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Abstract

This paper revisits the multi-dimensional van Trees inequality in an intrinsic form and under
minimal assumptions, in the spirit of Hijek and Le Cam. We prove that the van Trees inequality
is a Cramér-Rao inequality for some Bayesian location model. We add to the known long series
of applications of this inequality a simple way to prove local asymptotic minimax (LAM) lower
bounds for the quadratic risk in parametric and semi-parametric settings.



Introduction: To be totally reshuffled and toned down

Revisiting the van Trees inequality in the spirit of Hajek and Le Cam

1. Introduction

A long story made short. Once upon a time (in April 2001), a student (Gilles Stoltz) had to get
a grade for a graduate course on the asymptotic theory of statistical estimation. The lecturer (David
Pollard, visiting Paris for a semester) had the intuition that some developments and improvements
around the van Trees inequality (van Trees, 1968) could be obtained in the spirit of Hajek and Le
Cam. More precisely, he wrote the following statement for a take-home examination:

On the van Trees inequality: Replace assumptions of Gill and Levit [1995] by analogous aSsumptions

of Hellinger differentiability. Try to deduce the van Trees mequahty from the inform equality
(the Cramér-Rao bound) for a parametric family mq(z,8) = qo(0) fo—a( ,’wh‘ density
with respect to Lebesgue mesure on © with compact support, and g, = ¢( a rigorous
theorem, if you can. Illustrate the application of the theorem by adaptin e examples of
Gill and Levit [1995]. Even better: Use the theorem to prove a rigor ciéncy result under
differentiability-in-quadratic-mean assumptions.
This statement was the sparkle of discussions and iterations, o parate and joint, work. The
research programme was completed in three months, with an u%j ed addition ding: it became
clear that some direct proof of the van Trees inequality based on*an ad hoc i ion inequality

(and exploiting some separation of the variables z and 6 Jjwould require
than its derivation via the Cramér-Rao bound. An 0 f this ig,alréa ntioned in the July
2001 version of Pollard [2001; 2005].

Right after (in July 2001) David Pollard had ack home t eaven, Connecticut, but
he did not so without warmly encouraging tz to poli ubhsh the above-mentioned
results. Time passed, Gilles Stoltz comp thesis in learning and would have given
up writing up the present paper if a t cher (Elisa Gassiat) had not been around. She
has been presenting (from Septemb 1n her own uate lectures at Université Paris-Sud,

Orsay, the derivations of the o equality i h p1r1t of Hajek and Le Cam together with
al asymptoti ax (LAM) lower bounds for the quadratic

a simple and direct application
risk in parametric and seml D r ric settings 1Th ee of us regularly came back to the van Trees
inequality over the year i Slvely simplifyingyits (direct and indirect) proofs and relaxing the
needed assumptions. ortunately d1 nish in time for 2010 and could not honor the memory
of Lucien Le Cam f th annive f S passing away.

is to revisi the Treesyingt y, originally introduced and proved by van Trees [1968], in the
fra e f

The van s\inequality: i oint versus Lo—type assumptions. The aim of this paper

and Le Cam. We do so to further illustrate the elegancy and
neatness’ga ed by workin this framework, compared to assuming some pointwise regular behavior

the densities. Almost all articles devoted to the van Trees inequality, the ones of Bobrovsky et al.
1 Gill and Levit [1995], Letac [2008], and Jupp [2010], considered such pointwise assumptions,
with the notable exception of Lenstra [2005], whose results we discuss below.

But the work of Hajek and Le Cam is nowadays the reference for the asymptotic theory of statistical
estimation, see also Ibragimov and Has’minskii [1981]. In this theory, smoothness of parametric models
is considered in the LLo—sense, by considering square roots of densities as the basic objects. In terms
of efficiency, one good way of generalizing the Cramér-Rao inequality to sequences of estimators is via
lower bounds for the local asymptotic minimax (LAM) risk.

In this respect, the van Trees inequality, which may be seen as some Bayesian version of the
Cramér-Rao inequality suited for biased statistics, was proved by Gill and Levit [1995] to lead to a
simple efficiency result for sequences of regular estimators only (see Section 6.1).

Our contributions. First of all, we give an elegant direct proof of the van Trees inequality in a
Héajek—Le Cam setting, with somewhat minimal assumptions (almost all of them merely ensure that
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the quantities at hand are well-defined). We only assume smoothness through differentiability in
quadratic mean and absolute continuity of the function of the parameter to estimate. Also, our aim is
to give a unifying statement that applies to various settings, where the parameter space © is compact
(as in Gill and Levit, 1995) or is not compact (0 = R or ©® = R, as in Lenstra, 2005)—see Theorem
1 and Corollary 3. A detailed comparison of our version to the version by Gill and Levit [1995] can be
found in Section 4.3: we prove that our assumptions are strictly milder than theirs. In the same vein,
the version of van Trees obtained by Lenstra [2005] in a Hijek—Le Cam setting is not satisfactory yet
as it still requires some pointwise regularity of the density functions and Theorem 1 s that none
of them was necessary.

In a second part, we indicate that the van Trees inequality is exactly a ra bound for a
well-defined location model, not just something close to a Cramér-Rao bou some Bayesian

Cramér-Rao bound)

Finally, we show how the van Trees inequality yields an element %K of local asymptotic
minimax (LAM) lower bounds for positive quadratic risk functions i etric and semi-parametric
contexts; these bounds are valid for all sequences of estimators ( m@ gular ones).

Outline. In Section 2 we recall some basic definitions and ts of the H e Cam setting
(including the information equality and the Cramer—R und). We state g . al and elegant
version of the van Trees inequality in Section 4, riations ar d t and compare it to
previous results in the literature. Section 5 explain he n Trees is exactly a Cramér-
Rao bound for some well-defined location model Bayesmn xt of densities. We propose
our application to efficiency, namely, local a mlnlmax AM), lower bounds, in Section 6.
Finally, Section 7 and Appendix A gath@r @hnical materia partlcular the detailed proofs
of the main results).

Qe;\\ @
6/\"
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2. Setup and notation

We consider a statistical model (Pg), defined on a measurable space (X, A) and indexed by 0 € O,
where © is an open subset of RP, with p > 1. We assume that it is dominated by a sigma-finite
measure p, that is, for all 8 € RP, the probability Py is absolutely continuous with respect to p, with
density denoted by fy. We denote by Ey the expectation with respect to Py.

In the sequel, unless stated otherwise, the norms will refer to the Euclidian norms, denoted by
|| - || in finite-dimensional real vector spaces, and by || - ||, in La(x); in the latter case@ functions

g € La(u), possibly vector-valued,
91l = \/ H9H2dﬂ ‘\O
In particular, we will denote by || - [|; the El—norms; for a matrix A @re define

| Al = Z i ;| - @
Y] !
We denote by & = /fy the square roots of the densiti
Definition 1 (Differentiability in La). The domina, ﬂzcal madel [PQ is differentiable in
La(p) at Oy € © if there exists a p—dimensional v unctio () such that
e e sO@

The vector-valued function fgo = tive of the model at 6y. The Fisher

kA 7p}
information Z(0y) of the model \ n defined b /
@ T(60) = 4@ . 1)

We denote the ¢ ts of 6 by 9 .,0p). For i e {1,...,p}, we refer to the (p — 1)
dimensional vector mponents ' e i—th one as 0_;, so that 0 = (0;,6_;). The standard
definition of abs¢lute comtinuity for fu o 1s R — R can be generalized to functions RP — R in several

ways. In thi r, the convement extension is the following.

Defini . Let D C RP be an open domain. A function ¢ : D — R is
ab lu tmuous ) fo mos all 0_; € RP~L, the function 0; — @(91, 0_ ) 1s absolutely continuous
domam D(0_;) ={0; e R : (0;,0_;) € D} whenever the latter is non empty.

> 1, a vector-valued function v = (¢¥j)i<j<s : D — R is absolutely continuous if all its
components ¥ : D — R are absolutely continuous.

In particular, the gradient

v 2o 2)

801:| ie{l,...,p}

of an absolutely continuous function ¢ : RP — R exists at almost all § € RP. Moreover, for all
i€ {1,...,p}, almost all #_; € RP~1 and all real numbers a and b such that (a,b) C D(0_;),

0
/ 8‘; (60:,0_) 40, = (b, 0_) — p(a,0_).

By convention, we let the gradient Vi equal [0] at points 6 where it was not defined.

4 Gassiat, Pollard, and Stoltz
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Example 1 (Location model). Fix an absolutely continuous density function ¢ on RP, with almost-
sure gradient denoted by Vg, such that |[Vq||®I,~0y/q is integrable with respect to the Lebesgue
measure A. We consider the statistical model (Qo}} indexed by a € RP and formed by the probability
distributions Q, with density function ¢(- — «) with respect to A\. A standard result (which is stated
in a more general way as Proposition 2 in appendix) is that this model is differentiable in Lo()\) at all
points of RP, with derivative at oy € RP equal to

1 Vq(- — ap)

T2 /4(- —ag) 1a(-—e)>0}" )

Consequently, the Fisher information of this model is independent of oy € RP a@als
def T ]I{q>0} \
1, = VqVqg —=d\.
R q

3. Reminder of some basic facts around t el matioh, (in)equality

We recall versions of the information (in)equalities for one- mensmnal and Itidimensional
statistics (which will always be denoted, respectlvel and 9). rial that follows is

completely standard and we state these results onl is papen.s f ained. Lemma 2 and
the proof techniques of Corollary 1 will indeed b '7, ments 1n ofs of Section 4, while the
bound of Section 3.3 is stated for the sake of

5 parlsons
‘
3.1. An information equality fi en&@:j;stlcs

We consider a statistical model satiglyl

Assumption (Ly.Diff. 00 X& 969}
is differentiable in Lo(u @ g
Lemma 1 (Information%egua Under ton Lo .Diff.0y, for all statistics T : X — R such

that T is locally bo 1@' 2(Py) arou '. e., such that there exists an open neighborhood U of
0y with

thie following as tion

C R? is an open set, is dominated by p and

dof sup Eg [T ] 0,

oeU
the eazwtwn @ ] s well-defined and is differentiable at 0y, with

gT
Vryr(6) = 2 /X CononT .

The proof is extracted from Pollard [2001; 2005] and is provided in appendix for the sake of
completeness.

3.2. A multidimensional information (in)equality

Via the choice of the statistic T'= 1 a.s., one sees that for a model satisfying Assumption LLo.Diff.fg,

/X E0o600 dp = [0] i€{l,....p} (4)
We now consider a vector-valued statistic S : X — R®, where s > 1 is an integer. The components
of S are referred to as (Sj)jeq1,....s}- When the expectation function g : 6 +— v5(6) = Eg[S] is well-

defined around 6y and is differentiable at 6y € ©, we denote, after an abuse of notation, by V~s(6p)

Gassiat, Pollard, and Stoltz 5
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the concatenation of the s gradients of the functions ¢ — Ey[S;] = vs;(0) at 0p. That is, Vys(o) is a
p X s matrix, whose element (i,7) € {1,...,p} x {1,...,s} equals

0vs
Vys(6o)i; = 20, > (6o) -

Lemma 1 can be generalized in a multidimensional fashion as follows; it suffices to apply it
component-wise to each Sj, together with (4). For two vectors u = (ui)ieq1,... py and v = (vj)jeqf1,...5}»
we denote by u®v = w" = [ui'Uj](i,j)e{l,..‘,p}><{1,...,s} their tensor product, which is a g’ x atrix. (In
the whole article, vectors are column-vectors.)

*
Lemma 2 (Multidimensional information equality). Under Assumption Lo.Bi or all statistics

S : X — R® such that ||S|| is locally bounded in La(Py) around 6y, i.e., su ere exists an open
neighborhood U of 6y with

My.s def sup E@ ||S||

the expectation function vg : 0 € U — ~yg(0 ]Eg S] is wel ed and is diff table at Oy, with

gradient
Vs(6o) 2/59059(;@501#2&‘ S—ans@
This information equality entails the follovvlm ation ineq

nown as the Cramér-Rao
bound. We denote the fact that a symmetric is positiv, de nite by M = 0.
*
Corollary 1 (Multidimensional informati Qﬁty; also kn he Cramér-Rao bound). Under
the assumptions of Lemma 2, the follo trices are pos emi-definite,

90(5) \Y 0’
e % | =0 )
and thus, whenever Z( HOK te,

Q Varg, (S @)T Z(60) " Vs(6p) = 0. (6)

Proof. The prodf is standard and fo e.g., the exposition of Bobrovsky et al. [1987, Lemma 4]
or Letac [2 he first m 1s séen to be a positive semi-definite matrix by a rewriting as
an integra suchpymatri thanks to Lemma 2 as far as the cross-products Vyg(6y) and

2
W0

[ Vol Orahr ] / (S EalS) ] o[ alS_Eals)

(
Vas(fo)  Z(6o) 280, 289,

The second part of the corollary simply relies on the fact that the Schur complement of Z(6y) in the
above matrix is positive semi-definite because the matrix itself is. (A proof of this well-known fact is
recalled in Section A.3 in appendix, see Lemma 9.) O

3.3. A multidimensional Bayesian Cramér-Rao bound

We adapt here the exposition of Letac [2008] to our setting of assumed Lg(u)—differentiability. We
consider a model satisfying Assumption Lo.Diff.0y at all points 8y € ©.

Assumption (Ly.Diff). The model (Py)
differentiable in Lo(p) at all points of ©.

0co’ where © C RP s an open set, is dominated by p and is

6 Gassiat, Pollard, and Stoltz
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We also fix a statistic S : X — R® and now introduce a continuous density function ¢ : © — R
satisfying the following assumption.

Assumption (Int.q). The following integrals with respect to q are finite,
/ EG[HSHQ] q(0)do < ¢ and / Tr(Z(9)) q(6) df < +oo.
e )

The so-called Bayesian Cramér-Rao bound will be discussed and compared to t n Trees in-
equality later on in this article (in Section 4.5).

Corollary 2 (Bayesian Cramér-Rao bound). Under Assumptions Lo. lef , provided that
q: 0O — Ry is continuous and that ||S|| is locally bounded in La(Py) arou @ we have
/ Vary(S) ¢q(0) dé ( / Vs(0
S}
| wrs(@ato) s t
S
where we used the notation of Lemma 2. In partzcul enever / s definite,

that we may focus on its first part o ypotheses a 2 and Corollary 1 are satisfied at
all 90 € O: *

\ Vs ( 90 @ ™)
V’YS 90 @0590 (S Eg, [S])

(z,6) §9 (x) —EG[SD q(0)
belongs to by a Cauchy—Schwarz inequality together with Assumption Int.q.
Th ref g i le respect to the Lebesgue measure on on ©. The same can be said
ons 0 — Varg ) and 6 — Z(0) q(#). We can therefore integrate the matrix bound (7)
th espect to g over ©. We get that

/ Varg(S) q(0) do ( / V(6 de) » .

/ Vs(6) a(6) 6 /e 7(6) q(6) a9

which concludes the proof. O

/ Varg(S) (8) d — ( / Vos(6) g(0) d6 ). : = 0.
(C] ©
0
Proof. The second part of the corollary gain V1a$ ation of Schur complements, so

where

Gassiat, Pollard, and Stoltz 7
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4. The van Trees inequality
(under somewhat minimal assumptions)

In this section we state the sharpest version of the van Trees inequality we could obtain. Its direct
proof will be deferred after a proof based on the Cramér-Rao inequality, that will require stronger
assumptions.

The first series of assumptions is only intended to ensure that all quantities at hand in the statement
of the inequality exist. On top of the above-stated Assumptions Lo.Diff and Int.q, we so consider

the following ones.
Assumption (AC.q). The density function q : © — R is absolutely contin Ef;i\Q Tr(Z,

Assumption (Int.y)). The absolutely continuous function ¢ : © —>
integrals are finite,

/ IVe0)]], q(0)do < +00  an m& 6)d0 <
©
On top of these somewhat necessary!' assumpti a of Conqti§s®ing to integrate by

ch that the following

parts is convenient. Several such sets are sultable t ome (IP.b he one we worked out,
a second one (IP.Stokes, discussed below) is the ed by Gill a& t [1995] to apply Stokes’
theorem. Note that © is not required to be nder Ass P.border.
Assumption (IP.border). The functi q 0) and 6 — tend respectively to 0 and [0] as
0 approaches any point of the borde h ﬁmte norm

Based on these assumptlox\x now stat @am result.
Theorem 1 (The van ahty Under mptzons Lo.Diff, AC.q, Int.q, and Int.¢), as well
IP.border, the follows rix is well- de nd is positive semi-definite,

w»}<@d9 ([ ve@a@ )
/‘ 0) do 7,4+ /@ 7(0) g(6) A0

wheneverI + I(G) (0) do is definite,
(C]

=0. 9)

=[5 = v0) @ (5 = w(0))] a(0) a0

- ( /@ Vo (6) () d0>T <1q+ /@ 7(0) q(@)d&)l ( /@ w(e)q(e)de) 0.

Note that the above theorem is stronger and more general than the version obtained by Lenstra
[2005], which is stated in the same context of models that are differentiable in Ly.

!Section 4.3 explains why Assumption Lg.Diff can be slightly weakened: it suffices that the model be coordinate-wise
differentiable in Lo (x) at almost all points of Supp(g).

8 Gassiat, Pollard, and Stoltz
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4.1. A self-improvement of the inequality

We explain why Theorem 1 self-improves to the following corollary. We realized that such a self-
improvement was possible when we worked out the proof of the van Trees inequality based on the
Cramér-Rao inequality; see Sections 5 and 7.1, and in particular, Footnote 3.

Corollary 3 (A strengthened van Trees inequality). Under Assumptions Lg.Diff, AC.q, Int.q, and
Int.¢p, as well IP.border, the following matrix is well-defined and is positive semi-definite,

[ Eo[(5=v0) @ (5= wi0))] ato) a0 ( [ W "
- [ ©ls1=v@) at0) a0 [ (£11S) = 0(0)) a(0) a0

[ vu®at)as 7«@
L o

Thus, whenever L, + / Z(0)q(0)de is definite,
(C]

¥
o

L Eo[(5=v0) & (5 - (o)

Eq[S] — 0)de ﬁ
{/(w @ o”w o)

Proof. We note that if ¢ satisfies thegassumptions of Th hen so does 1) + ¢ for all constants
¢ € R®. In addition, as V(¢ + c)¥= y the upper 1 submatrix in (9) is modified. What would

r the function (:E 0) € X x © — S(x) — (). Assumption Int.q

the best choice be for ¢? \

We denote by M the pr distributi >< O with density (z,0) — &p(x)q(0) with
respect to 1 @ A. We als @
shows that J € Lo(M % us, via Jf@ inequality, that J € L;(M). We choose as ¢ the

expectation of J u hich can be itten, thanks to Fubini’s theorem, as

/ (EolS] — 1(0)) q(6) do .

We a @ ¢ and get an inequality (9) where the upper right submatrix is

»(0) — C)}q(ﬁ)dﬁ
[(J EylJ]) @ (J—EM[J])} = Em[J ® J] — EylJ] ® EyglJ]
- / Ea[ (5 = 0(0) © (5 = 0(60) | a9) a0 — [ (BolS] = 0(©) a(0) a0 @ [ (EalS) ~0(6)) a(6) a0,
©

where the equality in the middle of the second line corresponds to a bias-variance decomposition. This
concludes the proof. O

4.2. Two cases of interest: © = R and bounded intervals © = (a,b)

For simplicity we restrict our attention to the case of the estimation of a scalar parameter, i.e., to the
cases where © C R and 1) is the identity function. We provide natural situations when the assumptions
of Theorem 1 and Corollary 3 are satisfied.

Gassiat, Pollard, and Stoltz 9
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Corollary 4. Fixz some model (P9)9eR that is dominated by p and is differentiable in Lo(p) at all points

of R. Consider an absolutely continuous density function q : R — Ry such that fR 62q(0) df < oo.
Then Z, > 0 and for all statistics T : X — R,

2
1
/]Eg (T —60)%] q(6)do > (/ (Eo[T] — ) q(0) d0> + .
R R Z,+ /RI(G) q(0)de
The proof of this corollary is straightforward; we only write it to show how ¢ %ulremen‘cs
are immediate in the present case. * 6

though some may be equal to +-00. Also, Z, > 0 as ¢ cannot be constan . Therefore, the stated
inequality is trivial unless all the 1nequaht1es

T, < +oo0, /RI(G) q(0)do < +oo, A(T 0)*] a(

Proof. First, we note that all quantities appearing in the stated me({ e Well defined?, even

hold, which we can therefore safely assume for the re roof incel b ssumption on g we
have that 6 — 62 ¢(0) is Lebesgue-integrable over
/ Ee 0 < 40
R

To apply Corollary 3, which leads to 1nequahty, mains to see that Assumptions Int.v

and IP.border are satisfied. Thé oid as the bor is'{—o00, +oo}. That Int.¢) is satisfied is

because the target function v 1§t ntity functi er ]R (the first integral therein equals 1 and

the second one is finite by t sumption on ¢ O
A similar proof le he followmg ry in the case of a bounded interval.

Corollary 5 nsi paramete (a, b ) formed by a bounded open interval. Fix some model
ee(a b) dominated by ,u an dzﬁerentmble in Lo(p) at all points of (a,b). Consider an

absolutely ntintous densi y (a,b) — Ry such that () — 0 as @ — a or 8 — b. Then

1, >0 allstats T: R,

1

/ B0y q<9)d9>(/ab(E9[T]0>q<9)d9)2+zq+ /bzw)q(e)de'

a

4.3. Comparison to the classical version by Gill and Levit [1995]

The comparison focuses on the differences in the needed assumptions to get the multivariate matrix
version (9) of the van Trees inequality. (How other multivariate matrix versions can be obtained is
discussed in Sections 4.4 and A.4.) Before performing the mentioned comparison, we recall, for the
sake of self-completeness, the setting and assumptions needed by Gill and Levit [1995].

2This is why no extra integrability assumption on (z,0) — T2(x)q(6) is needed here, unlike in the case of multi-
dimensional statistics where the covariance terms did not necessarily exist.

10 Gassiat, Pollard, and Stoltz
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The van Trees inequality of Gill and Levit [1995]. It is stated in a setting where the following
(pointwise) assumptions are made on the model (Py)gco, replacing Assumption Lo . Diff.

Assumption (AC.fy). The density functions fg : X — R are such that (z,0) € X x © — fg(x) is
measurable and for p—almost all x, the function 0 € © — fp(x) is absolutely continuous, with vector of
partial derivatives at 0 denoted by V fo(x). Furthermore, V fp ]I{f6>0}/\/ﬁ belongs to La(u) for almost
all b € ©.

Assumption (Int.V fy). For almost all 0 € O, the following integral is defined andQ

[ i) dnte) = 0. \O

Also, Assumption IP.border is to be replaced by the following ( more conditions.

Assumption (IP.Stokes). The set © C RP is a compact set who dary 00 is piecewise C1 -
smooth. In addition, q is null on 0O.

We now cite the main result of Gill and Levit [1995]. s ions AC q, and Int.y) were
not explicitly mentioned therein but were used 1mph<31tly .g., to ensure th tities at hand
in the van Trees inequality indeed exist).

Theorem 2. Consider a compact set © C Rp tion q R satisfying Assump-
tion IP.Stokes, as well as a statistical model ( satzsfymg ons AC.fy and Int.Vfy.
Under Assumptions AC.q, Int.q, and Ingw, rees mequ holds

Overview of the comparison. T 1 and 2 hayv assumptions in common but they
differ by resorting, respectlvely’ to mptions Lg. lef P.border versus Assumptions AC. fy,

Int.V fy, and IP.Stokes.

The comparison is best u% after r proof of Theorem 1, which is provided in
Section 7.2. The structure roof thereu{Q he one by Gill and Levit [1995] are similar:
they both establish an i r n equality like th@one reported in Lemma 4, from which (9) follows
easily. The questiongis to get the i tion equality and differences arise in the process of
doing so. The prod @ e informatien ty at hand is decomposed into two main parts: the
first part (see Section %§2.1) reduoblem to properly handling given integrals over ©, which
is performed econd part see Sechion 7.2.2) by integrating by parts. We group the differences
accordlng of these t

ants they correspond.

that are not differences. In our setting, © is an open set while in the setting of Gill
d ev1t [1995], this set is closed. However, IP.Stokes indicates that the border 90 has a null
probability mass under the distribution defined by gq.

Differences when performing the integration by parts. We compare here IP.border and
IP.Stokes: the latter is (much) more stringent than the former. (Under IP.Stokes, v is an abso-
lutely continuous function defined on the compact set ©, thus is bounded, so that g1 is null on the
border of ©.) Actually, the results stated in Lemma 7 and 8 are obtained, in the setting of Gill and
Levit [1995] (see also Letac, 2008), by a straightforward application of Stokes’ theorem (or Green’s
identity). The compactness of © and the regularity assumptions on its border are key to apply it
legitimately. We showed on the contrary how more ad hoc arguments, based however, among oth-
ers, on the use of Assumption Lo.Diff (see Lemma 6 and its consequences), could avoid resorting to
Stokes’ theorem. More precisely, Assumption Lo.Diff is used in a subtle way around (29). It is unclear
whether our proof based on milder assumptions can be adapted to the setting of Gill and Levit [1995]
since a typical issue in the setting with pointwise assumptions is to legitimately differentiate under

Gassiat, Pollard, and Stoltz 11
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the integral signs. This, probably, is not a mere detail but a sign that the Hajek-Le Cam setting
is more convenient to work in. The next paragraph shows however that, surprisingly enough, under
assumption Int.q, (a version of) the required assumption L.Diff is a consequence of the pointwise
assumption AC. fy.

Differences for the reduction to handling integrals over ©. We compare here LLy.Diff versus
AC.fp and Int.V fy. To do so, we consider the following relaxation of Assumption Ls.diff, which is
itself based on a relaxation of the notion of differentiability in ILo. To state it we consi e canonical
basis (e1,...,ep) of RP, that is, e; = (0,...,0, 1, 0,...,0) where only the ith coordin% equals 1.
Then, we restrict our attention to paths 8 — 6y along one of the p canonicakdir

Definition 3 (Coordinate-wise differentiability in Lg). The dommated model (Py) pco 18
coordinate-wise differentiable in Lo(p) at 6y € © if for alli € {1,...,p} ists a scalar function
0o,i € La(p) such that (

zot

” Eootte: — E0o — 000

The vector-valued function 590 = (5907-)16{1 1s called th coordmate wzse of the model at
0o and the definition of the Fisher mformatzon T 90

We can now state the milder Lo—type assum e ed on the

Assumption (Ly.Diff.weak). The model ( ere S) C open set, s dominated by p
and is coordinate-wise differentiable in ]Lg most all poi ﬂ Supp(q).

Now, we mention two facts, whi e ove later on, ection 7.3. (Actually, the same adap-
tation indicated in Fact 1 fo t lity»stated in lows that Assumption Lo.Diff.weak entails
Assumption Int.V fy.)

Fact 1. Theorem 1 hold. sumptzon Lo. &eplaced by Assumption Lo .Diff weak.
Fact 2. Assumption, .gaand AC.fg e ssumptzon Ls.Diff.weak.

The COHlblIl ese two f: s that the pointwise assumptions on the model needed by
Gill and Levi are trlctly stron han the ones we require for our Hajek—Le Cam version of
the Van ahty

he various ltlvarlate formulations of the van Trees inequality

d Levit [1995] mention that van Trees [1968] and Bobrovsky et al. [1987] report several different
multivariate formulations of the van Trees inequality. In view of Section 5, which derives the van Trees
inequality (9) as a Cramér-Rao bound for a well-chosen location model, we may call the version (9)
the canonical form of the van Trees inequality. It is at least as canonical as (5) is in terms of the
Cramér-Rao bound.

However, variations over the canonical form, as the ones presented by [Gill and Levit, 1995, Sec-
tion 4], can be obtained in a straightforward manner. We detail this after the proof of Theorem 1, in
Section A.4.

4.5. Comparison between the Bayesian Cramér-Rao bound and the van Trees
inequality

We first recall the two bounds and put them into a common umbrella. Under the setting and assump-
tions of Theorem 1 and Corollary 3 and the additional assumption that [oZ(6)¢(6)df is definite,

12 Gassiat, Pollard, and Stoltz
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the function g : 0 — v5(0) = Ey [S] is well-defined and differentiable at least on Supp(gq) and the
following two inequalities hold: the van Trees inequality of Corollary 3,

L Bo[(5=v0) @ (5= w(0))] at0) o (vT)
- / (75(0) — 0(0)) 4(9) A0 & / (75(6) — (0)) 4(0) A9
€] ©

- < [ vv@rae d9>T <Iq-|- /. Iw)q(e)cw)_l ( /. vw<e>@ =0,

and the Bayesian Cramér-Rao bound of Corollary 2, . O
[ =[5 = v0) @ (5 = (o)) at0) a0 6\

- [ (s(0) = w(6) © (5(6) = 016)) a(6) 49 K
( / Vs (0 de) ( | z6)arge Vs (0) de) -0,
(S (S
where we used a bias-variance decomposition to get the same left most ter
Part of the following discussion can be found in L

(BCR) is better than (vI) when S is unb@ r the es n of ¢(#). In the case
when ~vg = 9, the middle terms disappear i ations an ht most terms can be easily
compared, the one in (BCR) being the 18, Qhe case of t1mators when g # 1, which
of two bounds is better than the other & epends on q, and the model.

For general estimators S, ol ) 1s useful. Thwir term in (BCR) is not intrinsic enough
in the case of a biased estima it is diffic ely on it to issue efficiency statements for
possibly biased estimators. cond terms d and (vT) are not intrinsic either but they

can be omitted without lgss.) This is in stgong contract with the van Trees inequality (vT),
which is stated in term &w goal ¥ (0) @\/’e illustrate in Section 6 how efficiency results can be

obtained for genera tmecessarily unbi stimators.
(BCR) is b tter than™a Vmﬁm& when ¢ is the uniform density over a bounded

domaln tly discus ase for the records. Reading in details the direct proof of the van
Trees i 1 K on inequality (24) of Lemma 5 that (vT) holds with the factors

- / V4(0) © (6) A6 + / Va(0) ©~s(0) o + / Vos(8) g(0) o,
(€] €] O

even when Assumption IP.border is not satisfied. The alternative expression reduces to

/ Vos(0) g(0) df
©

in the case when © is bounded and ¢ is the uniform density over ©. Note that in this case we also
have that Z, is a null matrix, Z, = [0]. Our claim follows however, because, by Jensen’s inequality,

/@ (15(8) —6(0)) ® (15(8) — (0)) ¢(6) db / (15(0) — $(0)) q(6) A0 /@ (75(0) — ¥(0)) (6) 46 = 0,

(S
and hence, (BCR) is the sharpest inequality.

Gassiat, Pollard, and Stoltz 13
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5. The van Trees inequality
as a Cramér-Rao bound for a location model

We explain in this section that the van Trees inequality is exactly a Cramér-Rao bound for a well-
chosen location model given by mixture distributions. This observation however requires somewhat
stronger assumptions than the ones stated in the previous section to obtain a direct proof of the
van Trees inequality. Even worse, the set of assumptions we could work out involve some pointwise
regularity on the mappings 0 — fy(x), for p—almost all =, and can therefore be consi of a totally
different nature (more related to the classical regularity assumptions and less r %Le Cam’s
viewpoint on statistics). 6

We keep Assumptions ILy.Diff, AC.q, and Int.q as they are. We str Assumptlons Int.4p
and IP.border into assumptions referred to as Int™.1) and IP*.border, a sider the assumption
referred to as AC. fy in Section 4.3. We do not claim that this set of a, ns is minimal to interpret
the van Trees inequality as a Cramér-Rao bound: we merely tried @Ju‘c a convenient and realistic
enough such set. &

Assumption (IP*.border). There exists § > 0 such th denotmg by open set of the
elements in © that are at least § far from its border, t 18 incl (=9): that is, for all
0 € © with ¢(0) > 0, for all a € RY with ||a|| <6, as 0 ae@)

Assumption (Int™.¢). There exists an open ‘)od U of @zs contained in the 0 /2—open

ball around [0] such that 0

/ <sup||w<e+a)||> 2(6) 1600+ ) || 2q(6)d8 < +oc.

(=8 \aceU * ’a (=9

Assumption IP*.border X defining e@ion model below. This assumption implies
Assumption IP.border, Wh1 asserts that q(d) and ¢(0)y(0) should tend to 0 as 6 approaches
a point of the border of: nite norm. Indecd, under Assumption IPT.border, we have that ¢
is null on a d—open nd such a b@oin‘c with finite norm (and thus so is gi). Of course,
Assumption IPT.bo es not ase when the Supp(¢) = © = R? as it only puts more
severe restrictiofis aro border po h finite norms.
5.1. &'uc ion th ¢cation model and statement of the result

Theyfa f (mixture) distgibutions at hand is indexed by a € RP with ||| < 0/2. The distribution
over X x ©(79/2) and is defined as the probability distribution with density

M (2,0) € X x O 5 m(2,0) = fo_a(z)q(0 — a)

with respect to the product measure u ® X. (Because of Assumption IP*.border, this indeed defines
the density of a probability distribution.) The model (Mg )q:(q|<s/2 is thus a location model.

Given a statistic S : X — R® for the (Pg)pco model and an absolutely continuous target function
¥ 1 © — R®, we construct the statistic J : (x,0) — S(x)—1)(0) for the (My)q:||a||<s/2 model. (Note that
this statistic J was already introduced in the proof of Corollary 3, which also considered a distribution
M corresponding to the above-defined distribution M.

Proposition 1. Under Assumptions LLo.Diff, AC.q, Int.q, Int™.¢), IP™.border, and AC.fy, the Cramér-
Rao bound (6) holds for the model (Ma)q:|a|<s/2 and the statistic J at ag = [0] and is given by the
van Trees inequality (9).

14 Gassiat, Pollard, and Stoltz
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5.2. Discussion and comparison to the hypotheses of Theorem 1

As explained above, the set of conditions for Proposition 1 is strictly stronger than the one for The-
orem 1. We discuss here how severe or how mild the three additional (sets of) requirements are. We
recall that we anyway only need them for the interpretation stated in Proposition 1; the van Trees
inequality (Theorem 1) holds under the weaker sets of assumptions.

Int.i) — Int".¢): Whenever v is a Lipschitz function, these two sets of assumptions are actually
equivalent. Indeed, the integrals involving V) are bounded by the Lipschitz const L 1. As for
the two other integrals to be compared, we note that in this case,

19 +a)|” < (@] +Llal)” < 2[lw(6)

Since a main case of interest is the identity function, 1 (6) = 6, the & local requirements in
Assumption Int*.¢) can be considered not too dramatic.

IP.border — IP".border: The stronger condition IP".bor the support @
indicated above, supersedes IP.border, could probably be citcumvented by regula
any ¢ satisfying IP.border with some ¢; satisfying IP* and letting “

ich, as already
on (by replacing

On the addition of AC.fy: The main and m ingent new co raint 1s given by the pointwise
regularity of the density functions stated in u on AC. fg 1s most unappreciated in an

a la Le Cam viewpoint. The latter wouk 1 nsider ass on the density functions that
involve integrated values, and avoid an ise restrlcﬁ

@i o
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6. Application to local asymptotic minimax (LAM) lower bounds

Gill and Levit [1995] provide several applications of the van Trees inequality; of course, all of them
hold for our version of the inequality in view of the discussion in Section 4.3. We recall below one
such application, a derivation of an efficiency bound, namely, an asymptotic Cramér-Rao bound. We
provide yet another application to efficiency bounds: a simple derivation of local asymptotic minimax
(LAM) lower bounds for the square risk in parametric models (simple enough to be used as a classroom
material). More general (for other risk functions) and stronger such bounds are prov by van der
Vaart [1998, Section 8.7] but their proof requires sophisticated arguments, Wthh i rast with
our proof below.

The setting is that of a sequence (X,,),>1 of independent random varia
thus of a sequence of statistical models ((P?”) In the sequel,

g Values in X, and
by ©" all quantities

0€®)n>1'
(expectations, Fisher information, etc.) relative to the product mo

We assume that the base statistical model (]P’g)
IP’®”

0co’

satisfies Assu o.Diff. Direct calculations

0cO

then show that each product model ( o also satlsﬁes

0o € © equal to
(1‘1,..., GX”»—)Z@”&QO k’ @

p on Lo.Di ith derivative at

In particular, the Fisher information of the pr del at 90 e
=nZ(f (10)

We consider an absolutely cou ti fu ction We will assume that there exists some
0o € © such that the followingae ondltlons . This point 6y will be the point of interest
in the LAM bound. \
Assumption (Reg.6p). tzons 00— Z(60 9 — V(0) are continuous at Oy; moreover, the
matriz Z(0y) is defini @
6.1. The as c Crame n bound of Gill and Levit [1995]
The boun and Levit, ectlon 3] is adapted in our context as follows; we state it merely
for t lete it its proof as it follows exactly the exposition in the mentioned
refére bears SO mb ance with the proof of Theorem 4.) It imposes a restriction on the

statistics that are studied.

tion 4. A sequence (Sp)n>1 of statistics Sy, : X™ — R® is Hdjek regular at 0y for the estimation
0f1/1 if there exists a probability distribution Ly g, over R® such for all h € RP, we have the following
convergences in distribution:

\/ﬁ<5n - ¢<90 + \%)) ~ Lo 0, under the sequence Py \p/ /m -

Theorem 3. Consider a model satisfying Assumption LLo.Diff and some absolutely continuous function
Y 1 © — R’ such that Assumption Reg.0y is met for some 0y € ©. Then, for all sequences (Sp)n>1 of
statistics Sy, : X™ — R that are Hdjek regqular at 0g for the estimation of ¢ with a limit distribution
Ly g, admitting a second-order moment, the variance of this limit distribution satisfies

Var(Ly,g,) — Vb (00) Z(0) " Vp(6p) 3= 0

16 Gassiat, Pollard, and Stoltz
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6.2. Our local asymptotic minimax (LAM) lower bound

We propose the following lower bound, which does not impose any restriction on the sequence of
statistics at hand. In its statement, we define, for all normal distributions N (u, ") over R?,

ng(.ua F) = f(’u) AN (p,T) (U) dv,
Rs RS
where gxr(,,r)(v) denotes the density of the N'(u,I") distribution.

Theorem 4. Consider a model satisfying Assumption Lo.Diff and some absolutely@omittnuous function
Y O — RS such that Assumption Reg.0y is met for some 0y € ©. Then, foall @ ces (Sp)n>1 of
statistics Sy, : X™ — R® and for all positive quadratic forms £ : R® — R, 6

lim inf lim inf E®" Ch
iminf mind ewp B Mﬁ(s ¥(0+
0] Vi 00) () -

Proof. We consider an auxiliary random variable H ]R suppo 1str1but10n is given
by the (open) unit ball B ([0] 1) of RP; we choos th its di is glven by a bounded
and absolutely continuous densfcy function q : R ithg=0 o%e p . We also assume
that Z, is definite and that Tr < +og-

We fix some ¢ > 0 and some e > 0. exists n(c, e t for all n > n(c,¢), first, the
open ball B (90, c/ \/_ centered at 6 radius ¢ contained in ©, and second, for all

0eB (90, C/\/_)

max \w @ | Tr(Z( (eo))\} . (11)

The above inequalities the conti 1ty ot @, Vi, and T at 6.
We denote by ¢y, sity of the d tion of the random variable H,, = 0y + cH/+/n. This
density ¢, satisfies tion A (n/ %) I, is definite.

ome tor U € I' l will apply Theorem 1 to the model (IP’;@”) 0o the den-
lued statlstlc nd the real-valued target function U" . Assumptions Int.)

tisfie of 11) and because of the support of g,. It only remains to see

wheth ption I hol S second part does, again by (11) and in view of the support of
Qn- )So ver, its first part well not be satisfied. In the case where it is satisfied, we are all set to

1 Theorem 1 and we get, as Z,, = (n/c?)Z, is definite and in view of (10),

/ ES" /v (UT <5n - q/;(eo n 7%))) q(h) dh (12)

By ([0],1)

-1
ch n ch
> </ V¢(90+%>Uq(h) dh) <C—zzq+n/ 1(90+\/—ﬁ) a(h) dh)
By([0].1) By ([0.)
x (/ V¢<90+\C/—’%)Uq(h)dh) .
By([0].1)

(Because of our conventions in terms of gradients of vector-valued functions, we note that the gradient
of UT 9 is actually given by Vi U.) In the case where the first part of Assumption Int.q is not satisfied,
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we have, because its second part is satisfied on the contrary, that

/B( B v | (U7 5a)?] a(h) dh = +oo,

[0],1)

2
ch — .
and thus that E(iﬁch/\f (UT (Sn - ¢<00 + 75))) q(h)dh = 400;
By ((0],1)

therefore, inequality (12) is satisfied as well, in a trivial way, as its left- handQld‘s +o0 while its
right-hand side is a finite nonnegative number.

Now, recall that any positive quadratic form ¢ : R® — R, can be @s d as follows: there
exists an orthogonal basis Uy, ..., Us of R® and nonnegative real numb{ As = 0 such that for
all v € R?, @

S S
k=1

Note that in particular, for all s x s symmetric positivegmatrices I,

/ vo' dN([0],T) (v) so that %& (0],(# E Up T U.
Linear combinations according to the A \ versions o the U, thus show that for all
positive quadratic forms ¢ : R® — R@

/
(fo],1)

or, given that for all nd all v € Rs®has U(av) = a? L(v),
@ ([0

T —1
1
(/ 90+ 7’%) q(h) dh) (C—QIqu/B “ 1)1(90+ 7’%) q(h) dh>
r bl

X (/ Vi (90 + 7%) a(h) dh) .
By([0.1)

But Assumption Reg.fy was precisely stated for the following convergence to take place,

lim  lim T., = V(6) Z(60) " Vio(6o).

c—+00 n—+o00

This convergence, the linearity of the right-hand side of (13) in I'. ,,, and upper bounding the left-hand
side integral of (13) by the supremum over B,([0],1) of its integrand conclude the proof. O
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Remark 1. As a corollary, a similar result can be obtained for semi-parametric models P (details
omitted; see van der Vaart, 1998, Chapter 25 for a description of the setting and the definitions of
the objects mentioned in the next sentences). More precisely, the goal is to estimate functions v of
the law P € P of the model. We assume that v is differentiable at some Py relatively to a tangent
cone Tp, with efficient influence function p,. Now, at least when Tp, is a linear vector space, the
local asymptotic minimaz risk at Py, as measured by a positive quadratic form £, is lower bounded by
the integral of  against the_centered normal distribution with variance equal to the variance of the

efficient influence function ¢p, under Py. Q
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7. Proofs of the van Trees inequality

We provide two proofs, one for Proposition 1, which relies on stronger assumptions and resorts to
the Cramér-Rao bound, and one for Theorem 1, which is more direct. The second one can best be
appreciated with the first one in mind.

7.1. Proof of Proposition 1

We first show that the hypotheses of Lemma 2 and Corollary 1 are satisfied; we the tiate their
results and explain why they can be identified with the van Trees inequality.
Hypothesis 1: Local boundedness of J. The statistic J is locally b Q (M) around
[0] € RP; this is because for all & € RP with ||af| < §/2, %
2
B, (1] = [ 8@ - 60| fo-ale) q(e >d0
X x0(=38/2)
<[ 2(Is@)+ e <x>q<a 0)
xx0(=4/2)
/]EQ[HSH 0)do + 2 O+a)|” 9@ (14)

from which Assumptions Int.q and Int™.+) yield t . The last
nonnegative integrands and by noting that nge of vari

integrating over —a + ©(—9/2) which i 1s e s integrating'®
set ©(=9) in view of the terms ¢(6). $
Hypothesis 2: Diﬁ'erentia& the model laj<s/2 — first part. This model is a
location model. Its differentiabi l& ws from an &tion of Proposition 2 in appendix. Assump-
tions AC. fy and AC.q inde tee that theghy ses (i)—(iil) of the mentioned proposition are
satisfied, where a, [0], ( play respectlv the role of 3, By, y, and v. Thus, the candidate

for the Lo (u)—derivatj e model at P which we denote by (,, is given by
. ,0
Car ’9 {ma(a: 0
q(9 —

) + Q(G_O‘)va a( )

\/f(? o(T)q > {fe o) q(0— a>0}

vf@ a( )
}\/fe o) V(0 — o Emﬂ{fe—a(zbo})'
—59 a( )

= é@—a(x)

eQualityyis by Fubini’s theorem for
om 0 — « to 0, we are left with
he larger set © or the smaller

_a)

:_<§\/m {q(0-a)>0

In the last equality a £_o(z) term is identified: this follows from the lemma below. We still have to
check the hypothesis (iv) of Proposition 2, which we do in the next paragraph.

Lemma 3. Under Assumptions Lo .Diff and AC.fy, for all 0 € ©, we have, p—almost everywhere,

1Vfy
2 T, >0}
Proof. The proof is adapted from Pollard [2001; 2005] and is provided mostly for the sake of com-

pleteness. Recall that by Fatou’s lemma, the L?(x) and p—almost-everywhere limits of a sequence of
functions, when they both exist, coincide. We fix # € © and will consider all directions h € R? around

fo =
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0; the quantities that follow will all be defined at least for ¢t > 0 small enough. First, by definition of
Lo (p)—differentiability, as ¢ — 0 with ¢ > 0,

1 : .
;(f@—&-th —&) — & inL*(p). (15)
Second, on {fy > 0}, we have, by Assumption AC.fy, as t — 0 with ¢ > 0,
1 1 1.V
n (Eottn — &0)Igp0y = n (\/ Jo+th — \/ﬁ) Iifp>0p — §hT % I¢r,>0p  palmosteverywhere.

The equality stated in the lemma thus holds on {fy > O}. To conclude the prog remains to
show that p-almost everywhere on {fy = 0}, we have & = [0]. Indeed, fof Q and h, we have
by (15) and Fatou’s lemma that there exists a sequence t,, — 0 such that @

1 .
t—§9+tnh Iip—0y — h" &olp,—0y p—almost ev&

In particular, since the left-hand side elements are nonnegative, !
hTéH H{f@zo} 2> 0; b

since this is true for all directions h € R%, this impli p—almost eve@re, $olgp,—0y = [0],
Ol

which concludes the proof. \ l
Hypothesis 2, continued: Differentiabili (@ model (<5 s2 — second part. We
OW

now check the hypothesis (iv) of Propositiom 2. Since the deriva (o all have the same (possibly
infinite) square integral with respect to % only need at this common square integral
is finite. (We use again here the fact thatyintegrating o O(=9/2) is the same as integrating

over © in view of the terms invaelvi

For the sake of concise notati for later pu , we introduce the function A : X x© — RP
defined by
1 Vq

(©) *(sﬂ -
0) = O I 080} £0(2) + Va(0) &o(=) (16)

for all x € X and s6 that the derigative (g of the model at o = [0] is given by —A. That
A € Lao(p® A) follow the fact ac of its summands is in Lo(x ® A) by Assumption Int.q
(and the use of Rubini’s $heorem for némnegative integrands).

We th own that wideg the stated assumptions, the (Ma)q:|<s/2 model is differentiable
in La(p t allJpoin € % th ||af| < /2, with derivative at [0] given by —A. We denote by
I 0] isher infofmation at this point.

iting the Cramér—Rao bound. The hypotheses of Lemma 2 and Corollary 1 are then
satisfied and the following facts hold. The mapping

liaeU +— I(a)=Epm,[J]
is differentiable at [0] and the following matrix is positive semi-definite,
Varyg, (J)  VI'([0])" ]
V(o) Zu([0])

Thus, it is also the case for the following matrix, where we denote by Id, and Id, the p x p and s x s
identity matrices and where the empty cells are for null submatrices:

[Ids Varyg, (J) vr([o])T] [Ids ]: Vary, (J) —VI([0])"
vr([o])  Tu([0]) ~1dy ~VI([0])  Tu([0])

_1d, ] =0. (17)
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We now identify or bound the three quantities at hand: we will show that

L Bo[(5=00) @ (5= 6(0))] a(0) a0 = Vi, (1) 0. (1)
/@ Vy(0) q(6)d6 = —vT([0]), (19)
L)) = 7,+ [ Z0)al (20)

from which it will follow from (17) that the van Trees inequality (9) is satlsﬁed

Identifying the three quantities at hand. The quantities in the dlffer ex1st by (14).
Actually, the proof of Corollary 3 already® showed that the desired inequ holds true
As for the gradient (19), we have by arguments similar to the one stablish ( (and in
particular, the use of Fubini’s theorem based on some 1ntegrab1ht g rom the second part of
Int™ .7y and the Cauchy-Schwarz inequality), that for all « € U ,
(o) = Eu,[] = [ (am—w<»ﬁ_ —adu
Ax0(=8/2)

:/mm«m
©

Provided that we can differentiate under the int

(0] = P(0)

v (o S, T

this is the desired equality (19) as i \over 0(-9) the same here, because of the ¢(6)
, €.

term. The stated differentiability e integral s1gn g., from the absolute continuity of

1 and from the first part of Al tion Int™.1).
The derivative of the m(@ being —A ave by definition

A®AdudA.

Now we already me mption Int.q the two summands in the defining equa-

tion (16) of 2A ére squage integrabl r cross product is therefore integrable. At (z,0) it equals
QQ((,)>O} Eo(w)&(x) = Va(0) Eo(a)E ().

Thi Vq = 11 ts of {g = 0} where it is defined (where ¢ is differentiable), since 0

is a 1n1murn of ¢ w it is achieved. Because of (4), the integral of this cross product with

to dpdA is null. Therefore (all exchanges of orders in integration below being valid thanks to
Fubini’s theorem),

4 / (A(z,6) ® Az, 6)) du(x)dd
X'xO

_ Vq(0)Vq(0)" .
_ /XXGTmﬂ{q(e)w}fe(x)du(m)d9+/)(X@4§9( 2)éo(x)" q(0) dfdpu(z)

=1,+ [ 70)a(0) 0. (1)

which is (20).

3 For the records: Tt is indeed the fact that we got Vary, (J) in (17) that led us from Theorem 1 to the self-
improvement stated as Corollary 3.
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7.2. Proof of Theorem 1

The proof consists of proving directly what Lemma 2 and Corollary 1 yield in the location model
considered in the previous subsection. More precisely, we will prove in a direct way the following
result (but will not prove that —A is the derivative of some model at some point).

Lemma 4 (The van Trees version of the information equality). If the assumptions of Theorem 1 are
satisfied for some statistic S : X — R® and some absolutely continuous function i : © — R®, then the
following integrals are defined and are equal,

2 Az, 0) @ (S(z) = 9(0)) ) &o(2)/q(0) du(x)dd = Wb(@)
J ol vt | @

We now explain why Lemma 4 entails Theorem 1. We use on top Which follows from
Assumptions AC.q, Int.q, and LLy.Diff, and the fact that the followmi ex1st and are equal,

/Xx@(s(x) = 9(0))é(2)Va(O)®(S(x) -

E (0))] a(6) a0,
which stems from the first part of Int.q and the secon Int. 1/1 t to Fubini’s theorem. All
in all, we get that the following integrals are well-de nd that th of interest in Theorem 1

is well-defined and is positive semi- deﬁmte

/@E

Q i
& du(x)dﬁ =0. (22)
onsidering Schur complements (see Lemma 9 in Sec-
ains to prove the information equality stated as Lemma 4.
rst one only relies on the assumptions necessary for the

into three parts: th
in the inequality to exist. It leads to some information equality, with
i on' the right-hand side. The second part of the proof is a matter of

The second par eorem
tion A.3 of the append Thus, it o

quantities

a not egr

an s@ uses the additienal hypothesis IP.border to integrate by parts the integral, so as to get
e desired and more intrinsic integral at hand in the van Trees inequality. However, these first and

sec part only deal with bounded statistics. The third part of the proof provides the extension to

general statistics.

Remark 2. A careful reading of the proof shows that it is the separation of the variables in J(x,6) =
S(x) — (0) that is crucial to relax the hypotheses needed to derive the van Trees inequality.
7.2.1. Some information equality (to be further improved)

Lemma 5. We consider a model, some statistic S : X — R?®, and some absolutely continuous function
Y O — R® such that Assumptions Lo.Diff, AC.q, Int.q, and Int.¢p are satisfied.

Then, there exists a function g € Li(pu ® X) such that Vg is a non-decreasing function of ||S||
and for allz € X and 0 € O,

| (a@.0) @ (5@) - v0)) @) Va® ||, < Us(w,0). (23)

Gassiat, Pollard, and Stoltz 23




Revisiting the van Trees inequality in the spirit of Hajek and Le Cam

Moreover, if S is bounded, then the function vs : 0 € © — Ey[S] is well-defined and differentiable
and the following integrals are defined and are equal,

2 / (AG.0) @ (S() — ¥(0)) )&o(x)v/aB) dp(x)d6
XxO
—/ Vq(0) @ (0) d9+/ Vq(0) ® vs(0) d0+/ Vvs(0)q(0)do. (24)
(€] (€] €]

What we mean here by the monotonicity property of ¥g in terms of ||.S || is thateif two statistics S
and S” are such that [|S]| < [|S’||, then Ug < Vg

Proof. We already indicated above that A € La(p ® A) thanks to Assu \nt q; similarly, As-
sumptions Int.q and Int.i) respectively show that the functions

(z,0) — S(x)&(x)vq®)  and  (z, 9) 9(1‘) Va(0)

belong to Lao(p ® A). Thus, by the Cauchy-Schwarz 1nequaht 1ntegrand c decomposed as
the sum of four integrable functions,

2<A(az,«9)

= fo(x)I {(0) O}Vq 1) a:
(9 >O} 260 (25)
More precisely, given that ||u v |u||||v|| for and v € R® we have the stated
domination (23) by the 1ntegr Bl

\Ils:(x,&)é)(x@»—><s {40 >0}‘&@2|§9 )| a0 ){9 <||S ) ||+ (0 ||)

We note that Ug indé
Actually, the indiea

atisfies the stat@otonicity in ||S].
functio‘@ ly omitted in the display (25), since, as proved right

before ( we have ]I{q >O}Vq for almost all € ©.
As for es d part, of mma, since each of the four integrands in (25) is integrable, we
may, b s theorens§ inte ﬁrst over x and then over 6. Using that x — fy(x) integrates to 1
& ) the infegralyof = — &y(z)&p(x) is null, we finally get
/ ( z,0)® (S(z) — )) x)\/q(0)dp(z
Xx0O
- / vato) o / S(a) ule) dutz) ) o +2 / ( / & (a)éo(o) & S()dua) ) a0
© x o VA&
- [ a®) s ui6)ds
©

The boundedness of S (i.e., ||S|| < K a.s. for some K) and Assumption Lo.Diff show that the
hypotheses of Lemma 2 are satlsﬁed at all 8 € ©. Therefore, the function vg : § € O — Ey[5] is
well-defined and differentiable at each 6 € ©, with gradient

Vys(6) = 2/){&95’9 ® Sdu.
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We get

tLv«m®(Aﬂ@n@mmw)w+gé(Apm%mw®a@wm0«mw

- / Vq(0) @ vs(0) do + / Vs(0) q(0) do,
) ©

which concludes the proof. O
7.2.2. Some analysis to rewrite the integrals at hand Q
The rewriting of the integrals at hand in the left-hand side of (24) will rel llowmg ad hoc

version of Stokes’ theorem in our context %
Lemma 6. We consider an open domain © C RP and an absolutely u@z s function ¢ : © = R

such that
/ || dA < +o0 an / (A% oo
and that @(0) tends to 0 as 6 approaches any point of the border O with ﬁmt 1. Then
/ Vi dA ﬁ
Based on this result, we will prove the followi o'lemmas. %

Lemma 7. If Assumptions AC.q, Int. w, an er are satj o some absolutely continuous
function ¢ : © — R?, then the followmg ls € deﬁned , qual,

(26)

— d«9 = 0)deé.
Lemma 8. If the assumptio ma 5 as we sumptzon IP.border are satisfied for some
bounded statistic S : X — R® function ]EQ[S] 1s well-defined and differentiable over
O and the following integr fined and ca to the null matrix,
S Vq(0) ® s Vvs 0)do = [0].

These lemm Q d below, ollowing order. first, Lemmas 7 and 8, and then, Lemma 6.
Proof of L We prov atrix equality column-wise. For all j € {1,...,s}, we denote by
; the jth ponent of apply Lemma 6 to 1;q to get

(a0 40 = | 7,(0)a(0) 0.
In ¢ = 1;q is absolutely continuous on ©, as a product of absolutely continuous functions.

The behavior on the border is taken care of by Assumption IP.border. Thus, we need only to check
hypothesis (26). That 1;q € LL1(\) follows from the second part of Assumption Int.t) via the Cauchy-
Schwarz inequality. It remains to check the integrability of

V(1;q) = qV; + Vg = qV; + 9 Vqloy

where the last equality is by a fact used several times already, e.g., around (25): that Vg = [0] almost
surely on {¢ = 0}. Now, the integrability of ¢V1); is stated by Assumption Int.7). As for the one of
¥V alig~0y, it follows from yet another application of the Cauchy-Schwarz inequality,

/H%’V‘ZH{QO} H 1d)\ <WVp /G)wjz-qd)\ \/Tr(Z,) < 40, (27)
B \

where the claimed finiteness is by the second part of Assumption Int.i) and AC.q. O
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Proof of Lemma 8. We again prove the matrix equality column-wise. For all j € {1,...,s} and § € O,
we denote by S; and ~s,(0) the jth components of S and ~s(6). We will apply Lemma 6 to 7s;q to
get the following equality to the null column vector of RP,

/ 75, (6)Vq(6) A6 + / Vs, (0) (6) d6 = [0]. (25)
) C]

By assumption, S; is bounded by some K > 0, that is, |Sj| < K a.s.; in this case, Lemma 1 shows
that vs, : 0 € © = Eg[S;] is well-defined and differentiable over ©. S1nce q is abso
and s, is bounded, 7g;q¢ is also absolutelTo be corrected!|hus is almost every
with gradient given by ¢Vvs; + s, V. *

The boundedness of vg; and Assumption IP.border show that vs;q &b es the required
vanishing-at-the-finite-border condition. The integrability of v, q follow { e’boundedness of g,

ifferentiable,

and the integrability of ¢ (it integrates to 1).
To legitimately apply Lemma 6 and get the desired result ( 28) remains to show that the

gradient ¢V~s; + 7vs;Vq is integrable. Since vg; is bounded by cing 1); K in (27) shows
that vs,Vq is 1ntegrable As for ¢Vryg;, we first note from Le that for all

! @; \ I e
x
so that, by a Cauchy-Schwarz inequality, % K
Ng
0) || Vys; (0) ||, < a(6) ol ol du < (@5

where the latter upper bound js s¢en 1ntegrable by Jensen’s inequality for /- and
Assumption Int.q. 0

(29)

ﬂ

Proof of Lemma 6. Reca ion 6_; and eﬁmtlon 2. For alli € {1,...,p}, we denote
by

= {9_1 : @R such that (6;,0_;) € @}
the projection of © i g the utl inates. With each 6_; € ©_;, we associate the set

@(71) = {01 : (01,971) € @}
es ha let 7, in an element of ©. (This piece of notation was actually already
Deﬁn1t1on 2.) Since O is an open domain, ©(f_;) is an open subset of R. It can thus be

as an (at most) countable disjoint union of open intervals,

0(0-;) = |_| (an(e—i)v bn(e—i))

n>1

where a,(0_;) € RU{—o0} and b,(0_;) € RU {400}; at most one of the a,(0_;), respectively, of the
bn(0—;), may equal —oo, respectively, +oo.
Almost all §_; € ©_; are such that for all n > 1, the following facts hold true:

n(0-2)
/ 92 4, 0. )| dt; < 00, (30)
an(e—i) 89
bn(60-5)
/ |9 (0,0-i)|d6; < 400, (31)
an( —i
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and for all real numbers a > a,,(6—;) and b < b,(0_;),

b oy

89 (927 0—1) daz @(ba 9—1) - go(a, 0—1) . (32)

This is, respectively, because of Fubini’s theorem together with the fact that dp/06; and ¢ are inte-
grable, as assumed in (26), and of the absolute continuity of ¢.
Q (33)

We now show that for these _; € ©_;, for all n > 1,
n(0—i)
/ 90 9, 0i-0-) 46, =0.
To do so, we would like to let a — a,(0—;) and b — b, (0—;) in (32). That b % 1on ¢(#) tends to
0 as 0 approaches any point of the border of © with finite norm means e at p(a,0_;) — 0 and

. In the latter cases,
we proceed as follows. By symmetry we write the argument only @e ase where b, (0_;) = +o0.

/ . .(\
one necessarily has ¢(6_;) = 0.

The proof can now be conclude ) over , get

;, =0.
- &
€ € O_; and repea

Integrating this equality: ( g the argument for all i leads to
as claimed :: O
3. &bo nd& to general statistics

a , and 8 yield Lemma 4 and thus Theorem 1 in the case of bounded statistics, ||.S| <

some K > 0. The extension to general statistics is obtained by the dominated convergence
theorem
We indeed denote the integrand in Lemma 5 by

VTs: X x O s <A(m, 0) ® (S(z) — 1/1(9)))69@)\/([(9).

We know that it is dominated by an integrable function denoted by Wg. From a general, not necessarily
bounded, statistic S, we form thresholded versions of it at some level K > 0,

Sk

7.

I .
s {isiel-r.x1}
We already proved that Lemma 4 was valid for the bounded Sk statistics, so that for all K > 0,

Q/XXGVTSK(CU,G) d,u(x)d@z/ev¢(9) q(6)de.

Gassiat, Pollard, and Stoltz 27



Revisiting the van Trees inequality in the spirit of Hajek and Le Cam

The right-hand side is independent of K, while the integrands of the left-hand side converge in a
pointwise manner to VT (z,0) as K — +oo and, by Lemma 5, are each dominated by ¥g, and thus
are all dominated by Wg (given the monotonicity property of S +— Wg). Therefore, the dominated
convergence theorem may be applied and yields the claimed equality,

) /X V(.0 du(w)dd = /@ Vab(6) q(6) db

which shows that Lemma 4 is also valid in the case of not necessarily bounded stati@

7.3. Modifications needed under the milder Assumption ]LZ.D

We prove here Facts 1 and 2.

Proof of Fact 1: It suffices to show that Lemmas 5 and 8, as (21), are still valid when
Assumption Le.Diff is replaced by Lo.Diff.weak. Note that in the per the gradient V is merely
tr ice n

a compact notation for the vector of partial derivatives, as intro

of the functions ® — R or ® — R? considered is actuall
by component (this is best seen, e.g., in the proof of Lem
absolute continuity). Also, in view of the statement o Trees inequality! we can always assume,
with no loss of generality, that © = Supp(q). In e proo mas 5 and 8 only rely
on the fact that for almost all # € Supp(q), for all 4 sy D)

| @osan=o0

Both equalities follow from (4) and,Le
t = 0, where dy is sufficientl N
almost all differentiable in the s

ed, than
efinitio
Proof of Fact 2: We k@e remark following’the statement of Proposition 2 thanks to the fact

that almost all poin cally integr@nction are Lebesgue points; we will do so by, again,
odels along one canonical coordinate. More precisely,

restricting our atten one-dime
under AssumﬁAC. we consid atrix-valued function
Ve @V fa
é o [T g
X

is\is the Fisher informationin the setting with pointwise assumptions. Of course, via (the proof of)
Le 3, we know that at the points 6 where the model is Ly (p)—differentiable, we have Z(6) = J(6).
What we mean when we say that Gill and Levit [1995] also consider Assumption Int.q is, as far as its
second part is concerned, that

(2); the full differentiability
nev eded, as wé @ ged component
6, and is also vi he definition of

applied in t e-dimensional models (Pyyte,)|<s, at

ssumption Lo.Diff.weak, these models are

/@ Te(7(6)) (8) 49 < +oc.

Since ¢ is continuous, this entails that J is locally integrable on Supp(q). We fix some i € {1,...,p}.
The ith diagonal element of 7,

(9f9>2 I[~{f9>0}
Jii: €0 —s (— o204 qp,
’ /X ;) f "

is locally integrable as well. Therefore, by Fubini’s theorem, for almost all 6_; € ©_;, the function
0; € ©(0_;) — J;,i(0:,0_;) is locally integrable as well and therefore, as is well-known in integration
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theory, almost all points of ©(0_;) are Lebesgue points for this functions. At these points, by definition,
1 t 1 t
;/ Z,z(ez + tl, 0_1) dt/ — jm(ez, 6’_1) and Z/ Z,Z(el — tl, 9_1) dt’ — ‘7171(«91, 9_1)
0 0

as t — 0 with positive values. This shows, by Proposition 2 and the remark following its statement,
that the one-dimensional model (P9+tei)|t|<5(9i7 o) where (g, g_,) is small enough, is differentiable in
Lo(p) at t = 0 (in the sense of Definition 1).

All in all (e.g., by Fubini’s theorem), we showed that the model is coordinate-wise differentiable

in Lo(p) at almost all # € Supp(q). O
L 2

Gassiat, Pollard, and Stoltz 29



Revisiting the van Trees inequality in the spirit of Hajek and Le Cam

References

P.J. Bickel, C.A.J. Klaassen, Y. Ritov, and J.A. Wellner. Efficient and Adaptive Estimation for Semiparametric
Models. Johns Hopkins University Press, 1993.

B.Z. Bobrovsky, E. Mayer-Wolf, and M. Zakai. Some classes of global Cramér—Rao bounds. The Annals of
Statistics, 15(4):1421-1438, 1987.

R. Gill and B. Levit. Applications of the van Trees inequality: a Bayesian Cramér-Rao bound. Bernoulli, 1
(1-2):59-79, 1995.

I.A. Ibragimov and R.Z. Has'minskii. Statistical Estimation: Asymptotic Theory. Sprin
<

P.E. Jupp. A van Trees inequality for estimators on manifolds. Journal of Multwarzat s, 101:1814-1825,
2010.

A.J. Lenstra. Cramér-Rao revisited. Bernoulli, 11(2):263-282, 2005. x

G. Letac. Cramér—Rao inequalities and Fisher information. Technical re

D. Pollard. Asymptotia (book in progress), chapter on Hellinger di tlablhty, 200
from the Paris 2001 semester, with a final edit in 2005; available at h

2005. Lecture notes
@ edu/~pollard/
Courses/607.spring05/handouts/DQM. pdf.

A.W. van der Vaart. Asymptotic Statistics. Cambridge U
H.L. van Trees. Detection, Estimation and Modulatio y. Wiley & S&

. {\ O
A. Appendix \

This appendix is provided solely®f e convenience of tlvfea er. It contains only well-known results
and proof techniques. \

A.1. Some suﬂic1e@tlons for ]Lg&dlfferentlablhty

del (Gg) de n a measurable space (),G) and indexed by g € V,
: h set co ¢ nt 5y of interest. We assume that the statistical model
e v and de % e density functions of the Gg with respect to v by gg.

esult corresponds to*Bickel et al. [1993, Proposition 1], see also the adaptation

is domina_ted b
The follotwi
by Pollard42001;

05].
Supp&
he map (y,B) € Y x V — gg(y) is product measurable;

(ii) for v-almost all y, the function € V +—— gg(y) is absolutely continuous on V, with gradient
function denoted by € V +—— Vygg(y), which is defined for all B with the convention that it
equals [0] where it was not defined;

(iii) for v—almost all y, the function B € V —— gg(y) is differentiable at By;
(iv) for each B €V, the function

1 Vgs(y)

GVEY T g ) oo}

is Lo (v)—integrable, with the convergence, as 8 — Py,

E, (5] — Eu[GG]-
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Then the model (Gg)gecy is Lo(v)—differentiable at By, with derivative (g, .

The proof only uses the continuity stated in the second part of (iv) to show that some sequence of
integral averages of J(8') = E, [CE,] over 3’ in shrinking neighborhoods of 8y converges to E, [Cgo].

This continuity condition can be relaxed at least in one-dimensional models (i.e., when p = 1). We
consider the function J : 5 € V — E, [Cg} The second part of (iv) can then be replaced by assuming
the convergences, as t — 0 with positive values,

1 t 1 t
;/0 J(Bo+t)dt' — T (Bo) and ;/O j(ﬁo—t')dtlﬁj(@

These convergences correspond to [y being what is called a Lebesgue point ©f 0

A.2. Proof of Lemma 1 \
Proof. The application v is well-defined because of the hypothesis o econd moments of 1" under
the Py; so is also the candidate for the gradient, since by the Cauc arz inequality,

/lﬁeofeoT‘dM \/ P Egy [17]
Similar arguments show that all integrals con&dered@ﬂs‘c Now, @
12(600) = 70(0) 2000~ 0] [ €T
= /(590—59 260~ 6) @A

= / ((590 + &) 599— 6o — ) 590 59 + (&0, — o)) Tdu

éeo + &) (Q (60 — ) — (6o — / €00 (Eao — &) Tdp.  (34)
It suffices to show that %e the two s ands in the last equality is negligible with respect to
fp — 0. We bound b, m by the C Schwarz inequality. First,

H/ (§0o + €0) (00 — (6o — @dMH <V | (0o +§0)T||u Hﬁao — & — (00 — 0)" &, N
the seco m i the ve is o(||6o — €]) by the assumption of differentiability in La(u) of
h e the ounded by

& Tl + 6T, = /oo [T2] + /Eo[T?] < 2/Mur

As for the second integral in (34), because of the factor (6y — 0)" in front of it, we only need to show
that each of its components tends to 0 as # — 6y. To do so, we split it according to whether |T| is
larger or smaller to a given threshold K and resort again to the Cauchy-Schwarz inequality; this yields

H/X(ﬁeo—ﬁe)feonu 1
J o=@ 1y ans [ [ - @) 1y an
SR [CROE N CRT RN R

< 2y Mur

iy |+ VP e ol 10,
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The differentiability in La(u) of the model implies in particular that

€6 — &I, = O (1160 - 01l) ,

so that

lim sup
9—)90

‘/X(feo _59)590Td'u” < 2\/1_)\/ MU’T é@o H{|T|>K} H
m

for all K > 0. Letting K — 400, an argument of dominated convergence shows thato

/ (600 — €0)0o Tdu‘ =0. . O
X
Substituting this in (34) concludes the proof. @

lim sup
9—)90

O

A.3. Schur complements

Lemma 9. We consider an s X s matric A, a p X s matrix@p X p matric D, where D is

invertible. If

then the so-called Schur complement of its D bloc &%ﬁ &

=0. (35)
Proof. We denote by Ids the s x s 1dent1t& ix. We have t tles
[‘ds — - B —D lB
_ 2 BT D~ 1B
[0]
BT D!
This indeed entails Q B" D3 O
Based o his, result,"we get the ing result, used by Gill and Levit [1995] in one of their
proofs. Q
rr@ e cons& s matrices A, B, and D, where D is invertible, such that
A A
B D |77
Then )
(Tx(B))
Tr(A) > ————.
MA) 2 [y

Proof. We take the trace in (35) and get
Tr(A) > Tr(B*D'B).

Now, the assumption on the three matrices A, B, D, entails in particular that D is symmetric. Since
D is also invertible, we may write it as D = U U" where U is a s X s invertible matrix. We have the
rewriting

T (B D7'B) = Te((UT'B) (U B)) .
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Now, the Cauchy-Schwarz inequality for the inner product (M, M) +— Tr(M] Ms), with My = U*
and M, = U~ B, indicates that

(Tr(B))? = (Tr(U (U—lB)))2 <T(U ) T((UT'B) (UT'B)).
Tv(D)

The proof is concluded by putting all (in)equalities together. Q

A.4. Derivation of other multivariate formulations of the Vaﬁ@nequahty

[1995] follow from two immediate adaptations of what we could call Trees equality.” The
latter is the key step in proving the van Trees inequality, namely, t y stated in Lemma 4. We
recall it: under suitable assumptions, the following integrals a“ & nd are

The other, at first sight more general, multivariate formulations of the {1 y that Gill and Levit

2 / (Aq(x,9)®(S(m)—¢(0)))§g(x) Oy (z)do = v a6,
X'xO

g @
where S : X — R?® is a statistic, ¢ : © — R® is utely conti unction, and the pseudo-
derivative A, : X x © — RP equals Q O

*

4(00) = (o }59 ) éole (37)

for all z € X and 0 € O. Thl\x

jth column reads:

G.(@) | (S5(x) —v;(6))(x)V/a(6) dp(z)dd

é &O / L) 4(0)a0. (39)

1 and Levit [1995] discuss two degrees of flexibility in (the application of) these equalities,
which can be combined. For the sake of clarity we recall them separately, the first one in the form of
matrix inequalities while the second one is best stated in terms of scalar inequalities. The latter are
derived by Gill and Levit [1995] via the consideration of Schur complements and the application of
the Cauchy-Schwarz inequality, at the cost of not being intrinsic.

Different priors for different coordinates. The prior ¢ considered in (37) is the same for all
coordinates (i,7) but this obviously does not have to be. It could depend on (7,7) but this would
not lead to an elegant inequality; instead we have it depend only on ¢ but allow ourselves to consider
several of these modified priors, say, p’ of them. That is, for all coordinates (i, - ), we introduce some
absolutely continuous function ¢;, : © — R, where £ € {1,...,p'} and form the priors q¢; . Under
suitable conditions (38) holds for each coordinate (i,j) with ¢ replaced by gc¢;y. Summing these
equalities over i, slightly rearranging the integrand, and omitting the indicator functions, we get for

Gassiat, Pollard, and Stoltz 33



Revisiting the van Trees inequality in the spirit of Hajek and Le Cam

all € {1,...,p'} and j € {1,...,s},

2 Zl ( qczz 2 2(_0) &o(x) + cion/q(9) fo,i(m)) (Sj(x) — ;(0))€o(2)/q(0) dpu(x)do

XXG')\ _

-~

Acye

L 2

Matrix-wise, denoting by C' = (¢;;) the p’ x p-matrix valued function at hand a\
the modified pseudo-derivative, we have proved the matrix equality

2/ (Bc(a,0) @ (S(@) — (0)) ) €o(2)V/a(0) dpu(w)ad = TV(6) g(6) db .
XxO

Based on it, following the steps detailed after the statement o (and u uitable assump-
tions ensuring that all needed quantities exist), we may derive some van TYees i
/@ Bo[(S —v(0)) @ (S = ¥(0)) {Q% y'vy
/ C(0) V(o C 0)do

_ / [ (S(z) ? d
= w(xz)dd =0, (39)
X
(1),

X0
after straightforward calculati \ shown@
x 0) du( & Caq + 0)C(0)" q(0)do,

X><G)

where flv'cﬂq isap x ? Whose com ") equals
I
i 0 i 0! 6)>0
* qcﬁ ) (qc ,4)(0) {q( )> }de
i,i'=1

00; q(0)
lltles «e call scalar 1nequaht1es is the apphcatlon of Lemma 10 of Section A.3
quahtles of the . For instance, when p’ = s, the stated lemma and (39)

([ (o vvo)aw )
/Eg[HS (0)]°] a0y a6 > © . (40)
©

Tr(Zeg) + /@ Te(C(0) Z(9) C(6) ) q(0) df

Inequalities of the form above are generally less satisfactory than their mother matrix inequalities.
This can be seen, in the case when p = s and C' is the matrix of identity functions, by noting that the
numerator of the right-hand side is given by

[ Te(00) a6) a0 - / ( ZZ’?(&)) 4(6) do.
e e \i=1 ¢

This term is not stable by a permutation of the components of 1, while the left-hand side of (40) is
stable by this operation. This is why, following Letac [2008], we only stated matrix inequalities.
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Weighted Bayesian quadratic risk. The second variation works best as far as scalar inequalities
are concerned, and in the case when p = s or after the first variation, i.e., based on (39), in the
case when p’ = s. For simplicity, we rather illustrate it based on (22) in the case when p = s. This
variation relies on a function A defined over ©® and with values in the set of p x p invertible matrices.
We associate with it the symmetric matrix B = A A". No regularity assumption is needed on A, only
suitable integrability assumptions (for the quantities considered below to be defined) will be required.
We start by noting that under suitable integrability assumptions only,

I.

An application of Lemma 10, under an invertibility condition, indicates @

A0)71 (S () — () Eo(x)\/a(0)
2A(0) Ag(z, )

A0)7H(S(x) —¥(6))é
2A(0)F Ag(z, 0

z)\/q

)( . x)df =0.

/@ 0[(5—1/}( )" B(O)™! (S—¢(e))] ¢(6) do AQ
— (0

(2/){X®’I‘r<A(9)TAq(x,0)®A(9)_1 St) ) )50(

Axgﬁ(A(e)TAq(x,e%TAq ,9))5«

Te( A0 Aq(r,0) © A(6) ‘(S@) _ Tr((
\\ -
(

() = (0)) ) A(O) Ag(w,0)
2 J 07 ie)
we get from (36), &eno regulari

(2) = w(O))" (A0) ™) A Ag(x.0))
e
/Xx@ \ 2

z) - ¢<0>)T Ay(@,9)).
ndition on A,
@nommat in42) we ﬁrst note that
(2, 0) @ A( Te ((A(OF Ay, 0))" AOF Ay(x,0))

%)~ (0)) )& ) v/a(0) dp( /@Tr(Vz,ZJ(H)) 4(0) do.
= Tr(Aq(a: 0)" B(0) Ag(z,0)) = Tr(B(0) Ag(x,0)Ag(z,0)") .

=

As

The integration of this term is then handled in the same way (21) was obtained, in particular, thanks
to (4); we only write the resulting equality:

/X x@Tr(A(@)T Ay(w,0) ® AO) Ay, 9))59(%)\/(1(9) dps()do
= Tr(B(0)Ag(z,0)Ag(z,0)" ) &o(x)\/q(6) dp(a

XxO

_ /@ Tr(B(G)W]I{qw»O}) a9 + /@ Te(B(O)" Z(0)) q(6) 6.
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Putting all (in)equalities together, we get the following weighted inequality:

/ Bo[(5 —(0)) BO) (S - v(0))] a(0) a0
S
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