioners know beforehand that they will perform poorly
(e.g., in time periods close to public holidays); the lengths of these periods depend on
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Name of the reference strategy Formula Value

Uniform sequential aggregation rule rmse(U) = 0.724

Uniform convex weight vector rmse
(
(1/24, . . . , 1/24)

)
= 0.748

Best single expert min
j=1,...,24

rmse(j) = 0.782

Best convex weight vector min
q∈P

rmse(q) = 0.683

Best compound expert

Size at most m = 50 min
jT

1 ∈C′
T,50

rmse
(
jT1
)

= 0.534

Size at most m = 100 min
jT

1 ∈C′
T,100

rmse
(
jT1
)

= 0.474

Prescient strategy min
jT

1 ∈E1×E2×...×ET

rmse
(
jT1
)

= 0.223

Table 3.6. Definition and performance of several reference strategies on the data set of
electricity consumption.

the parameters of the expert, hence the frequencies of activity vary among the GAM
experts. Finally, the similarity expert is always active.

An operational constraint

The operational constraint consists of outputting half-hourly forecasts every day at
12:00 for the next 24 hours –that is, of forecasting simultaneously the 48 next time
instances. All models presented above are assumed to abide by this constraint so that
the aggregation strategies may also do so. However, unlike in the previous empirical
study, we do not impose that the latter use the same weight vector to combine the
experts forecasts on these time instances. Put differently, the experts forecasts can
be aggregated with weight vectors that depend on the moment of the day; it is even
necessary to do so when some experts get inactive or active during the set of time
instances for which predictions are required.

3.5.3 Performance of some aggregation strategies

Performance of some reference strategies

Table 3.6 shows that the constructed experts exhibit an excellent performance in view
of the typical orders of magnitude of the yt indicated in Table 3.5. Some reference
strategies deserve comments.
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Uniform sequential aggregation versus use of the uniform convex weight vector. In the
setting of specialized experts there is a subtle difference between the uniform se-
quential aggregation strategy U and the use of the uniform convex weight vector
q = (1/24, . . . , 1/24). The former chooses indeed at each time instance t the convex
weight vector given by the uniform distribution over the set Et of active experts, so that

rmse(U) =

√√√√ 1
T

T∑
t=1

(∑
j∈Et

fj,t

|Et|
− yt

)2

while rmse
(
(1/24, . . . , 1/24)

)
=

√√√√ 1∑T
t=1 |Et|

n∑
t=1
|Et|

(∑
j∈Et

fj,t

|Et|
− yt

)2

.

Thus, in the assessment of the performance of the uniform convex weight vector the
losses associated with time instances for which many experts are active count more
than those for which few experts only are active; for the uniform sequential aggregation
strategy U all losses have the same weight.

Reference values. The use of the uniform convex weight vector leads to a rmse larger
than the one of the strategy U , which means that experts tend to be more active
at time instances when the forecasting is more difficult. This is an advantage from
which aggregation strategies will profit. But for the time being the consequence is
that the rmse of the best expert is larger than the one of the most naive aggregation
strategy, U . Table 3.6 thus indicates that our more sophisticated aggregation strategies
should improve significantly on the strategy U (whose rmse is 0.724). The performance
of the best constant convex weight vector is already slightly better (its rmse equals
0.683) but the rmses achieved by the compound experts show that strong improvements
upon U are possible.

The end of this section illustrates that such an improvement takes place for the
exponentially weighted average strategy Wgrad

η using the gradients of the losses, as well
as for the fixed-share strategies Gη,α and Ggrad

η,α , which were briefly mentioned at the end
of Section 3.5.1.

Performance and robustness properties of the studied aggregation strategies

To tabulate the performance of the family of strategies Wgrad
η we resorted to a grid of 19

parameters η logarithmically evenly spaced between 10−6 and 1. For the families Gη,α
and Ggrad

η,α we chose a finite grid in R+ × [0, 1] containing 22× 6 points. We summarize
in Table 3.7 the obtained performance; for each family we only report the rmses
corresponding either to the best constant choices of a point in the grids or to the tuned
meta-strategies using these grids and based on the three families.

Comments. The three families of strategies obtain satisfactory –and even quite good–
results compared to the reference values indicated in the comments relative to Table 3.6.
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Best constant parameter(s) Tuned on the grid

rmse of Wgrad
η 0.650 0.654
Gη,α 0.632 0.644
Ggrad
η,α 0.598 0.599

Table 3.7. rmses of three aggregation strategies on the data set of French electricity
consumption: with the best constant parameters (left column) and when tuned on the
grids described in Section 3.5.3 (right column).

Here again gradient-based strategies are more efficient than their counterparts using
directly the losses –which was expected in view of the theoretical results presented in
Section 1.2.3. We actually were pleasantly surprised by the performance of the family
Ggrad
η,α and even found them intriguing as the following robustness remarks underline.

Robustness study. This study –which we simply mentioned in the case of the forecasting
of ozone peaks in Section 3.4.3– consists of locally comparing the performance of the
aggregation strategies to the one of the best expert or of the best constant convex
weight vector. The rmse is indeed a global criterion and we want to check that the
overall good performance does not come at the cost of local disasters in the accuracy of
the aggregated forecasts. To that end we split the data set by the half-hours into 48
sub-data sets; for each of these subsets we compute the rmses of the strategies discussed
above and study also the scattering of the absolute values of the prediction residuals.

The latter are defined as
∣∣ŷt − yt∣∣, where yt denotes the observed consumption at

time instance t and ŷt is its aggregated forecast. We focus on the quantiles of these
prediction residuals –and more particularly on the ones of orders 75 % or 90 %, whose
values measure the extent of disastrous forecasts. Figure 3.6 depicts the performance
of the tuned meta-strategies based respectively on the families Wgrad

η and Ggrad
η,α . The

first meta-strategy has uniformly similar or slightly smaller rmses and quantiles than
the ones of the best constant convex weight vector. The performance of the second
meta-strategy is intriguing: its accuracy is significantly improved with respect to the
one of the best constant convex weight vector between 12:00 and 21:00 but is also
slightly worse than the latter between 6:00 and 12:00. We can provide no reason for this
behavior yet; the aim would be to take advantage of the improvements that arise right
after the update performed at noon, maybe by checking whether another update at
midnight would be useful (though it would not satisfy the aforementioned operational
constraint).
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Figure 3.6. Measures of the half-hourly performance of the overall best expert (solid
line) and of the overall best convex weight vector (dashed line), as well as of the tuned
meta-strategies based on the families Wgrad

η (symbol: •) and Ggrad
η,α (symbol: �); rmses

(top picture) and quantiles of orders 50 % (black), 75 % (grey), and 90 % (black) of the
absolute values of the residuals (bottom picture). Axes: x–axes index the half hours;
y–axes measure respectively the rmses (top picture) and the absolute values of the
residuals (bottom picture).
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3.6 Conclusions et research perspectives

3.6.1 Conclusions for practitioners

This chapter was devoted to the (good) operational performance of some strategies
that sequentially aggregate experts forecasts. We described a general methodology as
well as some new aggregation strategies and variants of existing strategies: windowing,
use of discounted losses, automatic sequential tuning of the parameters on grids. We
then instantiated these results –with some minor adaptations– for two applications: the
forecasting of daily ozone peaks and of half-hourly electricity consumption. However,
we encourage the reader to use the strategies described in this chapter and in Chapter 1
in all settings of sequential forecasting where he would have at his disposal a set of
experts within which he cannot guess in advance the best member. These experts can in
particular be given by methods relying on some stochastic modeling and parameterized
by several parameters: an alternative to the tuning of all these parameters is to consider
several instances of the method tuned each with a different enough set of parameters.
Another option is to consider on top of such experts other experts for which no theoretical
guarantee exists but which are supported by some intuition. The two empirical studies
illustrated the proverb “Garbage in, garbage out”: whenever there exist some good
experts the aggregation strategies also exhibit a good performance. In particular we do
not need to construct only good experts and simply have to ensure that some of the
experts (which do not need to be known in advance) will output accurate forecasts.

3.6.2 Research perspectives

At the methodological level

We underlined in Section 3.1 that for two procedures with good empirical performance
no theoretical bound was established yet: the tuned meta-strategies of Section 3.1.1 and
the sequential Lasso forecaster of Section 3.1.3.

For the forecasting of ozone peaks

The short-term projects are first to evaluate the impact of the pre-treatment on the
experts to reduce their biases and second to study how the performance of the aggregation
strategies evolves when the prediction period gets longer (one-year long) with the same
number of experts or more of them. Preliminary results showed that –as expected– the
gains in performance with respect to the best expert or to the best constant convex
weight vector are even more significant in this case.

A mid-term project is to study a sequential classification problem. We recall
that French authorities need respectively to inform and to alert people whenever the
concentrations are expected to be above 180 µgm−3 and 240 µgm−3; we therefore need
to sequentially forecast the class (low concentration, information required, alert required)
to which the next peak will belong. Here also we ran some preliminary experiments
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but were unable to perform better than the procedure that consists of comparing
the aggregated forecasts to the thresholds 180 or 240. This is quite surprising since
classification problems are usually easier to handle than providing accurate forecasts of
quantitative values.

We also mention a recent study by Vivien Mallet on the links between data assimi-
lation and aggregation of experts [Mal10].

For the forecasting of electricity consumption

The short-term aim is to better understand why the fixed-share strategies are so accurate
in the short run but achieve more disappointing results at the end of the prediction
round. We should also take a better advantage of the specialization of the experts by
constructing them more carefully and in a more systematic way (e.g., having more
experts dedicated to winter or to summer). Finally, at a methodological level we would
like to extend the regularized sequential linear regression forecasters of Section 3.1.3
to the setting of specialized experts. To the best of our knowledge this extension was
not considered yet and seems uneasy; some preliminary attempts described in [DGS09]
failed (as far as the empirical performance on the data set is considered: we expect
significant improvements from such strategies compared to strategies constrained to use
convex weight vectors).

In addition it would be interesting –here but also for the forecasting of ozone peaks–
to be able to measure the uncertainties on the aggregated forecasts. Such measures
could rely either on the scattering of the experts forecasts themselves (the uncertainties
are larger as this scattering is larger) or on measures of uncertainties on their forecasts
provided directly by the experts.

Other data sets

Some other data sets could be studied, e.g., the forecasting of exchange rates in
economics –where experts would be given by the predictions of several financial analysts–
or of river heights in hydrogeology. My current work in these two fields is to identify
reliable and competent partners in each field who will construct the experts and evaluate
the results achieved by the aggregation strategies. The longer-term aim would then be
to provide a software implementing the strategies discussed in this chapter, once the
latter have been tested on varied enough data sets and all have fully automatic variants.



CHAPTER 4

Stochastic continuum-armed bandit problems and
miscellaneous contributions

Introduction. This final chapter is devoted to contributions that are not
linked to the main focus of this thesis, namely, the sequential prediction of arbitrary
sequences. Two such contributions lie within a research field which I recently started
studying –the stochastic continuum-armed bandit problems.
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4.1 Stochastic continuum-armed bandit problems [8, 11]

We describe first the most general model where the arms are indexed by an arbitrary
(finite or infinite) set X ; with each arm is associated a probability distribution. We then
state some of the obtained results, essentially those for the case where X is a metric
space. (We thus omit the first half of [8], which is devoted to the case of a finite set X .)

Stochastic setting. As will become clear with the review of the literature proposed
below, there exists a version of the multi-armed bandit problem with finitely (or even
countably) many arms in the setting of randomized prediction of arbitrary sequences
discussed in Section 1.1.3; forecasters performing well in this setting can be constructed
based on techniques similar to the ones presented in Section 1.3.1. But for once, the
rest of this section is devoted to a good old stochastic setting.

4.1.1 Mathematical description of the model (bounded payoffs)

A set of arms indexed by X is available and a statistician plays against a stochastic
environment E according to the protocol described in Figure 4.1. In particular he gets
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Parameters: a known set of arms X (finite or infinite; equipped with a topology); an
unknown environment E : X → ∆

(
[0, 1]

)
At each round t = 1, 2, . . .,

1. The statistician chooses a probability distribution νt ∈ ∆(X ) and draws an arm
It ∈ X at random according to νt;

2. The environment draws the statistician’s payoff Yt independently at random according
to the distribution E(It) associated with the chosen arm;

3. The statistician only observes Yt (and recalls this quantity for the next rounds).

Figure 4.1. The protocol of the multi-armed bandit problem with arms indexed by X .

at each round a bounded payoff with possible values in a range known beforehand; for
simplicity we assume that this range is the interval [0, 1]. We denote by ∆

(
[0, 1]

)
the

set of all probability distributions over [0, 1].

Notion of stochastic environment. A stochastic environment E is defined as a mapping
X → ∆

(
[0, 1]

)
. It associates with each element x ∈ X a probability distribution E(x)

over [0, 1]. When the statistician chooses the arm It ∈ X at time instance t, the
environment draws a payoff Yt independently at random according to the distribution
E(It). We denote by µE : X → [0, 1] the mean-payoff function, which associates with
each x ∈ X the expectation µE(x) of the probability distribution E(x).

Definition of a strategy of the statistician. The statistician ignores which environment
E he is playing with. The only information at his disposal are given by the payoffs
associated with the arms chosen in the past. He thus determines the arm It to pull at a
given time instance t > 2 depending on the arms I1, . . . , It−1 and their associated payoffs
Y1, . . . , Yt−1; he does so possibly at random thanks to an auxiliary randomization. To
that end we assume that X is a topological space, equipped with its Borel σ–algebra,
and denote by ∆(X ) the set of probability distributions over X .

A strategy Ψ is thus given by some initial distribution Ψ1 ∈ ∆(X ) and a sequence
of measurable mappings Ψt, where t > 2. For each t > 2 the mapping Ψt is defined
over X t−1 × [0, 1]t−1 and takes its values in ∆(X ): with the notation of Figure 4.1, the
statistician then chooses the probability distribution

νt = Ψt

(
I1, . . . , It−1, Y1, . . . , Yt−1

)
over X and draws his arm It at random according to νt.

Auxiliary randomizations. The statistician and the environment both resort to sequences
of auxiliary randomizations. The probabilities P and expectations E will all be relative
to these randomizations only (they depend neither on E nor on Ψ).
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Aim: statement and difficulties in achieving it

The aim of the statistician is to ensure that his cumulative payoff Y1 + . . .+ YT is as
large as possible.

Dilemma between exploration and exploitation. To do so and because the feedback
obtained when choosing a given arm is random he must perform a trade-off between
exploration and exploitation. Exploration means pulling each arm a significant number of
times in order to estimate accurately its associated probability distribution; exploitation
means using the gained information to pull more frequently the better arms. Since both
need to be performed simultaneously a dilemma between exploration and exploitation
occurs.

Notion of regret and reformulation of the aim: minimization of the regret

Here again, ensuring that some regret is small entails a large cumulative payoff. Actually,
in the considered stochastic setting all theoretical results are formulated in the literature
in terms of expected cumulative payoffs, so that the regret of a strategy itself will be
studied as a deterministic quantity (corresponding to some expectation).

Formally, the regret of a strategy Ψ against an environment E is equal to

RT (Ψ, E) = Tµ?E −
T∑
t=1

Yt where µ?E = sup
x∈X

µE(x) ;

but only the expected quantities E
[
RT (Ψ, E)

]
will be bounded. Minimizing the regret

is indeed equivalent to maximizing the expected cumulative payoff.

Regret and pseudo-regret. By the tower rule,

E
[
T∑
t=1

Yt

]
= E

[
T∑
t=1

µE(It)
]
> T sup

x∈X
µE(x) = Tµ?E .

Therefore, it always holds that E
[
RT (Ψ, E)

]
> 0: the regret has a clear interpretation in

this chapter, it can only be nonnegative. We then define the pseudo-regret of a strategy
Ψ against an environment E as the unobserved quantity

R′T (Ψ, E) =
T∑
t=1

(
µ?E − µE(It)

)
;

the equality E
[
RT (Ψ, E)

]
= E

[
R′T (Ψ, E)

]
is entailed again by the tower rule. In the

proofs of the theoretical bounds on the expected regret it is often more convenient to
consider the pseudo-regret instead of the regret.
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Why Tµ?E is not replaced by a certain supremum of empirical processes. In the considered
setting we do not impose that at each round a realization of each of the distributions
E(x) be drawn, for all x ∈ X ; only a realization associated with each chosen is drawn.
It is wise to do so, for measurability issues would arise otherwise since the set of arms X
is arbitrary and may be non countable. However, this prevents us from replacing each of
the TµE(x) by a sum of random variables indexed by x and hence from replacing Tµ?E
by a supremum of empirical processes each indexed by x. In conclusion, we consider
Tµ?E for want of anything better.

Reformulation of the aim in terms of the regret. We assume that the statistician has some
knowledge on the environment E he is playing against: he knows that E belongs to some
(possibly non-parametric) family F of mappings X → ∆

(
[0, 1]

)
. Like in the previous

chapters we aim at ensuring that the (expected) per-round regret is asymptotically non
positive; since we showed above that it is nonnegative in the present setting, the aim is
therefore that this expected per-round regret tends to zero.

We thus say that a strategy Ψ minimizes its regret with respect to a family F if

∀E ∈ F , lim
T→∞

E
[
RT (Ψ, E)

]
T

= 0 .

In some cases the convergences above towards 0 hold uniformly over F .

(Extremely brief) literature review

The problem was first mentioned by Robbins [Rob52]. We can split the literature in two
main categories: the articles dealing with the case where X is a finite or a countable
set (with two associated sub-categories, depending on whether the payoffs are given
by random variables or by arbitrary sequences) and the ones about uncountably many
arms.

Bandit problems with finitely (or countably) many arms. In the finite case one usually
denotes by |X | = K the cardinality of X . The most important results for the stochastic
case presented above are that the regret can indeed be minimized against all environments
E, that is, against all K–tuples of probability distributions over [0, 1], with the following
rates of convergence towards 0: a constant depending on E times (lnT )/T for the
strategies proposed in [LR85, BK96, ACBF02, AB09, HT10] and uniform rates of
the order of

√
K(lnT )/T for [ACBF02],

√
K(lnK)/T for [ACBFS02], and

√
K/T

for [AB09]. The latter uniform rate is the optimal uniform rate as follows from the lower
bound stated in [ACBFS02]. The above convergence results can be extended thanks to
the doubling trick to cover the cases where countably many arms are available –at the
cost of loosing the uniformity with respect to the environments E in the bounds.

There also exists a version of the problem for arbitrary sequences, whose protocol
is close to the one stated in Section 1.1.3; this more difficult setting is tackled, e.g.,
by [ACBFS02, AB09].
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Bandit problems with uncountably many arms. This setting was first considered by [Agr95,
Kle04] and later studied by [Cop09, AOS07, KSU08]. The strategies proposed in these
articles only minimize the regret under some topological assumptions over X and against
classes of smooth enough environments E (where the smoothness assumptions are
actually on µE).

For instance, [KSU08] assumes that X is a metric space and exhibits strategies
minimizing the regret against the class of environments E with mean-payoff functions µE
that are L–Lipschitz, with a Lipschitz constant L smaller than a given bound L0 known
by the statistician. That is, assumptions on the global smoothness of the functions µE
are issued.

In contrast, the assumptions in [AOS07] only refer to the local behavior of µE around
its global maxima.

4.1.2 Necessary and sufficient conditions for the minimization of the regret [8]

The second half of [8] considers the following families of environments:

Fall = ∆
(
[0, 1]

)X and Fcont = C
(
∆
(
[0, 1]

)X)
,

which are respectively the sets of all possible environments and of the environments
E whose associated mean-payoff functions µE are continuous. We characterize the
existence of strategies minimizing the regret against these families.

Theorem 4.1. When X is a metric space, the regret can be minimized against all
environments of the family Fcont if and only if X is separable.

Proof sketch. The proof only requires writing the following ideas in a formal way; the
ideas are all relative to the possibility or the impossibility of a uniform exploration over
X .

On the one hand, when X is separable there exists by definition a dense countable
subset of the arms and it suffices to pull only arms in the latter as their performance
is close (by continuity and density) to the one of the best arms in X . But we already
mentioned that the regret can be minimized against all environments whenever countably
many arms only are available. Indeed, to do so, one simple (and somewhat suboptimal)
way is to proceed in successive regimes, by alternating between exploration phases –
resorting to a probability distribution giving a positive probability to each arm in the
mentioned dense countable subset– and exploitation phases.

Reciprocally, a non-separable metric space contains uncountably many disjoint balls
B(a, ρ) for some common radius ρ > 0 and with centers given by a ∈ A (the set A
being uncountable). We associate each of these balls with an environment Ea whose
mean-payoff function µEa has a maximum equal to 1 and a support included in B(a, ρ).
Now, each probability distribution over X can put a positive probability on at most
countably many such balls. Thus, a given strategy will obtain null payoffs at each round
against all environments Ea, with a ∈ A, except maybe against a countable number of
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them (the ones whose supports it had a positive probability to explore). Its regret will
thus be equal, for most of the environments, to the number of rounds and hence will
not be sublinear.

Corollary. We adopt an “à la Bourbaki” approach and derive the following result from
Theorem 4.1.

Corollary 4.2. Let X be an arbitrary set. The regret can be minimized against the
family Fall of all possible environments if and only if X is countable.

We already indicated above that whenever X is countable, the regret can be minimized
against all environments. We only need to show that this condition is necessary. Actually,
the corollary above is simply an instantiation of Theorem 4.1: when X is equipped with
the discrete topology (which corresponds to the Hamming distance) all applications
X → [0, 1] are continuous, so that Fcont = Fall.

Conclusion. Minimal topological assumptions on X and/or smoothness assumptions
on the mean-payoff functions µE are necessary to ensure the existence of strategies
minimizing the regret. To exhibit simple and efficient such strategies we will however
need to strengthen somewhat these assumptions.

4.1.3 An efficient hierarchical strategy minimizing the regret [11]

We introduced a strategy called hoo (which stands for “hierarchical optimistic opti-
mization”) and relying on three parameters.

Parameters of hoo. This strategy relies on two real numbers ν1 > 0 and ρ ∈ ]0, 1[, as
well as on a tree of coverings T =

(
Th,i

)
, that is, on a collection of (non necessarily

disjoint) subsets of X indexed by h ∈ N and 1 6 i 6 2h and satisfying

T0,1 = X ,
Th,i = Th+1,2i−1 ∪ Th+1,2i for all h > 0 and 1 6 i 6 2h.

For all depths h > 0, the subsets Th,i cover X when i varies in
{
1, . . . , 2h

}
–hence the

name of tree of coverings for T .

High-level principle. We only describe hoo in an informal manner. With each node
(h, i) in T we associate an estimator of the supremum of µE on the subset Th,i. This
estimator is defined recursively based on the estimators associated with the children
nodes (h+ 1, 2i− 1) and (h+ 1, 2i) of (h, i). At each round t the strategy chooses and
expands the most promising path: it starts from the root and chooses at each node the
child whose associated estimator has the largest value. When it attains a node (Ht, Jt)
that was never explored (and with which no estimator is associated yet) it pulls an
arm It at random in the subset THt,Jt ; after getting its payoff it can then construct an
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estimator for this node –even if it will be rather crude for the time being since it is
based on one observation only.

References. This hierarchical strategy relying on a tree is inspired by the techniques
and algorithms presented in [KS06, GWMT06, CM07].

Dissimilarity function and assumptions on the parameters of hoo. A dissimilarity function
` is a mapping X 2 → R+ such that `(x, x) = 0 for all x ∈ X (but that is neither
necessarily symmetric, nor does necessarily satisfy the separation axiom or the triangle
inequality). We denote by B(x, r) the ball with center x and `–radius r and consider
the following set of assumptions.

Assumption 4.3. The parameters of hoo are chosen so that there exists a dissimilarity
function ` and a real number ν2 > 0 such that, for all integers h > 0,
(a) for all 1 6 i 6 2h, the diameter of Th,i satisfies sup

x,y∈Th,i

`(x, y) 6 ν1 ρ
h ;

(b) for all 1 6 i 6 2h, there exists xh,i ∈ Th,i such that Bh,i
def= B

(
xh,i, ν2ρ

h) ⊆ Th,i ;

(c) for all 1 6 i < j 6 2h, the balls Bh,i and Bh,j are disjoint.

Environments with (1, `)–weakly Lipschitz mean-payoff functions. For all dissimilarity
functions `, we denote by F1,` the class of environments E with mean-payoff functions
µE satisfying

∀ (x, y) ∈ X 2, µ?E − µE(y) 6 µ?E − µE(x) + max
{
µ?E − µE(x), `(x, y)

}
where µ?E = sup

x∈X
µE(x) .

Such functions µE are said weakly Lipschitz with respect to `, with weak Lipschitz
constant equal to 1. Indeed, whenever µE is Lipschitz (in the classical sense) with
respect to ` with Lipschitz constant equal to 1, it is in particular weakly Lipschitz.

An example of an obtained uniform regret bound. [11] is essentially devoted to improving
the orders of magnitude of the regret bounds under certains conditions on X and µE
that are weaker than the ones considered in [KSU08]. For the sake of simplicity we
only report below one special case of our obtained bounds; a strong enough topological
assumption on X and some smoothness assumptions on µE entail the existence of a
uniform regret bound with respect to quite large a class of environments. Here again,
the assumptions considered for this uniform bound are somewhat weaker than the ones
of [KSU08], which required, for instance, that the mean-payoff functions µE be Lipschitz
(in the classical sense) with respect to a metric d over X . The topological assumption is
in terms of the `–packing dimension of X .
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Definition 4.4. The ε–packing number N (X , `, ε) of X with respect to the dissimilarity
function ` is the size of the largest packing of X with disjoint `–open balls of radius ε.
The `–packing dimension of X is then defined as

DX ,` = lim sup
ε→0

lnN (X , `, ε)
ln(1/ε) .

Theorem 4.5. We consider the strategy hoo tuned with some fixed parameters ν1, ρ,
and T . Then, for all dissimilarity functions ` satisfying Assumption 4.3 and for all real
numbers D > DX ,`,

lim sup
T→∞

supE∈F1,`
E
[
RT (hoo, E)

]
T (D+1)/(D+2)(lnT )1/(D+2) <∞ .

Optimality of this bound. We then show in [11] that when the dissimilarity function `
is a distance, the order of magnitude in T of the obtained uniform bound cannot be
improved in general. To do so we explain how the regret of a strategy designed for the
X–armed case can be interpreted as the regret of some induced strategy in the setting
of finitely many armed (K–armed) bandit problems; and then resort to the lower bound
result proved in [ACBFS02]. We note that [KSU08] also offers a similar optimality
result, based however on somewhat different proof techniques.

4.1.4 Perspectives for future research: adaptation to the unknown smoothness parameters

For the time being the literature on stochastic continuum-armed bandit problems is
at a somewhat preliminary stage. Theorem 4.5 is typical of the results exhibited so
far therein: a strategy –parameterized by certain fixed parameters– is considered and
it is shown that it minimizes its regret at least with respect to some large class of
environments. However, the latter class –though often massive– is typically defined in
terms of the parameters of the strategy and/or of some additional unknown parameters.

This is why we explicitly indexed the classes of environments by these parameters:
the dissimilarity function ` and the weak Lipschitz constant, equal to 1. In particular
the hoo strategy exploits the knowledge that this constant equals 1 and does not aim
at estimating it (or, more generally, at estimating the smoothness of the underlying
mean-payoff functions).

Changing the viewpoint. A statistician would in contrast consider that the environment
E comes first and that the strategies should be constructed adaptively to it. However, a
statistical model could be available, in which case the statistician would know beforehand
that the environments have smooth enough mean-payoff functions µE , e.g., weakly
Lipschitz with respect to some dissimilarity function ` and with some Lipschitz constant
L. These parameters ` and L are unknown and the aim is therefore to sequentially tune
the parameters of the strategies so that their regrets are minimized despite all.
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Ideally uniform regret bounds similar to the one of Theorem 4.5 could be proved for
these adaptive strategies; the differences in the orders of magnitude would then measure
the price for the adaptation. An even more difficult issue would be to ignore the payoff
range (here, we assumed throughout the chapter that it was [0, 1]).

Connections between machine learning and adaptive statistics. This change of viewpoint
and the adaptation to the unknown smoothness parameters of the environment are an
opportunity to connect the setting and the techniques considered in machine learning
with the ones of adaptive statistics. A preliminary idea in this respect was proposed
by Pascal Massart: approximation theory states how well smooth functions can be
represented by histograms; now, a long series of results in classical statistics indicates
how to estimate histograms, e.g., with model-selection based procedures; we would
therefore have first to transpose these estimation results of the classical setting into the
framework of stochastic bandits.

4.2 Miscellaneous works [14, 15]

I only briefly describe their respective focuses. [14] is an empirical economic study
dedicated to the assessment of the quality of some macro-economic data; it essentially
consists of the application of many χ2 goodness-of-fit tests, as well as a thorough review
of the mathematical literature on Benford’s law. [15] is a textbook aimed at graduate
students (in French, written with Vincent Rivoirard); it presents a modern and concise
view on statistics, with applications to some problems in machine learning (classification,
data compression, two-armed bandit problems) and to some other problems in statistics
(non parametric estimation of regression functions or of density functions, censored
data).
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