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Abstract

This paper revisits the multi-dimensional van Trees inequality in an intrinsic form and under
minimal assumptions, in the spirit of Hájek and Le Cam. We prove that the van Trees inequality
is a Cramér-Rao inequality for some Bayesian location model. We add to the known long series
of applications of this inequality a simple way to prove local asymptotic minimax (LAM) lower
bounds for the quadratic risk in parametric and semi-parametric settings.
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Revisiting the van Trees inequality in the spirit of Hájek and Le Cam

1. Introduction

A long story made short. Once upon a time (in April 2001), a student (Gilles Stoltz) had to get
a grade for a graduate course on the asymptotic theory of statistical estimation. The lecturer (David
Pollard, visiting Paris for a semester) had the intuition that some developments and improvements
around the van Trees inequality (van Trees, 1968) could be obtained in the spirit of Hájek and Le
Cam. More precisely, he wrote the following statement for a take-home examination:

On the van Trees inequality: Replace assumptions of Gill and Levit [1995] by analogous assumptions
of Hellinger differentiability. Try to deduce the van Trees inequality from the information inequality
(the Cramér-Rao bound) for a parametric family mα(x, θ) = qα(θ) fθ−α(x), where q is a density
with respect to Lebesgue mesure on Θ with compact support, and qα = q( · −α). Prove a rigorous
theorem, if you can. Illustrate the application of the theorem by adapting one of the examples of
Gill and Levit [1995]. Even better: Use the theorem to prove a rigorous efficiency result under
differentiability-in-quadratic-mean assumptions.

This statement was the sparkle of discussions and iterations, of some, separate and joint, work. The
research programme was completed in three months, with an unexpected additional finding: it became
clear that some direct proof of the van Trees inequality based on an ad hoc information inequality
(and exploiting some separation of the variables x and θ) would require much lighter assumptions
than its derivation via the Cramér-Rao bound. An account of this is already mentioned in the July
2001 version of Pollard [2001; 2005].

Right after (in July 2001) David Pollard had to go back home to New Heaven, Connecticut, but
he did not so without warmly encouraging Gilles Stoltz to polish and publish the above-mentioned
results. Time passed, Gilles Stoltz completed a PhD thesis in machine learning and would have given
up writing up the present paper if a third researcher (Elisabeth Gassiat) had not been around. She
has been presenting (from September 2004 on) in her own graduate lectures at Université Paris-Sud,
Orsay, the derivations of the van Trees inequality in the spirit of Hájek and Le Cam together with
a simple and direct application to local asymptotic minimax (LAM) lower bounds for the quadratic
risk in parametric and semi-parametric settings. The three of us regularly came back to the van Trees
inequality over the years, progressively simplifying its (direct and indirect) proofs and relaxing the
needed assumptions. We unfortunately did not finish in time for 2010 and could not honor the memory
of Lucien Le Cam for the 10th anniversary of his passing away.

The van Trees inequality: pointwise versus L2–type assumptions. The aim of this paper
is to revisit the van Trees inequality, originally introduced and proved by van Trees [1968], in the
framework of the theory of Hájek and Le Cam. We do so to further illustrate the elegancy and
neatness gained by working in this framework, compared to assuming some pointwise regular behavior
of the densities. Almost all articles devoted to the van Trees inequality, the ones of Bobrovsky et al.
[1987], Gill and Levit [1995], Letac [2008], and Jupp [2010], considered such pointwise assumptions,
with the notable exception of Lenstra [2005], whose results we discuss below.

But the work of Hájek and Le Cam is nowadays the reference for the asymptotic theory of statistical
estimation, see also Ibragimov and Has’minskii [1981]. In this theory, smoothness of parametric models
is considered in the L2–sense, by considering square roots of densities as the basic objects. In terms
of efficiency, one good way of generalizing the Cramér-Rao inequality to sequences of estimators is via
lower bounds for the local asymptotic minimax (LAM) risk.

In this respect, the van Trees inequality, which may be seen as some Bayesian version of the
Cramér-Rao inequality suited for biased statistics, was proved by Gill and Levit [1995] to lead to a
simple efficiency result for sequences of regular estimators only (see Section 6.1).

Our contributions. First of all, we give an elegant direct proof of the van Trees inequality in a
Hájek–Le Cam setting, with somewhat minimal assumptions (almost all of them merely ensure that
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Revisiting the van Trees inequality in the spirit of Hájek and Le Cam

the quantities at hand are well-defined). We only assume smoothness through differentiability in
quadratic mean and absolute continuity of the function of the parameter to estimate. Also, our aim is
to give a unifying statement that applies to various settings, where the parameter space Θ is compact
(as in Gill and Levit, 1995) or is not compact (Θ = R or Θ = Rp, as in Lenstra, 2005)—see Theorem
1 and Corollary 3. A detailed comparison of our version to the version by Gill and Levit [1995] can be
found in Section 4.3: we prove that our assumptions are strictly milder than theirs. In the same vein,
the version of van Trees obtained by Lenstra [2005] in a Hájek–Le Cam setting is not satisfactory yet
as it still requires some pointwise regularity of the density functions and Theorem 1 proves that none
of them was necessary.

In a second part, we indicate that the van Trees inequality is exactly a Cramér-Rao bound for a
well-defined location model, not just something close to a Cramér-Rao bound (e.g., some Bayesian
Cramér-Rao bound).

Finally, we show how the van Trees inequality yields an elementary proof of local asymptotic
minimax (LAM) lower bounds for positive quadratic risk functions in parametric and semi-parametric
contexts; these bounds are valid for all sequences of estimators (not just regular ones).

Outline. In Section 2 we recall some basic definitions and results of the Hájek–Le Cam setting
(including the information equality and the Cramér-Rao bound). We state our minimal and elegant
version of the van Trees inequality in Section 4, discuss variations around it, and compare it to
previous results in the literature. Section 5 explains that the van Trees inequality is exactly a Cramér-
Rao bound for some well-defined location model based on Bayesian mixtures of densities. We propose
our application to efficiency, namely, local asymptotic minimax (LAM) lower bounds, in Section 6.
Finally, Section 7 and Appendix A gather some technical material (in particular, the detailed proofs
of the main results).
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2. Setup and notation

We consider a statistical model
(
Pθ

)
, defined on a measurable space (X , A) and indexed by θ ∈ Θ,

where Θ is an open subset of Rp, with p � 1. We assume that it is dominated by a sigma-finite
measure μ, that is, for all θ ∈ Rp, the probability Pθ is absolutely continuous with respect to μ, with
density denoted by fθ. We denote by Eθ the expectation with respect to Pθ.

In the sequel, unless stated otherwise, the norms will refer to the Euclidian norms, denoted by
‖ · ‖ in finite-dimensional real vector spaces, and by ‖ · ‖μ in L2(μ); in the latter case, for all functions
g ∈ L2(μ), possibly vector-valued,

‖g‖μ =

√∫
X
‖g‖2 dμ .

In particular, we will denote by ‖ · ‖1 the �1–norms; for a matrix A = [ai,j ]i,j , we define

‖A‖1 =
∑
i,j

|ai,j | .

We denote by ξθ =
√
fθ the square roots of the densities.

Definition 1 (Differentiability in L2). The dominated statistical model
(
Pθ

)
θ∈Θ is differentiable in

L2(μ) at θ0 ∈ Θ if there exists a p–dimensional vector-valued function ξ̇θ0 ∈ L2(μ) such that���ξθ0 − ξθ − (θ0 − θ)T ξ̇θ0

���
μ
= o
(
‖θ0 − θ‖

)
as θ → θ0.

The vector-valued function ξ̇θ0 =
(
ξ̇θ0,i
)
i∈{1,...,p} is called the derivative of the model at θ0. The Fisher

information I(θ0) of the model at θ0 is then defined by

I(θ0) = 4

∫
X
ξ̇θ0 ξ̇

T
θ0 dμ . (1)

We denote the components of θ by θ = (θ1, . . . , θp). For i ∈ {1, . . . , p}, we refer to the (p − 1)–
dimensional vector of all components of θ but the i–th one as θ−i, so that θ = (θi, θ−i). The standard
definition of absolute continuity for functions R→ R can be generalized to functions Rp → R in several
ways. In this paper, the convenient extension is the following.

Definition 2 (Absolute continuity). Let D ⊆ Rp be an open domain. A function ϕ : D → R is
absolutely continuous if for almost all θ−i ∈ Rp−1, the function θi �→ ϕ

(
θi, θ−i

)
is absolutely continuous

on the open domain D(θ−i) =
{
θi ∈ R : (θi, θ−i) ∈ D

}
whenever the latter is non empty.

For s � 1, a vector-valued function ψ = (ψj)1�j�s : D → Rs is absolutely continuous if all its
components ψ : D → R are absolutely continuous.

In particular, the gradient

∇ϕ =

[
∂ϕ

∂θi

]
i∈{1,...,p}

(2)

of an absolutely continuous function ϕ : Rp → R exists at almost all θ ∈ Rp. Moreover, for all
i ∈ {1, . . . , p}, almost all θ−i ∈ Rp−1, and all real numbers a and b such that (a, b) ⊆ D(θ−i),∫ b

a

∂ϕ

∂θi

(
θi, θ−i

)
dθi = ϕ

(
b, θ−i

)
− ϕ
(
a, θ−i

)
.

By convention, we let the gradient ∇ϕ equal [0] at points θ where it was not defined.
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Example 1 (Location model). Fix an absolutely continuous density function q on Rp, with almost-
sure gradient denoted by ∇q, such that ‖∇q‖2 I{q>0}/q is integrable with respect to the Lebesgue
measure λ. We consider the statistical model

(
Qα

)
indexed by α ∈ Rp and formed by the probability

distributions Qα with density function q( · − α) with respect to λ. A standard result (which is stated
in a more general way as Proposition 2 in appendix) is that this model is differentiable in L2(λ) at all
points of Rp, with derivative at α0 ∈ Rp equal to

− 1

2

∇q( · − α0)√
q( · − α0)

I{
q( · −α0)>0

} . (3)

Consequently, the Fisher information of this model is independent of α0 ∈ Rp and equals

Iq def
=

∫
R

∇q∇qT
I{q>0}

q
dλ .

3. Reminder of some basic facts around the information (in)equality

We recall versions of the information (in)equalities for one-dimensional and then for multidimensional
statistics (which will always be denoted, respectively, by T and S). The material that follows is
completely standard and we state these results only to make this paper self-contained. Lemma 2 and
the proof techniques of Corollary 1 will indeed be key elements in the proofs of Section 4, while the
bound of Section 3.3 is stated for the sake of later comparisons.

3.1. An information equality for one-dimensional statistics

We consider a statistical model satisfying the following assumption.

Assumption (L2.Diff.θ0). The model
(
Pθ

)
θ∈Θ, where Θ ⊆ Rp is an open set, is dominated by μ and

is differentiable in L2(μ) at θ0 ∈ Θ.

Lemma 1 (Information equality). Under Assumption L2.Diff.θ0, for all statistics T : X → R such
that T is locally bounded in L2(Pθ) around θ0, i.e., such that there exists an open neighborhood U of
θ0 with

MU,T
def
= sup

θ∈U
Eθ

[
T 2
]
<∞ ,

the expectation function γT : θ ∈ U �−→ γT (θ) = Eθ

[
T
]
is well-defined and is differentiable at θ0, with

gradient

∇γT (θ0) = 2

∫
X
ξθ0 ξ̇θ0T dμ .

The proof is extracted from Pollard [2001; 2005] and is provided in appendix for the sake of
completeness.

3.2. A multidimensional information (in)equality

Via the choice of the statistic T = 1 a.s., one sees that for a model satisfying Assumption L2.Diff.θ0,∫
X
ξθ0 ξ̇θ0 dμ =

[
0
]
i∈{1,...,p} . (4)

We now consider a vector-valued statistic S : X → Rs, where s � 1 is an integer. The components
of S are referred to as (Sj)j∈{1,...,s}. When the expectation function γS : θ �→ γS(θ) = Eθ[S] is well-
defined around θ0 and is differentiable at θ0 ∈ Θ, we denote, after an abuse of notation, by ∇γS(θ0)
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the concatenation of the s gradients of the functions θ �→ Eθ[Sj ] = γSj (θ) at θ0. That is, ∇γS(θ0) is a
p× s matrix, whose element (i, j) ∈ {1, . . . , p} × {1, . . . , s} equals

∇γS(θ0)i,j =
∂γSj

∂θi
(θ0) .

Lemma 1 can be generalized in a multidimensional fashion as follows; it suffices to apply it
component-wise to each Sj , together with (4). For two vectors u = (ui)i∈{1,...,p} and v = (vj)j∈{1,...,s},
we denote by u⊗ v = uvT = [uivj ](i,j)∈{1,...,p}×{1,...,s} their tensor product, which is a p× s matrix. (In
the whole article, vectors are column-vectors.)

Lemma 2 (Multidimensional information equality). Under Assumption L2.Diff.θ0, for all statistics
S : X → Rs such that ‖S‖ is locally bounded in L2(Pθ) around θ0, i.e., such that there exists an open
neighborhood U of θ0 with

MU,S
def
= sup

θ∈U
Eθ

[
‖S‖2

]
<∞ ,

the expectation function γS : θ ∈ U �−→ γS(θ) = Eθ

[
S
]
is well-defined and is differentiable at θ0, with

gradient

∇γS(θ0) = 2

∫
X
ξθ0 ξ̇θ0 ⊗ S dμ = 2

∫
X
ξθ0 ξ̇θ0 ⊗

(
S − Eθ0 [S]

)
dμ .

This information equality entails the following information inequality, known as the Cramér-Rao
bound. We denote the fact that a symmetric matrix M is positive semi-definite by M � 0.

Corollary 1 (Multidimensional information inequality; also known as the Cramér-Rao bound). Under
the assumptions of Lemma 2, the following matrices are positive semi-definite,[

Varθ0(S) ∇γS(θ0)
T

∇γS(θ0) I(θ0)

]
� 0 (5)

and thus, whenever I(θ0) is definite,

Varθ0(S)−∇γS(θ0)
T I(θ0)−1∇γS(θ0) � 0 . (6)

Proof. The proof is standard and follows, e.g., the exposition of Bobrovsky et al. [1987, Lemma 4]
or Letac [2008]. The first matrix is seen to be a positive semi-definite matrix by a rewriting as
an integral of such matrices, namely, thanks to Lemma 2 as far as the cross-products ∇γS(θ0) and
∇γS(θ0)

T are concerned,

[
Varθ0(S) ∇γS(θ0)

T

∇γS(θ0) I(θ0)

]
=

∫ [
ξθ0
(
S − Eθ0 [S]

)
2ξ̇θ0

]
⊗
[
ξθ0
(
S − Eθ0 [S]

)
2ξ̇θ0

]
dμ .

The second part of the corollary simply relies on the fact that the Schur complement of I(θ0) in the
above matrix is positive semi-definite because the matrix itself is. (A proof of this well-known fact is
recalled in Section A.3 in appendix, see Lemma 9.)

3.3. A multidimensional Bayesian Cramér-Rao bound

We adapt here the exposition of Letac [2008] to our setting of assumed L2(μ)–differentiability. We
consider a model satisfying Assumption L2.Diff.θ0 at all points θ0 ∈ Θ.

Assumption (L2.Diff). The model
(
Pθ

)
θ∈Θ, where Θ ⊆ Rp is an open set, is dominated by μ and is

differentiable in L2(μ) at all points of Θ.
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We also fix a statistic S : X → Rs and now introduce a continuous density function q : Θ → R+

satisfying the following assumption.

Assumption (Int.q). The following integrals with respect to q are finite,∫
Θ
Eθ

[
‖S‖2

]
q(θ) dθ <∞ and

∫
Θ
Tr
(
I(θ)

)
q(θ) dθ < +∞ .

The so-called Bayesian Cramér-Rao bound will be discussed and compared to the van Trees in-
equality later on in this article (in Section 4.5).

Corollary 2 (Bayesian Cramér-Rao bound). Under Assumptions L2.Diff and Int.q, provided that
q : Θ→ R+ is continuous and that ‖S‖ is locally bounded in L2(Pθ) around each θ0 ∈ Θ, we have⎡⎢⎢⎣

∫
Θ
Varθ(S) q(θ) dθ

(∫
Θ
∇γS(θ) q(θ) dθ

)T
∫
Θ
∇γS(θ) q(θ) dθ

∫
Θ
I(θ) q(θ) dθ

⎤⎥⎥⎦ � 0 ,

where we used the notation of Lemma 2. In particular, whenever

∫
Θ
I(θ) q(θ) dθ is definite,

∫
Θ
Varθ(S) q(θ) dθ −

(∫
Θ
∇γS(θ) q(θ) dθ

)T (∫
Θ
I(θ) q(θ) dθ

)−1(∫
Θ
∇γS(θ) q(θ) dθ

)
� 0 .

Proof. The second part of the corollary follows again via the consideration of Schur complements, so
that we may focus on its first part only. The hypotheses of Lemma 2 and Corollary 1 are satisfied at
all θ0 ∈ Θ: [

Varθ0(S) ∇γS(θ0)
T

∇γS(θ0) I(θ0)

]
� 0 , (7)

where

∇γS(θ0) = 2

∫
X
ξθ0 ξ̇θ0 ⊗

(
S − Eθ0 [S]

)
dμ .

Now,
(x, θ) �−→ 2ξθ(x)ξ̇θ(x)⊗

(
S(x)− Eθ[S]

)
q(θ)

belongs to L1(μ⊗λ), as can be seen by a Cauchy-Schwarz inequality together with Assumption Int.q.
Therefore, q∇γS is integrable with respect to the Lebesgue measure on on Θ. The same can be said
for the functions θ �→ Varθ(S) q(θ) and θ �→ I(θ) q(θ). We can therefore integrate the matrix bound (7)
with respect to q over Θ. We get that⎡⎢⎢⎣

∫
Θ
Varθ(S) q(θ) dθ

(∫
Θ
∇γS(θ) q(θ) dθ

)T
∫
Θ
∇γS(θ) q(θ) dθ

∫
Θ
I(θ) q(θ) dθ

⎤⎥⎥⎦ � 0 , (8)

which concludes the proof.
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4. The van Trees inequality
(under somewhat minimal assumptions)

In this section we state the sharpest version of the van Trees inequality we could obtain. Its direct
proof will be deferred after a proof based on the Cramér-Rao inequality, that will require stronger
assumptions.

The first series of assumptions is only intended to ensure that all quantities at hand in the statement
of the inequality exist. On top of the above-stated Assumptions L2.Diff and Int.q, we will also consider
the following ones.

Assumption (AC.q). The density function q : Θ→ R is absolutely continuous, with Tr(Iq) <∞.

Assumption (Int.ψ). The absolutely continuous function ψ : Θ → Rs is such that the following
integrals are finite,∫

Θ

��∇ψ(θ)
��

1
q(θ) dθ < +∞ and

∫
Θ
‖ψ(θ)‖2 q(θ) dθ < +∞ .

On top of these somewhat necessary1 assumptions, a set of conditions allowing to integrate by
parts is convenient. Several such sets are suitable; the first one (IP.border) is the one we worked out,
a second one (IP.Stokes, discussed below) is the one used by Gill and Levit [1995] to apply Stokes’
theorem. Note that Θ is not required to be bounded under Assumption IP.border.

Assumption (IP.border). The functions θ �→ q(θ) and θ �→ q(θ)ψ(θ) tend respectively to 0 and [0] as
θ approaches any point of the border of Θ with finite norm.

Based on these assumptions, we can now state our main result.

Theorem 1 (The van Trees inequality). Under Assumptions L2.Diff, AC.q, Int.q, and Int.ψ, as well
IP.border, the following matrix is well-defined and is positive semi-definite,⎡⎢⎢⎣

∫
Θ
Eθ

[(
S − ψ(θ)

)
⊗
(
S − ψ(θ)

)]
q(θ) dθ

(∫
Θ
∇ψ(θ) q(θ) dθ

)T
∫
Θ
∇ψ(θ) q(θ) dθ Iq +

∫
Θ
I(θ) q(θ) dθ

⎤⎥⎥⎦ � 0 . (9)

Thus, whenever Iq +
∫
Θ
I(θ) q(θ) dθ is definite,

∫
Θ
Eθ

[(
S − ψ(θ)

)
⊗
(
S − ψ(θ)

)]
q(θ) dθ

−
(∫

Θ
∇ψ(θ) q(θ) dθ

)T (
Iq +

∫
Θ
I(θ) q(θ) dθ

)−1(∫
Θ
∇ψ(θ) q(θ) dθ

)
� 0 .

Note that the above theorem is stronger and more general than the version obtained by Lenstra
[2005], which is stated in the same context of models that are differentiable in L2.

1Section 4.3 explains why Assumption L2.Diff can be slightly weakened: it suffices that the model be coordinate-wise
differentiable in L2(μ) at almost all points of Supp(q).
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4.1. A self-improvement of the inequality

We explain why Theorem 1 self-improves to the following corollary. We realized that such a self-
improvement was possible when we worked out the proof of the van Trees inequality based on the
Cramér-Rao inequality; see Sections 5 and 7.1, and in particular, Footnote 3.

Corollary 3 (A strengthened van Trees inequality). Under Assumptions L2.Diff, AC.q, Int.q, and
Int.ψ, as well IP.border, the following matrix is well-defined and is positive semi-definite,⎡⎢⎢⎢⎢⎢⎢⎣

∫
Θ
Eθ

[(
S − ψ(θ)

)
⊗
(
S − ψ(θ)

)]
q(θ) dθ

(∫
Θ
∇ψ(θ) q(θ) dθ

)T
−
∫
Θ

(
Eθ[S]− ψ(θ)

)
q(θ) dθ ⊗

∫
Θ

(
Eθ[S]− ψ(θ)

)
q(θ) dθ∫

Θ
∇ψ(θ) q(θ) dθ Iq +

∫
Θ
I(θ) q(θ) dθ

⎤⎥⎥⎥⎥⎥⎥⎦ � 0 .

Thus, whenever Iq +
∫
Θ
I(θ) q(θ) dθ is definite,

∫
Θ
Eθ

[(
S − ψ(θ)

)
⊗
(
S − ψ(θ)

)]
q(θ) dθ

−
∫
Θ

(
Eθ[S]− ψ(θ)

)
q(θ) dθ ⊗

∫
Θ

(
Eθ[S]− ψ(θ)

)
q(θ) dθ

−
(∫

Θ
∇ψ(θ) q(θ) dθ

)T (
Iq +

∫
Θ
I(θ) q(θ) dθ

)−1(∫
Θ
∇ψ(θ) q(θ) dθ

)
� 0 .

Proof. We note that if ψ satisfies the assumptions of Theorem 1, then so does ψ + c for all constants
c ∈ Rs. In addition, as ∇(ψ+ c) = ∇ψ, only the upper left submatrix in (9) is modified. What would
the best choice be for c?

We denote by M the probability distribution over X × Θ with density (x, θ) �→ ξθ(x) q(θ) with
respect to μ⊗ λ. We also consider the function J : (x, θ) ∈ X ×Θ �→ S(x)− ψ(θ). Assumption Int.q
shows that J ∈ L2(M) and thus, via Jensen’s inequality, that J ∈ L1(M). We choose as c the
expectation of J under M, which can be rewritten, thanks to Fubini’s theorem, as

c = EM[J ] =

∫
Θ

(
Eθ[S]− ψ(θ)

)
q(θ) dθ .

We apply Theorem 1 with the above c and get an inequality (9) where the upper right submatrix is
replaced by∫

Θ
Eθ

[(
S − ψ(θ)− c

)
⊗
(
S − ψ(θ)− c

)]
q(θ) dθ

= EM

[(
J − EM[J ]

)
⊗
(
J − EM[J ]

)]
= EM

[
J ⊗ J

]
− EM[J ]⊗ EM[J ]

=

∫
Θ
Eθ

[(
S − ψ(θ)

)
⊗
(
S − ψ(θ)

)]
q(θ) dθ −

∫
Θ

(
Eθ[S]− ψ(θ)

)
q(θ) dθ ⊗

∫
Θ

(
Eθ[S]− ψ(θ)

)
q(θ) dθ ,

where the equality in the middle of the second line corresponds to a bias-variance decomposition. This
concludes the proof.

4.2. Two cases of interest: Θ = R and bounded intervals Θ = (a, b)

For simplicity we restrict our attention to the case of the estimation of a scalar parameter, i.e., to the
cases where Θ ⊆ R and ψ is the identity function. We provide natural situations when the assumptions
of Theorem 1 and Corollary 3 are satisfied.
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Corollary 4. Fix some model
(
Pθ

)
θ∈R that is dominated by μ and is differentiable in L2(μ) at all points

of R. Consider an absolutely continuous density function q : R → R+ such that
∫
R
θ2q(θ) dθ < ∞.

Then Iq > 0 and for all statistics T : X → R,

∫
R

Eθ

[
(T − θ)2

]
q(θ) dθ �

(∫
R

(
Eθ[T ]− θ

)
q(θ) dθ

)2
+

1

Iq +
∫
R

I(θ) q(θ) dθ
.

The proof of this corollary is straightforward; we only write it to show how certain requirements
are immediate in the present case.

Proof. First, we note that all quantities appearing in the stated inequality are well-defined2, even
though some may be equal to +∞. Also, Iq > 0 as q cannot be constant over R. Therefore, the stated
inequality is trivial unless all the inequalities

Iq < +∞ ,

∫
R

I(θ) q(θ) dθ < +∞ , and

∫
R

Eθ

[
(T − θ)2

]
q(θ) dθ < +∞

hold, which we can therefore safely assume for the rest of this proof. Since by the assumption on q we
have that θ �→ θ2 q(θ) is Lebesgue-integrable over R, we get that∫

R

Eθ

[
T 2
]
q(θ) dθ < +∞ .

To apply Corollary 3, which leads to the stated inequality, it only remains to see that Assumptions Int.ψ
and IP.border are satisfied. The latter is void as the border is {−∞, +∞}. That Int.ψ is satisfied is
because the target function ψ is the identity function over R (the first integral therein equals 1 and
the second one is finite by the assumption on q).

A similar proof leads to the following corollary in the case of a bounded interval.

Corollary 5. Consider a parameter set Θ = (a, b) formed by a bounded open interval. Fix some model(
Pθ

)
θ∈(a,b) that is dominated by μ and is differentiable in L2(μ) at all points of (a, b). Consider an

absolutely continuous density function q : (a, b) → R+ such that q(θ) → 0 as θ → a or θ → b. Then
Iq > 0 and for all statistics T : X → R,

∫ b

a
Eθ

[
(T − θ)2

]
q(θ) dθ �

(∫ b

a

(
Eθ[T ]− θ

)
q(θ) dθ

)2
+

1

Iq +
∫ b

a
I(θ) q(θ) dθ

.

4.3. Comparison to the classical version by Gill and Levit [1995]

The comparison focuses on the differences in the needed assumptions to get the multivariate matrix
version (9) of the van Trees inequality. (How other multivariate matrix versions can be obtained is
discussed in Sections 4.4 and A.4.) Before performing the mentioned comparison, we recall, for the
sake of self-completeness, the setting and assumptions needed by Gill and Levit [1995].

2This is why no extra integrability assumption on (x, θ) �→ T 2(x) q(θ) is needed here, unlike in the case of multi-
dimensional statistics where the covariance terms did not necessarily exist.
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Revisiting the van Trees inequality in the spirit of Hájek and Le Cam

The van Trees inequality of Gill and Levit [1995]. It is stated in a setting where the following
(pointwise) assumptions are made on the model (Pθ)θ∈Θ, replacing Assumption L2.Diff.

Assumption (AC.fθ). The density functions fθ : X → R+ are such that (x, θ) ∈ X × Θ �→ fθ(x) is
measurable and for μ–almost all x, the function θ ∈ Θ �→ fθ(x) is absolutely continuous, with vector of
partial derivatives at θ denoted by ∇fθ(x). Furthermore, ∇fθ I{fθ>0}

/√
fθ belongs to L2(μ) for almost

all θ ∈ Θ.

Assumption (Int.∇fθ). For almost all θ ∈ Θ, the following integral is defined and is null,∫
X
∇fθ(x) dμ(x) = [0] .

Also, Assumption IP.border is to be replaced by the following (more restrictive) conditions.

Assumption (IP.Stokes). The set Θ ⊆ Rp is a compact set whose boundary ∂Θ is piecewise C1–
smooth. In addition, q is null on ∂Θ.

We now cite the main result of Gill and Levit [1995]. Assumptions AC.q, Int.q, and Int.ψ were
not explicitly mentioned therein but were used implicitly (e.g., to ensure that the quantities at hand
in the van Trees inequality indeed exist).

Theorem 2. Consider a compact set Θ ⊂ Rp and a function q : Θ → R satisfying Assump-
tion IP.Stokes, as well as a statistical model (Pθ)θ∈Θ satisfying Assumptions AC.fθ and Int.∇fθ.
Under Assumptions AC.q, Int.q, and Int.ψ, the van Trees inequality (9) holds.

Overview of the comparison. Theorems 1 and 2 have some assumptions in common but they
differ by resorting, respectively, to Assumptions L2.Diff and IP.border versus Assumptions AC.fθ,
Int.∇fθ, and IP.Stokes.

The comparison is best understood after reading the proof of Theorem 1, which is provided in
Section 7.2. The structures of the proof therein and of the one by Gill and Levit [1995] are similar:
they both establish an information equality like the one reported in Lemma 4, from which (9) follows
easily. The question is thus to get the information equality and differences arise in the process of
doing so. The proof of the information equality at hand is decomposed into two main parts: the
first part (see Section 7.2.1) reduces the problem to properly handling given integrals over Θ, which
is performed in a second part (see Section 7.2.2) by integrating by parts. We group the differences
according to which of these two parts they correspond.

Differences that are not differences. In our setting, Θ is an open set while in the setting of Gill
and Levit [1995], this set is closed. However, IP.Stokes indicates that the border ∂Θ has a null
probability mass under the distribution defined by q.

Differences when performing the integration by parts. We compare here IP.border and
IP.Stokes: the latter is (much) more stringent than the former. (Under IP.Stokes, ψ is an abso-
lutely continuous function defined on the compact set Θ, thus is bounded, so that qψ is null on the
border of Θ.) Actually, the results stated in Lemma 7 and 8 are obtained, in the setting of Gill and
Levit [1995] (see also Letac, 2008), by a straightforward application of Stokes’ theorem (or Green’s
identity). The compactness of Θ and the regularity assumptions on its border are key to apply it
legitimately. We showed on the contrary how more ad hoc arguments, based however, among oth-
ers, on the use of Assumption L2.Diff (see Lemma 6 and its consequences), could avoid resorting to
Stokes’ theorem. More precisely, Assumption L2.Diff is used in a subtle way around (29). It is unclear
whether our proof based on milder assumptions can be adapted to the setting of Gill and Levit [1995]
since a typical issue in the setting with pointwise assumptions is to legitimately differentiate under
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Revisiting the van Trees inequality in the spirit of Hájek and Le Cam

the integral signs. This, probably, is not a mere detail but a sign that the Hájek–Le Cam setting
is more convenient to work in. The next paragraph shows however that, surprisingly enough, under
assumption Int.q, (a version of) the required assumption L2.Diff is a consequence of the pointwise
assumption AC.fθ.

Differences for the reduction to handling integrals over Θ. We compare here L2.Diff versus
AC.fθ and Int.∇fθ. To do so, we consider the following relaxation of Assumption L2.diff, which is
itself based on a relaxation of the notion of differentiability in L2. To state it we consider the canonical
basis (e1, . . . , ep) of R

p, that is, ei = (0, . . . , 0, 1, 0, . . . , 0) where only the ith coordinate of ei equals 1.
Then, we restrict our attention to paths θ → θ0 along one of the p canonical directions.

Definition 3 (Coordinate-wise differentiability in L2). The dominated statistical model
(
Pθ

)
θ∈Θ is

coordinate-wise differentiable in L2(μ) at θ0 ∈ Θ if for all i ∈ {1, . . . , p}, there exists a scalar function
ξ̇θ0,i ∈ L2(μ) such that ���ξθ0+tei − ξθ0 − t ξ̇θ0,i

���
μ
= o(t) as t→ 0.

The vector-valued function ξ̇θ0 =
(
ξ̇θ0,i
)
i∈{1,...,p} is called the coordinate-wise derivative of the model at

θ0 and the definition of the Fisher information I(θ0) is as in (1).

We can now state the milder L2–type assumption needed on the model.

Assumption (L2.Diff.weak). The model
(
Pθ

)
θ∈Θ, where Θ ⊆ Rp is an open set, is dominated by μ

and is coordinate-wise differentiable in L2(μ) at almost all points of Θ ∩ Supp(q).

Now, we mention two facts, which we prove later on, in Section 7.3. (Actually, the same adap-
tation indicated in Fact 1 for the nullity stated in (4) shows that Assumption L2.Diff.weak entails
Assumption Int.∇fθ.)

Fact 1. Theorem 1 holds with Assumption L2.Diff replaced by Assumption L2.Diff.weak.

Fact 2. Assumptions Int.q and AC.fθ entail Assumption L2.Diff.weak.

The combination of these two facts shows that the pointwise assumptions on the model needed by
Gill and Levit [1995] are strictly stronger than the ones we require for our Hájek–Le Cam version of
the van Trees inequality.

4.4. On the various multivariate formulations of the van Trees inequality

Gill and Levit [1995] mention that van Trees [1968] and Bobrovsky et al. [1987] report several different
multivariate formulations of the van Trees inequality. In view of Section 5, which derives the van Trees
inequality (9) as a Cramér-Rao bound for a well-chosen location model, we may call the version (9)
the canonical form of the van Trees inequality. It is at least as canonical as (5) is in terms of the
Cramér-Rao bound.

However, variations over the canonical form, as the ones presented by [Gill and Levit, 1995, Sec-
tion 4], can be obtained in a straightforward manner. We detail this after the proof of Theorem 1, in
Section A.4.

4.5. Comparison between the Bayesian Cramér-Rao bound and the van Trees
inequality

We first recall the two bounds and put them into a common umbrella. Under the setting and assump-
tions of Theorem 1 and Corollary 3 and the additional assumption that

∫
Θ I(θ) q(θ) dθ is definite,
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Revisiting the van Trees inequality in the spirit of Hájek and Le Cam

the function γS : θ �−→ γS(θ) = Eθ

[
S
]
is well-defined and differentiable at least on Supp(q) and the

following two inequalities hold: the van Trees inequality of Corollary 3,∫
Θ
Eθ

[(
S − ψ(θ)

)
⊗
(
S − ψ(θ)

)]
q(θ) dθ (vT)

−
∫
Θ

(
γS(θ)− ψ(θ)

)
q(θ) dθ ⊗

∫
Θ

(
γS(θ)− ψ(θ)

)
q(θ) dθ

−
(∫

Θ
∇ψ(θ) q(θ) dθ

)T (
Iq +

∫
Θ
I(θ) q(θ) dθ

)−1(∫
Θ
∇ψ(θ) q(θ) dθ

)
� 0 ,

and the Bayesian Cramér-Rao bound of Corollary 2,∫
Θ
Eθ

[(
S − ψ(θ)

)
⊗
(
S − ψ(θ)

)]
q(θ) dθ (BCR)

−
∫
Θ

(
γS(θ)− ψ(θ)

)
⊗
(
γS(θ)− ψ(θ)

)
q(θ) dθ

−
(∫

Θ
∇γS(θ) q(θ) dθ

)T (∫
Θ
I(θ) q(θ) dθ

)−1(∫
Θ
∇γS(θ) q(θ) dθ

)
� 0 ,

where we used a bias-variance decomposition to get the same left-most term as in (vT).
Part of the following discussion can be found in Letac [2008].

(BCR) is better than (vT) when S is unbiased for the estimation of ψ(θ). In the case
when γS = ψ, the middle terms disappear in both equations and the right-most terms can be easily
compared, the one in (BCR) being the largest. In the case of biased estimators, when γS 
= ψ, which
of two bounds is better than the other strongly depends on S, ψ, q, and the model.

For general estimators S, only (vT) is useful. The third term in (BCR) is not intrinsic enough
in the case of a biased estimator and it is difficult to rely on it to issue efficiency statements for
possibly biased estimators. (The second terms in (BCR) and (vT) are not intrinsic either but they
can be omitted without much loss.) This is in strong contract with the van Trees inequality (vT),
which is stated in terms of the goal ψ(θ) only. We illustrate in Section 6 how efficiency results can be
obtained for general, not necessarily unbiased, estimators.

(BCR) is better than a version of (vT) when q is the uniform density over a bounded
domain. We mostly discuss this case for the records. Reading in details the direct proof of the van
Trees inequality, one can see, based on inequality (24) of Lemma 5 that (vT) holds with the factors∫

Θ
∇ψ(θ) q(θ) dθ

in its right-most term replaced by

−
∫
Θ
∇q(θ)⊗ ψ(θ) dθ +

∫
Θ
∇q(θ)⊗ γS(θ) dθ +

∫
Θ
∇γS(θ) q(θ) dθ ,

even when Assumption IP.border is not satisfied. The alternative expression reduces to∫
Θ
∇γS(θ) q(θ) dθ

in the case when Θ is bounded and q is the uniform density over Θ. Note that in this case we also
have that Iq is a null matrix, Iq = [0]. Our claim follows however, because, by Jensen’s inequality,∫
Θ

(
γS(θ)−ψ(θ)

)
⊗
(
γS(θ)−ψ(θ)

)
q(θ) dθ−

∫
Θ

(
γS(θ)−ψ(θ)

)
q(θ) dθ⊗

∫
Θ

(
γS(θ)−ψ(θ)

)
q(θ) dθ � 0 ,

and hence, (BCR) is the sharpest inequality.
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Revisiting the van Trees inequality in the spirit of Hájek and Le Cam

5. The van Trees inequality
as a Cramér-Rao bound for a location model

We explain in this section that the van Trees inequality is exactly a Cramér-Rao bound for a well-
chosen location model given by mixture distributions. This observation however requires somewhat
stronger assumptions than the ones stated in the previous section to obtain a direct proof of the
van Trees inequality. Even worse, the set of assumptions we could work out involve some pointwise
regularity on the mappings θ �→ fθ(x), for μ–almost all x, and can therefore be considered of a totally
different nature (more related to the classical regularity assumptions and less related to Le Cam’s
viewpoint on statistics).

We keep Assumptions L2.Diff, AC.q, and Int.q as they are. We strengthen Assumptions Int.ψ
and IP.border into assumptions referred to as Int+.ψ and IP+.border, and also consider the assumption
referred to as AC.fθ in Section 4.3. We do not claim that this set of assumptions is minimal to interpret
the van Trees inequality as a Cramér-Rao bound: we merely tried to work out a convenient and realistic
enough such set.

Assumption (IP+.border). There exists δ > 0 such that, denoting by Θ(−δ) the open set of the
elements in Θ that are at least δ far from its border, then Supp(q) is included in Θ(−δ); that is, for all
θ ∈ Θ with q(θ) > 0, for all α ∈ Rd with ‖α‖ � δ, one has θ + α ∈ Θ.

Assumption (Int+.ψ). There exists an open neighborhood U of [0] which is contained in the δ/2–open
ball around [0] such that∫

Θ(−δ)

(
sup
α∈U

��∇ψ(θ + α)
��) q(θ) dθ < +∞ and sup

α∈U

∫
Θ(−δ)

��ψ(θ + α)
��2

q(θ) dθ < +∞ .

Assumption IP+.border is key for defining the location model below. This assumption implies
Assumption IP.border, which only asserts that q(θ) and q(θ)ψ(θ) should tend to 0 as θ approaches
a point of the border of Θ with finite norm. Indeed, under Assumption IP+.border, we have that q
is null on a δ–open ball around such a border point with finite norm (and thus so is qψ). Of course,
Assumption IP+.border does not exclude the case when the Supp(q) = Θ = Rp as it only puts more
severe restrictions around border points with finite norms.

5.1. Construction of the location model and statement of the result

The family of (mixture) distributions at hand is indexed by α ∈ Rp with ‖α‖ < δ/2. The distribution
Mα is over X ×Θ(−δ/2) and is defined as the probability distribution with density

mα : (x, θ) ∈ X ×Θ(−δ/2) �−→ mα(x, θ) = fθ−α(x) q(θ − α)

with respect to the product measure μ ⊗ λ. (Because of Assumption IP+.border, this indeed defines
the density of a probability distribution.) The model (Mα)α:‖α‖<δ/2 is thus a location model.

Given a statistic S : X → Rs for the (Pθ)θ∈Θ model and an absolutely continuous target function
ψ : Θ→ Rs, we construct the statistic J : (x, θ) �→ S(x)−ψ(θ) for the (Mα)α:‖α‖<δ/2 model. (Note that
this statistic J was already introduced in the proof of Corollary 3, which also considered a distribution
M corresponding to the above-defined distribution M[0].)

Proposition 1. Under Assumptions L2.Diff, AC.q, Int.q, Int+.ψ, IP+.border, and AC.fθ, the Cramér-
Rao bound (6) holds for the model (Mα)α:‖α‖<δ/2 and the statistic J at α0 = [0] and is given by the
van Trees inequality (9).
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Revisiting the van Trees inequality in the spirit of Hájek and Le Cam

5.2. Discussion and comparison to the hypotheses of Theorem 1

As explained above, the set of conditions for Proposition 1 is strictly stronger than the one for The-
orem 1. We discuss here how severe or how mild the three additional (sets of) requirements are. We
recall that we anyway only need them for the interpretation stated in Proposition 1; the van Trees
inequality (Theorem 1) holds under the weaker sets of assumptions.

Int.ψ → Int+.ψ: Whenever ψ is a Lipschitz function, these two sets of assumptions are actually
equivalent. Indeed, the integrals involving ∇ψ are bounded by the Lipschitz constant L of ψ. As for
the two other integrals to be compared, we note that in this case,��ψ(θ + α)

��2 �
(��ψ(θ)��+ L‖α‖

)2
� 2
��ψ(θ)��2

+ 2L2(δ/2)2 .

Since a main case of interest is the identity function, ψ(θ) = θ, the stronger local requirements in
Assumption Int+.ψ can be considered not too dramatic.

IP.border→ IP+.border: The stronger condition IP+.border on the support of q, which, as already
indicated above, supersedes IP.border, could probably be circumvented by regularization (by replacing
any q satisfying IP.border with some qδ satisfying IP+.border and letting δ → 0).

On the addition of AC.fθ: The main and most stringent new constraint is given by the pointwise
regularity of the density functions stated in Assumption AC.fθ, which is most unappreciated in an
à la Le Cam viewpoint. The latter would only consider assumptions on the density functions that
involve integrated values, and avoid any pointwise restrictions.

Gassiat, Pollard, and Stoltz 15
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Revisiting the van Trees inequality in the spirit of Hájek and Le Cam

6. Application to local asymptotic minimax (LAM) lower bounds

Gill and Levit [1995] provide several applications of the van Trees inequality; of course, all of them
hold for our version of the inequality in view of the discussion in Section 4.3. We recall below one
such application, a derivation of an efficiency bound, namely, an asymptotic Cramér-Rao bound. We
provide yet another application to efficiency bounds: a simple derivation of local asymptotic minimax
(LAM) lower bounds for the square risk in parametric models (simple enough to be used as a classroom
material). More general (for other risk functions) and stronger such bounds are provided by van der
Vaart [1998, Section 8.7] but their proof requires sophisticated arguments, which is in contrast with
our proof below.

The setting is that of a sequence (Xn)n�1 of independent random variables taking values in X , and
thus of a sequence of statistical models

((
P⊗nθ

)
θ∈Θ
)
n�1

. In the sequel, we index by ⊗n all quantities

(expectations, Fisher information, etc.) relative to the product model
(
P⊗nθ

)
θ∈Θ.

We assume that the base statistical model
(
Pθ

)
θ∈Θ satisfies Assumption L2.Diff. Direct calculations

then show that each product model
(
P⊗nθ

)
θ∈Θ also satisfies Assumption L2.Diff, with derivative at

θ0 ∈ Θ equal to

(x1, . . . , xn) ∈ X n �−→
n∑

k=1

⎛⎝ξ̇θ0(xk)
∏
k′ �=k

ξθ0(xk′)

⎞⎠ ;

In particular, the Fisher information of the product model at θ0 equals

I⊗n(θ0) = n I(θ0) . (10)

We consider an absolutely continuous function ψ : Θ→ Rs. We will assume that there exists some
θ0 ∈ Θ such that the following regularity conditions are met. This point θ0 will be the point of interest
in the LAM bound.

Assumption (Reg.θ0). The functions θ �→ I(θ) and θ �→ ∇ψ(θ) are continuous at θ0; moreover, the
matrix I(θ0) is definite.

6.1. The asymptotic Cramér-Rao bound of Gill and Levit [1995]

The bound of [Gill and Levit, 1995, Section 3] is adapted in our context as follows; we state it merely
for the sake of completeness. (We omit its proof as it follows exactly the exposition in the mentioned
reference; it bears some resemblance with the proof of Theorem 4.) It imposes a restriction on the
sequences of statistics that are studied.

Definition 4. A sequence (Sn)n�1 of statistics Sn : X n → Rs is Hájek regular at θ0 for the estimation
of ψ if there exists a probability distribution Lψ,θ0 over Rs such for all h ∈ Rp, we have the following
convergences in distribution:

√
n

(
Sn − ψ

(
θ0 +

h√
n

))
� Lψ,θ0 under the sequence Pθ0+h/

√
n .

Theorem 3. Consider a model satisfying Assumption L2.Diff and some absolutely continuous function
ψ : Θ→ Rs such that Assumption Reg.θ0 is met for some θ0 ∈ Θ. Then, for all sequences (Sn)n�1 of
statistics Sn : X n → Rs that are Hájek regular at θ0 for the estimation of ψ with a limit distribution
Lψ,θ0 admitting a second-order moment, the variance of this limit distribution satisfies

Var
(
Lψ,θ0

)
−∇ψ(θ0)

T I(θ0)−1∇ψ(θ0) � 0 .
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Revisiting the van Trees inequality in the spirit of Hájek and Le Cam

6.2. Our local asymptotic minimax (LAM) lower bound

We propose the following lower bound, which does not impose any restriction on the sequence of
statistics at hand. In its statement, we define, for all normal distributions N (μ,Γ) over Rs,∫

Rs

� dN (μ,Γ) =

∫
Rs

�(v) qN (μ,Γ)(v) dv ,

where qN (μ,Γ)(v) denotes the density of the N (μ,Γ) distribution.

Theorem 4. Consider a model satisfying Assumption L2.Diff and some absolutely continuous function
ψ : Θ→ Rs such that Assumption Reg.θ0 is met for some θ0 ∈ Θ. Then, for all sequences (Sn)n�1 of
statistics Sn : X n → Rs and for all positive quadratic forms � : Rs → R+,

lim inf
c→+∞ lim inf

n→+∞ sup
‖h‖<1

E⊗n
θ0+

ch√
n

[
�

(
√
n

(
Sn − ψ

(
θ0 +

ch√
n

)))]

�
∫

Rs

� dN
(
[0], ∇ψ(θ0)

T I(θ0)−1∇ψ(θ0)
)
.

Proof. We consider an auxiliary random variable H ∈ Rp the support of whose distribution is given
by the (open) unit ball Bp

(
[0], 1

)
of Rp; we choose it such that its distribution is given by a bounded

and absolutely continuous density function q : Rp → R, with q = 0 outside Bp

(
[0], 1

)
. We also assume

that Iq is definite and that Tr
(
Iq
)
< +∞.

We fix some c > 0 and some ε > 0. There exists n(c, ε) such that for all n � n(c, ε), first, the
open ball Bp

(
θ0, c/

√
n
)
centered at θ0 and with radius c/

√
n is contained in Θ, and second, for all

θ ∈ Bp

(
θ0, c/

√
n
)
,

max
{∣∣ψ(θ)− ψ(θ0)

∣∣, ��∇ψ(θ)−∇ψ(θ0)
��, ∣∣Tr(I(θ))− Tr(I(θ0))

∣∣} � ε . (11)

The above inequalities stem from the continuity of ψ, ∇ψ, and I at θ0.

We denote by qn the density of the distribution of the random variable Hn = θ0 + cH/
√
n. This

density qn satisfies Assumption AC.q, and Iqn = (n/c2) Iq is definite.

We consider some vector U ∈ Rs and will apply Theorem 1 to the model
(
P⊗nθ

)
θ∈Θ, the den-

sity qn, the real-valued statistic UTSn, and the real-valued target function UTψ. Assumptions Int.ψ
and IP.border are satisfied, because of (11) and because of the support of qn. It only remains to see
whether Assumption Int.q holds. Its second part does, again by (11) and in view of the support of
qn. However, its first part may well not be satisfied. In the case where it is satisfied, we are all set to
apply Theorem 1 and we get, as Iqn = (n/c2) Iq is definite and in view of (10),∫

Bp([0],1)

E⊗n
θ0+ch/

√
n

⎡⎣(UT

(
Sn − ψ

(
θ0 +

ch√
n

)))2⎤⎦ q(h) dh (12)

�
(∫

Bp([0],1)

∇ψ
(
θ0 +

ch√
n

)
U q(h) dh

)T (
n

c2
Iq + n

∫
Bp([0],1)

I
(
θ0 +

ch√
n

)
q(h) dh

)−1

×
(∫

Bp([0],1)

∇ψ
(
θ0 +

ch√
n

)
U q(h) dh

)
.

(Because of our conventions in terms of gradients of vector-valued functions, we note that the gradient
of UTψ is actually given by ∇ψ U .) In the case where the first part of Assumption Int.q is not satisfied,
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Revisiting the van Trees inequality in the spirit of Hájek and Le Cam

we have, because its second part is satisfied on the contrary, that∫
Bp([0],1)

E⊗n
θ0+ch/

√
n

[(
UTSn

)2]
q(h) dh = +∞ ,

and thus that

∫
Bp([0],1)

E⊗n
θ0+ch/

√
n

⎡⎣(UT

(
Sn − ψ

(
θ0 +

ch√
n

)))2⎤⎦ q(h) dh = +∞ ;

therefore, inequality (12) is satisfied as well, in a trivial way, as its left-hand side equals +∞ while its
right-hand side is a finite nonnegative number.

Now, recall that any positive quadratic form � : Rs → R+ can be decomposed as follows: there
exists an orthogonal basis U1, . . . , Us of Rs and nonnegative real numbers λ1, . . . , λs � 0 such that for
all v ∈ Rs,

�(v) =
s∑

k=1

λk

(
UT
k v
)2

=
s∑

k=1

λk U
T
k v vT Uk .

Note that in particular, for all s× s symmetric positive matrices Γ,∫
Rs

v vT dN
(
[0],Γ

)
(v) = Γ so that

∫
Rs

�(v) dN
(
[0],Γ

)
(v) =

s∑
k=1

λk U
T
k ΓUk .

Linear combinations according to the λk � 0 of versions of (12) for the Uk thus show that for all
positive quadratic forms � : Rs → R+,∫

Bp([0],1)

E⊗n
θ0+

ch√
n

[
�

(
Sn − ψ

(
θ0 +

ch√
n

))]
q(h) dh �

∫
Rs

� dN
(
[0],Γc,n/n

)
,

or, given that for all a ∈ R and all v ∈ Rs, one has �(av) = a2 �(v),∫
Bp([0],1)

E⊗n
θ0+

ch√
n

[
�

(
√
n

(
Sn − ψ

(
θ0 +

ch√
n

)))]
q(h) dh �

∫
Rs

� dN
(
[0],Γc,n

)
, (13)

where

Γc,n =

(∫
Bp([0],1)

∇ψ
(
θ0 +

ch√
n

)
q(h) dh

)T (
1

c2
Iq +
∫
Bp([0],1)

I
(
θ0 +

ch√
n

)
q(h) dh

)−1

×
(∫

Bp([0],1)

∇ψ
(
θ0 +

ch√
n

)
q(h) dh

)
.

But Assumption Reg.θ0 was precisely stated for the following convergence to take place,

lim
c→+∞ lim

n→+∞ Γc,n = ∇ψ(θ0)
T I(θ0)−1∇ψ(θ0) .

This convergence, the linearity of the right-hand side of (13) in Γc,n, and upper bounding the left-hand
side integral of (13) by the supremum over Bp([0], 1) of its integrand conclude the proof.

18 Gassiat, Pollard, and Stoltz

Very
 ∫∫

BB

∫∫∫
p

∫
([0]],,1)1

E

whereere

Γ ,n =

(

pre
lim

ina
ry 
1

itive matricee matr

hat

∫∫
RR

∫∫∫
ss

��((vv) ddNNdd

he λkk �� 0 of vers0 of v
R++,,

θ0+
chchel√√ eln

[[
��

((
SSnnS −− ψ

(
θ

all aa ∈∈ RR and alla

ve
rsi

on
 ⎦ q(h) d

nd side equals +side equals +

be decomposeddecomposed
umbersers λ1, . . ., . . .

UTUkkU v vvTTvv UUkkUU

To h√√
nn

[
�

((
√√
nn

( be
∈ Rs, one ha, one h

re-
work

ed(
[0],ΓΓ

))
((v) =) =

s∑∑
ns of (12) forof (12) for

+ ch re√√ renn

)))])]
qq((h)



Revisiting the van Trees inequality in the spirit of Hájek and Le Cam

Remark 1. As a corollary, a similar result can be obtained for semi-parametric models P (details
omitted; see van der Vaart, 1998, Chapter 25 for a description of the setting and the definitions of
the objects mentioned in the next sentences). More precisely, the goal is to estimate functions ψ of
the law P ∈ P of the model. We assume that ψ is differentiable at some P0 relatively to a tangent
cone TP0 with efficient influence function ψ̃P0. Now, at least when TP0 is a linear vector space, the
local asymptotic minimax risk at P0, as measured by a positive quadratic form �, is lower bounded by
the integral of � against the centered normal distribution with variance equal to the variance of the
efficient influence function ψ̃P0 under P0.
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Revisiting the van Trees inequality in the spirit of Hájek and Le Cam

7. Proofs of the van Trees inequality

We provide two proofs, one for Proposition 1, which relies on stronger assumptions and resorts to
the Cramér-Rao bound, and one for Theorem 1, which is more direct. The second one can best be
appreciated with the first one in mind.

7.1. Proof of Proposition 1

We first show that the hypotheses of Lemma 2 and Corollary 1 are satisfied; we then instantiate their
results and explain why they can be identified with the van Trees inequality.

Hypothesis 1: Local boundedness of J . The statistic J is locally bounded in L2(Mα) around
[0] ∈ Rp; this is because for all α ∈ Rp with ‖α‖ < δ/2,

EMα

[
‖J‖2

]
=

∫
X×Θ(−δ/2)

��S(x)− ψ(θ)
��2

fθ−α(x) q(θ − α) dμ(x)dθ

�
∫
X×Θ(−δ/2)

2
(��S(x)��2

+
��ψ(θ)��2

)
fθ−α(x) q(θ − α) dμ(x)dθ

= 2

∫
Θ
Eθ

[
‖S‖2

]
q(θ) dθ + 2

∫
Θ(−δ)

��ψ(θ + α)
��2

q(θ) dθ , (14)

from which Assumptions Int.q and Int+.ψ yield the claim. The last equality is by Fubini’s theorem for
nonnegative integrands and by noting that, after a change of variable from θ−α to θ, we are left with
integrating over −α + Θ(−δ/2), which is the same as integrating over the larger set Θ or the smaller
set Θ(−δ) in view of the terms q(θ).

Hypothesis 2: Differentiability of the model (Mα)α:‖α‖<δ/2 — first part. This model is a
location model. Its differentiability follows from an application of Proposition 2 in appendix. Assump-
tions AC.fθ and AC.q indeed guarantee that the hypotheses (i)–(iii) of the mentioned proposition are
satisfied, where α, [0], (x, θ), and ν play respectively the role of β, β0, y, and ν. Thus, the candidate
for the L2(μ)–derivative of the model at α ∈ Rp, which we denote by ζα, is given by

ζα : (x, θ) �−→ 1

2

∇mα(x, θ)√
mα(x, θ)

I{
mα(x,θ)>0

}
= −1

2

(
fθ−α(x)∇q(θ − α)√
fθ−α(x) q(θ − α)

+
q(θ − α)∇fθ−α(x)√
fθ−α(x) q(θ − α)

)
I{

fθ−α(x) q(θ−α)>0
}

= −
(
1

2

∇q(θ − α)√
q(θ − α)

I{
q(θ−α)>0

} √fθ−α(x)︸ ︷︷ ︸
= ξθ−α(x)

+
√
q(θ − α)

1

2

∇fθ−α(x)√
fθ−α(x)

I{
fθ−α(x)>0

}︸ ︷︷ ︸
= ξ̇θ−α(x)

)
.

In the last equality a ξ̇θ−α(x) term is identified: this follows from the lemma below. We still have to
check the hypothesis (iv) of Proposition 2, which we do in the next paragraph.

Lemma 3. Under Assumptions L2.Diff and AC.fθ, for all θ ∈ Θ, we have, μ–almost everywhere,

ξ̇θ =
1

2

∇fθ√
fθ

I{fθ>0} .

Proof. The proof is adapted from Pollard [2001; 2005] and is provided mostly for the sake of com-
pleteness. Recall that by Fatou’s lemma, the L2(μ) and μ–almost-everywhere limits of a sequence of
functions, when they both exist, coincide. We fix θ ∈ Θ and will consider all directions h ∈ Rd around
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θ; the quantities that follow will all be defined at least for t > 0 small enough. First, by definition of
L2(μ)–differentiability, as t→ 0 with t > 0,

1

t

(
ξθ+th − ξθ

)
−→ hT ξ̇θ in L2(μ). (15)

Second, on {fθ > 0}, we have, by Assumption AC.fθ, as t→ 0 with t > 0,

1

t

(
ξθ+th − ξθ

)
I{fθ>0} =

1

t

(√
fθ+th −

√
fθ

)
I{fθ>0} −→

1

2
hT
∇fθ√
fθ

I{fθ>0} μ–almost everywhere.

The equality stated in the lemma thus holds on {fθ > 0}. To conclude the proof, it only remains to
show that μ–almost everywhere on {fθ = 0}, we have ξ̇θ = [0]. Indeed, for fixed θ and h, we have
by (15) and Fatou’s lemma that there exists a sequence tn → 0 such that

1

tn
ξθ+tnh I{fθ=0} −→ hT ξ̇θ I{fθ=0} μ–almost everywhere.

In particular, since the left-hand side elements are nonnegative,

hT ξ̇θ I{fθ=0} � 0 ;

since this is true for all directions h ∈ Rd, this implies that μ–almost everywhere, ξ̇θ I{fθ=0} = [0],
which concludes the proof.

Hypothesis 2, continued: Differentiability of the model (Mα)α:‖α‖<δ/2 — second part. We
now check the hypothesis (iv) of Proposition 2. Since the derivatives ζα all have the same (possibly
infinite) square integral with respect to μ⊗λ, we only need to show that this common square integral
is finite. (We use again here the fact that integrating over −α + Θ(−δ/2) is the same as integrating
over Θ in view of the terms involving q.)

For the sake of concise notation (and for later purposes), we introduce the function Δ : X×Θ→ Rp

defined by

Δ(x, θ) =
1

2

∇q(θ)√
q(θ)

I{
q(θ)>0

} ξθ(x) +√q(θ) ξ̇θ(x) (16)

for all x ∈ X and θ ∈ Θ, so that the derivative ζ[0] of the model at α = [0] is given by −Δ. That
Δ ∈ L2(μ ⊗ λ) follows from the fact that each of its summands is in L2(μ ⊗ λ) by Assumption Int.q
(and the use of Fubini’s theorem for nonnegative integrands).

We thus have shown that under the stated assumptions, the (Mα)α:‖α‖<δ/2 model is differentiable
in L2(μ⊗ λ) at all points α ∈ Rp with ‖α‖ < δ/2, with derivative at [0] given by −Δ. We denote by
IM
(
[0]
)
its Fisher information at this point.

Exploiting the Cramér–Rao bound. The hypotheses of Lemma 2 and Corollary 1 are then
satisfied and the following facts hold. The mapping

Γ : α ∈ U �−→ Γ(α) = EMα

[
J
]

is differentiable at [0] and the following matrix is positive semi-definite,[
VarM[0]

(J) ∇Γ
(
[0]
)T

∇Γ
(
[0]
)

IM
(
[0]
) ] � 0 .

Thus, it is also the case for the following matrix, where we denote by Idp and Ids the p× p and s× s
identity matrices and where the empty cells are for null submatrices:[

Ids
−Idp

] [
VarM[0]

(J) ∇Γ
(
[0]
)T

∇Γ
(
[0]
)

IM
(
[0]
) ] [ Ids

−Idp

]
=

[
VarM[0]

(J) −∇Γ
(
[0]
)T

−∇Γ
(
[0]
)

IM
(
[0]
) ]

� 0 . (17)
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Revisiting the van Trees inequality in the spirit of Hájek and Le Cam

We now identify or bound the three quantities at hand: we will show that∫
Θ
Eθ

[(
S − ψ(θ)

)
⊗
(
S − ψ(θ)

)]
q(θ) dθ − VarM[0]

(J) � 0 , (18)∫
Θ
∇ψ(θ) q(θ) dθ = −∇Γ

(
[0]
)
, (19)

IM
(
[0]
)

= Iq +
∫
Θ
I(θ) q(θ) dθ , (20)

from which it will follow from (17) that the van Trees inequality (9) is satisfied.

Identifying the three quantities at hand. The quantities in the difference (18) exist by (14).
Actually, the proof of Corollary 3 already3 showed that the desired inequality (18) holds true.

As for the gradient (19), we have by arguments similar to the ones used to establish (14) (and in
particular, the use of Fubini’s theorem based on some integrability following from the second part of
Int+.ψ and the Cauchy-Schwarz inequality), that for all α ∈ U ,

Γ(α) = EMα

[
J
]
=

∫
X×Θ(−δ/2)

(
S(x)− ψ(θ)

)
fθ−α(x) q(θ − α) dμ(x)dθ

=

∫
Θ
Eθ[S] q(θ) dθ −

∫
Θ(−δ)

ψ(θ + α) q(θ) dθ .

Provided that we can differentiate under the integral sign at α = [0], we get

∇Γ
(
[0]
)
= −

∫
Θ(−δ)

∇ψ(θ) q(θ) dθ ;

this is the desired equality (19) as integrating over Θ(−δ) or Θ is the same here, because of the q(θ)
term. The stated differentiability under the integral sign follows, e.g., from the absolute continuity of
ψ and from the first part of Assumption Int+.ψ.

The derivative of the model at [0] being −Δ, we have by definition

IM
(
[0]
)
= 4

∫
X×Θ

Δ⊗Δdμdλ .

Now, we already mentioned above that by Assumption Int.q the two summands in the defining equa-
tion (16) of 2Δ are square integrable. Their cross product is therefore integrable. At (x, θ) it equals

∇q(θ)I{
q(θ)>0

} ξθ(x)ξ̇θ(x) = ∇q(θ) ξθ(x)ξ̇θ(x) .

This is because ∇q = [0] at all points of {q = 0} where it is defined (where q is differentiable), since 0
is a global minimum of q when it is achieved. Because of (4), the integral of this cross product with
respect to dμdλ is null. Therefore (all exchanges of orders in integration below being valid thanks to
Fubini’s theorem),

4

∫
X×Θ

(
Δ(x, θ)⊗Δ(x, θ)

)
dμ(x)dθ

=

∫
X×Θ

∇q(θ)∇q(θ)T

q(θ)
I{

q(θ)>0
} fθ(x) dμ(x)dθ + ∫

X×Θ
4 ξ̇θ(x)ξ̇θ(x)

T q(θ) dθdμ(x)

= Iq +
∫
Θ
I(θ) q(θ) dθ , (21)

which is (20).

3 For the records: It is indeed the fact that we got VarM[0]
(J) in (17) that led us from Theorem 1 to the self-

improvement stated as Corollary 3.
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7.2. Proof of Theorem 1

The proof consists of proving directly what Lemma 2 and Corollary 1 yield in the location model
considered in the previous subsection. More precisely, we will prove in a direct way the following
result (but will not prove that −Δ is the derivative of some model at some point).

Lemma 4 (The van Trees version of the information equality). If the assumptions of Theorem 1 are
satisfied for some statistic S : X → Rs and some absolutely continuous function ψ : Θ→ Rs, then the
following integrals are defined and are equal,

2

∫
X×Θ

(
Δ(x, θ)⊗

(
S(x)− ψ(θ)

))
ξθ(x)

√
q(θ) dμ(x)dθ =

∫
Θ
∇ψ(θ) q(θ) dθ .

We now explain why Lemma 4 entails Theorem 1. We use on top of it (21), which follows from
Assumptions AC.q, Int.q, and L2.Diff, and the fact that the following integrals exist and are equal,∫

X×Θ

(
S(x)− ψ(θ)

)
ξθ(x)

√
q(θ)⊗

(
S(x)− ψ(θ)

)
ξθ(x)

√
q(θ)dμ(x)dθ

=

∫
Θ
Eθ

[(
S − ψ(θ)

)
⊗
(
S − ψ(θ)

)]
q(θ) dθ ,

which stems from the first part of Int.q and the second part of Int.ψ thanks to Fubini’s theorem. All
in all, we get that the following integrals are well-defined and that the matrix of interest in Theorem 1
is well-defined and is positive semi-definite,⎡⎢⎢⎣

∫
Θ
Eθ

[(
S − ψ(θ)

)
⊗
(
S − ψ(θ)

)]
q(θ) dθ

(∫
Θ
∇ψ(θ) q(θ) dθ

)T
∫
Θ
∇ψ(θ) q(θ) dθ Iq +

∫
Θ
I(θ) q(θ) dθ

⎤⎥⎥⎦
=

∫
X×Θ

[ (
S(x)− ψ(θ)

)
ξθ(x)

√
q(θ)

2Δ(x, θ)

]
⊗
[ (

S(x)− ψ(θ)
)
ξθ(x)

√
q(θ)

2Δ(x, θ)

]
dμ(x)dθ � 0 . (22)

The second part of Theorem 1 follows by considering Schur complements (see Lemma 9 in Sec-
tion A.3 of the appendix). Thus, it only remains to prove the information equality stated as Lemma 4.
The proof is split into three parts: the first one only relies on the assumptions necessary for the
quantities at hand in the van Trees inequality to exist. It leads to some information equality, with
a not so natural integral over Θ on the right-hand side. The second part of the proof is a matter of
analysis and uses the additional hypothesis IP.border to integrate by parts the integral, so as to get
the desired and more intrinsic integral at hand in the van Trees inequality. However, these first and
second part only deal with bounded statistics. The third part of the proof provides the extension to
general statistics.

Remark 2. A careful reading of the proof shows that it is the separation of the variables in J(x, θ) =
S(x)− ψ(θ) that is crucial to relax the hypotheses needed to derive the van Trees inequality.

7.2.1. Some information equality (to be further improved)

Lemma 5. We consider a model, some statistic S : X → Rs, and some absolutely continuous function
ψ : Θ→ Rs such that Assumptions L2.Diff, AC.q, Int.q, and Int.ψ are satisfied.

Then, there exists a function ΨS ∈ L1(μ ⊗ λ) such that ΨS is a non-decreasing function of ‖S‖
and for all x ∈ X and θ ∈ Θ,���(Δ(x, θ)⊗

(
S(x)− ψ(θ)

))
ξθ(x)

√
q(θ)

���
1
� ΨS(x, θ) . (23)
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Moreover, if S is bounded, then the function γS : θ ∈ Θ �→ Eθ[S] is well-defined and differentiable
and the following integrals are defined and are equal,

2

∫
X×Θ

(
Δ(x, θ)⊗

(
S(x)− ψ(θ)

))
ξθ(x)

√
q(θ) dμ(x)dθ

= −
∫
Θ
∇q(θ)⊗ ψ(θ) dθ +

∫
Θ
∇q(θ)⊗ γS(θ) dθ +

∫
Θ
∇γS(θ) q(θ) dθ . (24)

What we mean here by the monotonicity property of ΨS in terms of ‖S‖ is that if two statistics S
and S′ are such that ‖S‖ � ‖S′‖, then ΨS � ΨS′ .

Proof. We already indicated above that Δ ∈ L2(μ ⊗ λ) thanks to Assumption Int.q; similarly, As-
sumptions Int.q and Int.ψ respectively show that the functions

(x, θ) �−→ S(x) ξθ(x)
√

q(θ) and (x, θ) �−→ ψ(θ) ξθ(x)
√

q(θ)

belong to L2(μ ⊗ λ). Thus, by the Cauchy-Schwarz inequality, the integrand can be decomposed as
the sum of four integrable functions,

2
(
Δ(x, θ)⊗

(
S(x)− ψ(θ)

))
ξθ(x)

√
q(θ)

= fθ(x) I{q(θ)>0
}∇q(θ)⊗ S(x) + 2 ξθ(x)q(θ) ξ̇θ(x)⊗ S(x)

− fθ(x) I{q(θ)>0
}∇q(θ)⊗ ψ(θ)− 2 ξθ(x)q(θ) ξ̇θ(x)⊗ ψ(θ) . (25)

More precisely, given that ‖u ⊗ v‖1 � √
ps ‖u‖‖v‖ for u ∈ Rp and v ∈ Rs, we have the stated

domination (23) by the integrable function

ΨS : (x, θ) ∈ X×Θ �−→ √
ps

(
ξθ(x) I{q(θ)>0

}��∇q(θ)
�� + 2

��ξ̇θ(x)�� q(θ)

)
ξθ(x)

(��S(x)��+��ψ(θ)��).
We note that ΨS indeed satisfies the stated monotonicity in ‖S‖.

Actually, the indicator functions can be safely omitted in the display (25), since, as proved right
before (21), we have I{

q(θ)>0
}∇q(θ) = ∇q(θ) for almost all θ ∈ Θ.

As for the second part of the lemma, since each of the four integrands in (25) is integrable, we
may, by Fubini’s theorem, integrate first over x and then over θ. Using that x �→ fθ(x) integrates to 1
and that by (4) the integral of x �→ ξθ(x)ξ̇θ(x) is null, we finally get

2

∫
X×Θ

(
Δ(x, θ)⊗

(
S(x)− ψ(θ)

))
ξθ(x)

√
q(θ) dμ(x)dθ

=

∫
Θ

∇q(θ)⊗
(∫

X
S(x) fθ(x) dμ(x)

)
dθ + 2

∫
Θ

(∫
X
ξθ(x)ξ̇θ(x)⊗ S(x)dμ(x)

)
q(θ) dθ

−
∫
Θ
∇q(θ)⊗ ψ(θ) dθ .

The boundedness of S (i.e., ‖S‖ � K a.s. for some K) and Assumption L2.Diff show that the
hypotheses of Lemma 2 are satisfied at all θ ∈ Θ. Therefore, the function γS : θ ∈ Θ �→ Eθ[S] is
well-defined and differentiable at each θ ∈ Θ, with gradient

∇γS(θ) = 2

∫
X
ξθ ξ̇θ ⊗ S dμ .
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We get∫
Θ

∇q(θ)⊗
(∫

X
S(x) fθ(x) dμ(x)

)
dθ + 2

∫
Θ

(∫
X
ξθ(x)ξ̇θ(x)⊗ S(x)dμ(x)

)
q(θ) dθ

=

∫
Θ
∇q(θ)⊗ γS(θ) dθ +

∫
Θ
∇γS(θ) q(θ) dθ ,

which concludes the proof.

7.2.2. Some analysis to rewrite the integrals at hand

The rewriting of the integrals at hand in the left-hand side of (24) will rely on the following ad hoc
version of Stokes’ theorem in our context.

Lemma 6. We consider an open domain Θ ⊆ Rp and an absolutely continuous function ϕ : Θ → R

such that ∫
Θ
|ϕ| dλ < +∞ and

∫
Θ
‖∇ϕ‖1 dλ < +∞ (26)

and that ϕ(θ) tends to 0 as θ approaches any point of the border of Θ with finite norm. Then∫
Θ
∇ϕ dλ = [0] .

Based on this result, we will prove the following two lemmas.

Lemma 7. If Assumptions AC.q, Int.ψ, and IP.border are satisfied for some absolutely continuous
function ψ : Θ→ Rs, then the following integrals are defined and are equal,

−
∫
Θ
∇q(θ)⊗ ψ(θ) dθ =

∫
Θ
∇ψ(θ) q(θ) dθ .

Lemma 8. If the assumptions of Lemma 5 as well as Assumption IP.border are satisfied for some
bounded statistic S : X → Rs, then the function γS : θ �→ Eθ[S] is well-defined and differentiable over
Θ and the following integrals are defined and cancel out to the null matrix,∫

Θ
∇q(θ)⊗ γS(θ) dθ +

∫
Θ
∇γS(θ) q(θ) dθ = [0] .

These lemmas are proved below, in the following order: first, Lemmas 7 and 8, and then, Lemma 6.

Proof of Lemma 7. We prove the matrix equality column-wise. For all j ∈ {1, . . . , s}, we denote by
ψj the jth component of ψ and will apply Lemma 6 to ψjq to get

−
∫
Θ
ψj(θ)∇q(θ) dθ =

∫
Θ
∇ψj(θ) q(θ) dθ .

Indeed, ϕ = ψjq is absolutely continuous on Θ, as a product of absolutely continuous functions.
The behavior on the border is taken care of by Assumption IP.border. Thus, we need only to check
hypothesis (26). That ψjq ∈ L1(λ) follows from the second part of Assumption Int.ψ via the Cauchy-
Schwarz inequality. It remains to check the integrability of

∇(ψjq) = q∇ψj + ψj∇q = q∇ψj + ψj∇q I{q>0} ,

where the last equality is by a fact used several times already, e.g., around (25): that ∇q = [0] almost
surely on {q = 0}. Now, the integrability of q∇ψj is stated by Assumption Int.ψ. As for the one of
ψj∇qI{q>0}, it follows from yet another application of the Cauchy-Schwarz inequality,∫

Θ

���ψj∇q I{q>0}
���

1
dλ � √p

√∫
Θ
ψ2
j q dλ

√
Tr(Iq) < +∞ , (27)

where the claimed finiteness is by the second part of Assumption Int.ψ and AC.q.
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Proof of Lemma 8. We again prove the matrix equality column-wise. For all j ∈ {1, . . . , s} and θ ∈ Θ,
we denote by Sj and γSj (θ) the jth components of S and γS(θ). We will apply Lemma 6 to γSjq to
get the following equality to the null column vector of Rp,∫

Θ
γSj (θ)∇q(θ) dθ +

∫
Θ
∇γSj (θ) q(θ) dθ = [0] . (28)

By assumption, Sj is bounded by some K > 0, that is, |Sj | � K a.s.; in this case, Lemma 1 shows
that γSj : θ ∈ Θ �→ Eθ[Sj ] is well-defined and differentiable over Θ. Since q is absolutely continuous
and γSj is bounded, γSjq is also absolutely continuous and thus is almost everywhere differentiable,
with gradient given by q∇γSj + γSj∇q.

The boundedness of γSj and Assumption IP.border show that γSjq also satisfies the required
vanishing-at-the-finite-border condition. The integrability of γSjq follows from the boundedness of γSj

and the integrability of q (it integrates to 1).

To legitimately apply Lemma 6 and get the desired result (28), it only remains to show that the
gradient q∇γSj + γSj∇q is integrable. Since γSj is bounded by K, replacing ψj by K in (27) shows
that γSj∇q is integrable. As for q∇γSj , we first note from Lemma 1 that for all θ ∈ Θ,

∇γSj (θ) = 2

∫
X
ξθ ξ̇θSj dμ , (29)

so that, by a Cauchy-Schwarz inequality,

q(θ)
��∇γSj (θ)

��
1
� q(θ)K

∫
X
2ξθ
��ξ̇θ��1

dμ � q(θ)K
√
p
√

Tr
(
I(θ)

)
,

where the latter upper bound is seen to be integrable over Θ by Jensen’s inequality for
√
· and

Assumption Int.q.

Proof of Lemma 6. Recall the notation θ−i and θi from Definition 2. For all i ∈ {1, . . . , p}, we denote
by

Θ−i =
{
θ−i : ∃ θi ∈ R such that (θi, θ−i) ∈ Θ

}
the projection of Θ ignoring the ith coordinates. With each θ−i ∈ Θ−i, we associate the set

Θ(θ−i) =
{
θi : (θi, θ−i) ∈ Θ

}
of ith coordinates that complete θ−i in an element of Θ. (This piece of notation was actually already
considered in Definition 2.) Since Θ is an open domain, Θ(θ−i) is an open subset of R. It can thus be
written as an (at most) countable disjoint union of open intervals,

Θ(θ−i) =
⊔
n�1

(
an(θ−i), bn(θ−i)

)
where an(θ−i) ∈ R ∪ {−∞} and bn(θ−i) ∈ R ∪ {+∞}; at most one of the an(θ−i), respectively, of the
bn(θ−i), may equal −∞, respectively, +∞.

Almost all θ−i ∈ Θ−i are such that for all n � 1, the following facts hold true:∫ bn(θ−i)

an(θ−i)

∣∣∣∣ ∂ϕ∂θi (θi, θ−i)
∣∣∣∣ dθi < +∞ , (30)

∫ bn(θ−i)

an(θ−i)

∣∣ϕ(θi, θ−i)∣∣dθi < +∞ , (31)
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and for all real numbers a > an(θ−i) and b < bn(θ−i),∫ b

a

∂ϕ

∂θi
(θi, θ−i) dθi = ϕ(b, θ−i)− ϕ(a, θ−i) . (32)

This is, respectively, because of Fubini’s theorem together with the fact that ∂ϕ/∂θi and ϕ are inte-
grable, as assumed in (26), and of the absolute continuity of ϕ.

We now show that for these θ−i ∈ Θ−i, for all n � 1,∫ bn(θ−i)

an(θ−i)

∂ϕ

∂θi
(θi, θ−i) dθi = 0 . (33)

To do so, we would like to let a→ an(θ−i) and b→ bn(θ−i) in (32). That by assumption ϕ(θ) tends to
0 as θ approaches any point of the border of Θ with finite norm means exactly that ϕ(a, θ−i)→ 0 and
ϕ(b, θ−i) → 0 except maybe in the cases where an(θ−i) = −∞ or bn(θ−i) = +∞. In the latter cases,
we proceed as follows. By symmetry we write the argument only for the case where bn(θ−i) = +∞.
We fix some cn(θ−i) > an(θ−i). By (32), for all b ∈

(
c(θ−i), +∞

)
,

ϕ(b, θ−i) = ϕ
(
c(θ−i), θ−i

)
+

∫ b

c(θ−i)

∂ϕ

∂θi
(θi, θ−i)dθi .

We thus get from (30) that ϕ(b, θ−i) has a limit �(θ−i) as b→ +∞. Since by (31),∫ +∞

c(θ−i)

∣∣ϕ(θi, θ−i)∣∣ dθi <∞ ,

one necessarily has �(θ−i) = 0.
The proof can now be concluded. Summing (33) over n, we get∫

Θ(θ−i)

∂ϕ

∂θi
(θi, θ−i) dθi = 0 .

Integrating this equality over θ−i ∈ Θ−i and repeating the argument for all i leads to∫
Θ
∇ϕ(θ) dθ = [0] ,

as claimed

7.2.3. From bounded statistics to general statistics

Lemmas 5, 7, and 8 yield Lemma 4 and thus Theorem 1 in the case of bounded statistics, ‖S‖ � K
a.s. for some K > 0. The extension to general statistics is obtained by the dominated convergence
theorem.

We indeed denote the integrand in Lemma 5 by

VTS : X ×Θ �−→
(
Δ(x, θ)⊗

(
S(x)− ψ(θ)

))
ξθ(x)

√
q(θ) .

We know that it is dominated by an integrable function denoted by ΨS . From a general, not necessarily
bounded, statistic S, we form thresholded versions of it at some level K > 0,

SK = S I{‖S‖∈[−K,K]
} .

We already proved that Lemma 4 was valid for the bounded SK statistics, so that for all K > 0,

2

∫
X×Θ

VTSK
(x, θ) dμ(x)dθ =

∫
Θ
∇ψ(θ) q(θ) dθ .
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The right-hand side is independent of K, while the integrands of the left-hand side converge in a
pointwise manner to VT(x, θ) as K → +∞ and, by Lemma 5, are each dominated by ΨSK

and thus
are all dominated by ΨS (given the monotonicity property of S �→ ΨS). Therefore, the dominated
convergence theorem may be applied and yields the claimed equality,

2

∫
X×Θ

VTS(x, θ) dμ(x)dθ =

∫
Θ
∇ψ(θ) q(θ) dθ ,

which shows that Lemma 4 is also valid in the case of not necessarily bounded statistics.

7.3. Modifications needed under the milder Assumption L2.Diff.weak

We prove here Facts 1 and 2.

Proof of Fact 1: It suffices to show that Lemmas 5 and 8, as well as (21), are still valid when
Assumption L2.Diff is replaced by L2.Diff.weak. Note that in the whole paper the gradient ∇ is merely
a compact notation for the vector of partial derivatives, as introduced in (2); the full differentiability
of the functions Θ → R or Θ → Rs considered is actually never needed, as we proceed component
by component (this is best seen, e.g., in the proof of Lemma 6, and is also visible in the definition of
absolute continuity). Also, in view of the statement of the van Trees inequality, we can always assume,
with no loss of generality, that Θ = Supp(q). In particular, the proofs of Lemmas 5 and 8 only rely
on the fact that for almost all θ ∈ Supp(q), for all i ∈ {1, . . . , p},∫

X
ξθ ξ̇θ,i dμ = 0 and

∂γS
∂θi

(θ) = 2

∫
X
ξθ ξ̇θ,i ⊗ S dμ .

Both equalities follow from (4) and Lemma 2 applied in the one-dimensional models (Pθ+tei)|t|<δθ at
t = 0, where δθ is sufficiently small; indeed, thanks to Assumption L2.Diff.weak, these models are
almost all differentiable in the sense of Definition 1.

Proof of Fact 2: We exploit the remark following the statement of Proposition 2 thanks to the fact
that almost all points of a locally integrable function are Lebesgue points; we will do so by, again,
restricting our attention to one-dimensional models along one canonical coordinate. More precisely,
under Assumption AC.fθ, we consider the matrix-valued function

J : θ ∈ Θ �−→
∫
X

∇fθ ⊗∇fθ
fθ

I{fθ>0} dμ .

This is the Fisher information in the setting with pointwise assumptions. Of course, via (the proof of)
Lemma 3, we know that at the points θ where the model is L2(μ)–differentiable, we have I(θ) = J (θ).
What we mean when we say that Gill and Levit [1995] also consider Assumption Int.q is, as far as its
second part is concerned, that ∫

Θ
Tr
(
J (θ)

)
q(θ) dθ < +∞ .

Since q is continuous, this entails that J is locally integrable on Supp(q). We fix some i ∈ {1, . . . , p}.
The ith diagonal element of J ,

Ji,i : θ ∈ Θ �−→
∫
X

(
∂fθ
∂θi

)2 I{fθ>0}
fθ

dμ ,

is locally integrable as well. Therefore, by Fubini’s theorem, for almost all θ−i ∈ Θ−i, the function
θi ∈ Θ(θ−i) �→ Ji,i(θi, θ−i) is locally integrable as well and therefore, as is well-known in integration
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theory, almost all points of Θ(θ−i) are Lebesgue points for this functions. At these points, by definition,

1

t

∫ t

0
Ji,i(θi + t′, θ−i) dt′ −→ Ji,i(θi, θ−i) and

1

t

∫ t

0
Ji,i(θi − t′, θ−i) dt′ −→ Ji,i(θi, θ−i)

as t → 0 with positive values. This shows, by Proposition 2 and the remark following its statement,
that the one-dimensional model (Pθ+tei)|t|<δ(θi,θ−i)

, where δ(θi,θ−i) is small enough, is differentiable in

L2(μ) at t = 0 (in the sense of Definition 1).
All in all (e.g., by Fubini’s theorem), we showed that the model is coordinate-wise differentiable

in L2(μ) at almost all θ ∈ Supp(q).
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A. Appendix

This appendix is provided solely for the convenience of the reader. It contains only well-known results
and proof techniques.

A.1. Some sufficient conditions for L2(μ)–differentiability

We consider a statistical model (Gβ) defined on a measurable space (Y,G) and indexed by β ∈ V ,
where V ⊆ Rp is some open set containing a point β0 of interest. We assume that the statistical model
is dominated by a measure ν and denote the density functions of the Gβ with respect to ν by gβ .

The following result corresponds to Bickel et al. [1993, Proposition 1], see also the adaptation
by Pollard [2001; 2005].

Proposition 2. Suppose that

(i) the map (y, β) ∈ Y × V �−→ gβ(y) is product measurable;

(ii) for ν–almost all y, the function β ∈ V �−→ gβ(y) is absolutely continuous on V , with gradient
function denoted by β ∈ V �−→ ∇gβ(y), which is defined for all β with the convention that it
equals [0] where it was not defined;

(iii) for ν–almost all y, the function β ∈ V �−→ gβ(y) is differentiable at β0;

(iv) for each β ∈ V , the function

ζβ : y ∈ Y �−→ 1

2

∇gβ(y)√
gβ(y)

I{
gβ(y)>0

}
is L2(ν)–integrable, with the convergence, as β → β0,

Eν

[
ζ2β
]
−→ Eν

[
ζ2β0

]
.

30 Gassiat, Pollard, and Stoltz

Very
 is

ed by a my a
following resulowing r

ollard [2001; 2005]d [2001; 20

Proposition 2.roposition 2 S

(i)(i the mapt

(ii) for
fu

pre
lim

ina
ry 

ailablebl

dge Unversity Pressnversity Pr

ulation Theoryn Theory. Wi

ely for the conveniely for the con

cient conditionnt condi

atistical model (stical mo G

me open setme open
asureasure ν

ve
rsi

on
 bound.

pringer, 1981.ger, 1981.

variate Analysise Analysis

cal report, 2008report, 2008

r differentiabdifferentiab
http:http

To 
and

rrespondpond

ose thatose tha

V �

be
for

β) defined onfined o
ntaining a poinntaining a poin
enote theenote th

o Bo B

re-
work

ed
2001; 2001; 200

w.stat.yale.e.yale.e

998.98.

y & Sons, 1968.ons, 1968

ce of the readef the reade

((μμ))–di–



Revisiting the van Trees inequality in the spirit of Hájek and Le Cam

Then the model (Gβ)β∈V is L2(ν)–differentiable at β0, with derivative ζβ0.

The proof only uses the continuity stated in the second part of (iv) to show that some sequence of
integral averages of J (β′) = Eν

[
ζ2β′
]
over β′ in shrinking neighborhoods of β0 converges to Eν

[
ζ2β0

]
.

This continuity condition can be relaxed at least in one-dimensional models (i.e., when p = 1). We
consider the function J : β ∈ V �→ Eν

[
ζ2β
]
. The second part of (iv) can then be replaced by assuming

the convergences, as t→ 0 with positive values,

1

t

∫ t

0
J (β0 + t′) dt′ −→ J (β0) and

1

t

∫ t

0
J (β0 − t′) dt′ −→ J (β0) .

These convergences correspond to β0 being what is called a Lebesgue point of J .

A.2. Proof of Lemma 1

Proof. The application γT is well-defined because of the hypothesis on the second moments of T under
the Pθ; so is also the candidate for the gradient, since by the Cauchy-Schwarz inequality,∫

X

∣∣∣ξθ0 ξ̇θ0T ∣∣∣ dμ �
√
p Eθ0

[
T 2
]���ξ̇θ0���

μ
.

Similar arguments show that all integrals considered below exist. Now,

γT (θ0)− γT (θ)− 2(θ0 − θ)T
∫
X
ξθ0 ξ̇θ0T dμ

=

∫
X

(
ξ2θ0 − ξ2θ − 2(θ0 − θ)T ξ̇θ0ξθ0

)
T dμ

=

∫
X

(
(ξθ0 + ξθ)(ξθ0 − ξθ)− (θ0 − θ)T ξ̇θ0

(
(ξθ0 + ξθ) + (ξθ0 − ξθ)

))
T dμ

=

∫
X
(ξθ0 + ξθ)

(
ξθ0 − ξθ − (θ0 − θ)T ξ̇θ0

)
T dμ − (θ0 − θ)T

∫
X
ξ̇θ0(ξθ0 − ξθ)T dμ . (34)

It suffices to show that each of the two summands in the last equality is negligible with respect to
θ0 − θ. We bound both of them by the Cauchy-Schwarz inequality. First,����∫X (ξθ0 + ξθ)

(
ξθ0 − ξθ − (θ0 − θ)T ξ̇θ0

)
T dμ

����
1

� √p
��(ξθ0 + ξθ)T

��
μ

���ξθ0 − ξθ − (θ0 − θ)T ξ̇θ0

���
μ
;

the second norm in the above bound is o
(
‖θ0 − θ‖

)
by the assumption of differentiability in L2(μ) of

the model, while the first norm is bounded by��ξθ0T��μ +
��ξθT��μ =

√
Eθ0

[
T 2
]
+
√

Eθ

[
T 2
]
� 2
√

MU,T .

As for the second integral in (34), because of the factor (θ0 − θ)T in front of it, we only need to show
that each of its components tends to 0 as θ → θ0. To do so, we split it according to whether |T | is
larger or smaller to a given threshold K and resort again to the Cauchy-Schwarz inequality; this yields����∫X (ξθ0 − ξθ)ξ̇θ0 T dμ

����
1

�
∫
X

���(ξθ0 − ξθ
)
ξ̇θ0 T

���
1
I{|T |>K

} dμ+

∫
X

���(ξθ0 − ξθ
)
ξ̇θ0 T

���
1
I{|T |�K

} dμ
� √

p
���(ξθ0 − ξθ

)
T
���
μ

����ξ̇θ0 I{|T |>K
}����

μ

+K
√
p
��ξθ0 − ξθ

��
μ

��ξ̇θ0��μ

� 2
√
p
√
MU,T

����ξ̇θ0 I{|T |>K
}����

μ

+K
√
p
��ξθ0 − ξθ

��
μ

��ξ̇θ0��μ
.
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The differentiability in L2(μ) of the model implies in particular that��ξθ0 − ξθ
��
μ
= O

(
‖θ0 − θ‖

)
,

so that

lim sup
θ→θ0

����∫X (ξθ0 − ξθ)ξ̇θ0 T dμ

���� � 2
√
p
√
MU,T

����ξ̇θ0 I{|T |>K
}����

μ

for all K > 0. Letting K → +∞, an argument of dominated convergence shows that

lim sup
θ→θ0

∣∣∣∣∫X (ξθ0 − ξθ)ξ̇θ0 T dμ

∣∣∣∣ = 0 .

Substituting this in (34) concludes the proof.

A.3. Schur complements

Lemma 9. We consider an s × s matrix A, a p × s matrix B, and a p × p matrix D, where D is
invertible. If

M =

[
A BT

B D

]
� 0 ,

then the so-called Schur complement of its D block also satisfies

A−BTD−1B � 0 . (35)

Proof. We denote by Ids the s× s identity matrix. We have the equalities

[
Ids −

(
D−1B

)T ] [ A BT

B D

] [
Ids

−D−1B

]
=
[
Ids −

(
D−1B

)T ] [ A−BT D−1B
[0]

]
= A−BT D−1B .

This indeed entails that A−BTD−1B � 0 as well.

Based on this result, we get the following result, used by Gill and Levit [1995] in one of their
proofs.

Lemma 10. We consider three s× s matrices A, B, and D, where D is invertible, such that

M =

[
A BT

B D

]
� 0 .

Then

Tr(A) �
(
Tr(B)

)2
Tr(D)

.

Proof. We take the trace in (35) and get

Tr(A) � Tr
(
BTD−1B

)
.

Now, the assumption on the three matrices A, B, D, entails in particular that D is symmetric. Since
D is also invertible, we may write it as D = U UT where U is a s× s invertible matrix. We have the
rewriting

Tr
(
BTD−1B

)
= Tr

((
U−1B

)T (
U−1B

))
.
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Now, the Cauchy-Schwarz inequality for the inner product (M1,M2) �→ Tr
(
MT

1 M2

)
, with M1 = UT

and M2 = U−1B, indicates that

(
Tr(B)

)2
=

(
Tr
(
U
(
U−1B

)))2

� Tr
(
U UT

)︸ ︷︷ ︸
Tr(D)

Tr
((

U−1B
)T (

U−1B
))

.

The proof is concluded by putting all (in)equalities together.

A.4. Derivation of other multivariate formulations of the van Trees inequality

The other, at first sight more general, multivariate formulations of the inequality that Gill and Levit
[1995] follow from two immediate adaptations of what we could call the “van Trees equality.” The
latter is the key step in proving the van Trees inequality, namely, the equality stated in Lemma 4. We
recall it: under suitable assumptions, the following integrals are defined and are equal,

2

∫
X×Θ

(
Δq(x, θ)⊗

(
S(x)− ψ(θ)

))
ξθ(x)

√
q(θ) dμ(x)dθ =

∫
Θ
∇ψ(θ) q(θ) dθ , (36)

where S : X → Rs is a statistic, ψ : Θ → Rs is an absolutely continuous function, and the pseudo-
derivative Δq : X ×Θ→ Rp equals

Δq(x, θ) =
1

2

∇q(θ)√
q(θ)

I{
q(θ)>0

} ξθ(x) +√q(θ) ξ̇θ(x) (37)

for all x ∈ X and θ ∈ Θ. This is a matrix equality. The equality for the elements in the ith row and
jth column reads:

2

∫
X×Θ

⎛⎝ ∂q

∂θi
(θ)

I{
q(θ)>0

}
2
√

q(θ)
ξθ(x) +

√
q(θ) ξ̇θ,i(x)

⎞⎠(Sj(x)− ψj(θ)
)
ξθ(x)

√
q(θ) dμ(x)dθ

=

∫
Θ

∂ψj

∂θi
(θ) q(θ) dθ . (38)

Gill and Levit [1995] discuss two degrees of flexibility in (the application of) these equalities,
which can be combined. For the sake of clarity we recall them separately, the first one in the form of
matrix inequalities while the second one is best stated in terms of scalar inequalities. The latter are
derived by Gill and Levit [1995] via the consideration of Schur complements and the application of
the Cauchy-Schwarz inequality, at the cost of not being intrinsic.

Different priors for different coordinates. The prior q considered in (37) is the same for all
coordinates (i, j) but this obviously does not have to be. It could depend on (i, j) but this would
not lead to an elegant inequality; instead we have it depend only on i but allow ourselves to consider
several of these modified priors, say, p′ of them. That is, for all coordinates (i, · ), we introduce some
absolutely continuous function ci,	 : Θ → R, where � ∈ {1, . . . , p′} and form the priors q ci,	. Under
suitable conditions (38) holds for each coordinate (i, j) with q replaced by q ci,	. Summing these
equalities over i, slightly rearranging the integrand, and omitting the indicator functions, we get for
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all � ∈ {1, . . . , p′} and j ∈ {1, . . . , s},

2

∫
X×Θ

p∑
i=1

(
∂(q ci,	)

∂θi
(θ)

1

2
√

q(θ)
ξθ(x) + ci,	

√
q(θ) ξ̇θ,i(x)

)
︸ ︷︷ ︸

˜ΔC,�

(
Sj(x)− ψj(θ)

)
ξθ(x)

√
q(θ) dμ(x)dθ

=

∫
Θ

(
p∑

i=1

ci,	
∂ψj

∂θi
(θ)

)
q(θ) dθ .

Matrix-wise, denoting by C = (c	,i) the p
′×p–matrix valued function at hand and by Δ̃C : X×Θ→ Rp′

the modified pseudo-derivative, we have proved the matrix equality

2

∫
X×Θ

(
Δ̃C(x, θ)⊗

(
S(x)− ψ(θ)

))
ξθ(x)

√
q(θ) dμ(x)dθ =

∫
Θ
C(θ)T∇ψ(θ) q(θ) dθ .

Based on it, following the steps detailed after the statement of Lemma 4 (and under suitable assump-
tions ensuring that all needed quantities exist), we may derive some van Trees inequality:⎡⎢⎢⎣

∫
Θ
Eθ

[(
S − ψ(θ)

)
⊗
(
S − ψ(θ)

)]
q(θ) dθ

(∫
Θ
C(θ)T∇ψ(θ) q(θ) dθ

)T
∫
Θ
C(θ)T∇ψ(θ) q(θ) dθ ĨC,q +

∫
Θ
C(θ) I(θ)C(θ)T q(θ) dθ

⎤⎥⎥⎦
=

∫
X×Θ

[ (
S(x)− ψ(θ)

)
ξθ(x)

√
q(θ)

2Δ̃C

]
⊗
[ (

S(x)− ψ(θ)
)
ξθ(x)

√
q(θ)

2Δ̃C(x, θ)

]
dμ(x)dθ � 0 , (39)

after straightforward calculations, using (4), showing that∫
X×Θ

Δ̃C(x, θ)⊗ Δ̃C(x, θ) dμ(x)dθ = ĨC,q +

∫
Θ
C(θ) I(θ)C(θ)T q(θ) dθ ,

where ĨC,q is a p′ × p′ matrix, whose component (�, �′) equals

ĨC,q =

∫
X×Θ

p∑
i,i′=1

∂(q ci,	)

∂θi
(θ)

∂(q ci′,	′)

∂θi
(θ)

I{
q(θ)>0

}
q(θ)

dθ .

Scalar inequalities. What we call scalar inequalities is the application of Lemma 10 of Section A.3
to matrix inequalities of the form (22) or (39). For instance, when p′ = s, the stated lemma and (39)
lead to ∫

Θ

Eθ

[��S − ψ(θ)
��2
]
q(θ) dθ �

(∫
Θ
Tr
(
C(θ)T∇ψ(θ)

)
q(θ) dθ

)2
Tr
(
ĨC,q

)
+

∫
Θ
Tr
(
C(θ) I(θ)C(θ)T

)
q(θ) dθ

. (40)

Inequalities of the form above are generally less satisfactory than their mother matrix inequalities.
This can be seen, in the case when p = s and C is the matrix of identity functions, by noting that the
numerator of the right-hand side is given by∫

Θ
Tr
(
∇ψ(θ)

)
q(θ) dθ =

∫
Θ

(
p∑

i=1

∂ψi

∂θi
(θ)

)
q(θ) dθ .

This term is not stable by a permutation of the components of ψ, while the left-hand side of (40) is
stable by this operation. This is why, following Letac [2008], we only stated matrix inequalities.
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Weighted Bayesian quadratic risk. The second variation works best as far as scalar inequalities
are concerned, and in the case when p = s or after the first variation, i.e., based on (39), in the
case when p′ = s. For simplicity, we rather illustrate it based on (22) in the case when p = s. This
variation relies on a function A defined over Θ and with values in the set of p× p invertible matrices.
We associate with it the symmetric matrix B = AAT . No regularity assumption is needed on A, only
suitable integrability assumptions (for the quantities considered below to be defined) will be required.
We start by noting that under suitable integrability assumptions only,∫

X×Θ

[
A(θ)−1

(
S(x)− ψ(θ)

)
ξθ(x)

√
q(θ)

2A(θ)TΔq(x, θ)

]
⊗
[

A(θ)−1
(
S(x)− ψ(θ)

)
ξθ(x)

√
q(θ)

2A(θ)TΔq(x, θ)

]
dμ(x)dθ � 0 .

An application of Lemma 10, under an invertibility condition, indicates that∫
Θ

Eθ

[(
S − ψ(θ)

)T
B(θ)−1

(
S − ψ(θ)

)]
q(θ) dθ

�

(
2

∫
X×Θ

Tr
(
A(θ)TΔq(x, θ)⊗A(θ)−1

(
S(x)− ψ(θ)

))
ξθ(x)

√
q(θ) dμ(x)dθ

)2
∫
X×Θ

Tr
(
A(θ)TΔq(x, θ)⊗A(θ)TΔq(x, θ)

)
ξθ(x)

√
q(θ) dμ(x)dθ

. (41)

As

Tr
(
A(θ)TΔq(x, θ)⊗A(θ)−1

(
S(x)− ψ(θ)

))
= Tr

((
A(θ)−1

(
S(x)− ψ(θ)

))T
A(θ)TΔq(x, θ)

)
= Tr

((
S(x)− ψ(θ)

)T (
A(θ)−1

)T
A(θ)TΔq(x, θ)

)
= Tr

((
S(x)− ψ(θ)

)T
Δq(x, θ)

)
,

we get from (36), still under no regularity condition on A,

2

∫
X×Θ

Tr
(
A(θ)TΔq(x, θ)⊗A(θ)−1

(
S(x)− ψ(θ)

))
ξθ(x)

√
q(θ) dμ(x)dθ =

∫
Θ
Tr
(
∇ψ(θ)

)
q(θ) dθ .

As for the denominator in (42) we first note that

Tr
(
A(θ)TΔq(x, θ)⊗A(θ)TΔq(x, θ)

)
= Tr

((
A(θ)TΔq(x, θ)

)T
A(θ)TΔq(x, θ)

)
= Tr

(
Δq(x, θ)

TB(θ)Δq(x, θ)
)
= Tr

(
B(θ)Δq(x, θ)Δq(x, θ)

T
)
.

The integration of this term is then handled in the same way (21) was obtained, in particular, thanks
to (4); we only write the resulting equality:∫

X×Θ
Tr
(
A(θ)TΔq(x, θ)⊗A(θ)TΔq(x, θ)

)
ξθ(x)

√
q(θ) dμ(x)dθ

=

∫
X×Θ

Tr
(
B(θ)Δq(x, θ)Δq(x, θ)

T
)
ξθ(x)

√
q(θ) dμ(x)dθ

=

∫
Θ

Tr

(
B(θ)

∇q(θ)∇q(θ)T

q(θ)
I{

q(θ)>0
}) dθ +

∫
Θ
Tr
(
B(θ)T I(θ)

)
q(θ) dθ .
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Putting all (in)equalities together, we get the following weighted inequality:∫
Θ

Eθ

[(
S − ψ(θ)

)T
B(θ)−1

(
S − ψ(θ)

)]
q(θ) dθ

�

(∫
Θ
Tr
(
∇ψ(θ)

)
q(θ) dθ

)2∫
Θ

Tr

(
B(θ)

∇q(θ)∇q(θ)T

q(θ)
I{

q(θ)>0
}) dθ +

∫
Θ
Tr
(
B(θ)T I(θ)

)
q(θ) dθ

. (42)
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