<table>
<thead>
<tr>
<th>Framework</th>
<th>A simple strategy</th>
<th>Non stationarity</th>
<th>Empirical studies</th>
<th>References</th>
</tr>
</thead>
</table>

Robust sequential learning
with applications to the forecasting of air quality
and of electricity consumption

Gilles Stoltz

CNRS — École normale supérieure — INRIA, project-team CLASSIC
& HEC Paris
The framework of this talk

Sequential and worst-case deterministic prediction of time series based on expert advice
A statistician has to predict a sequence y_1, y_2, \ldots of observations lying in some set \mathcal{Y}.

His predictions $\hat{y}_1, \hat{y}_2, \ldots$ are picked in a set \mathcal{X}.

Observations and predictions (1) are made in a **sequential** fashion and (2) rely on **no stochastic modeling**.

(1) means that for each instance, the prediction \hat{y}_t of y_t is determined

- solely based on the past observations $y_1^{t-1} = (y_1, \ldots, y_{t-1})$,
- before getting to know the actual value y_t.

(2) indicates that the methods at hand will not resort to the estimation of some parameters of some stochastic process to build a good model and get some accurate forecasts from it.
To make the problem meaningful, finitely many expert forecasts are called for.

At each instance t, expert $j \in \{1, \ldots, N\}$ outputs a forecast

$$f_{j,t} = f_{j,t}(y_{1}^{t-1}) \in \mathcal{X}$$

The statistician now determines \hat{y}_{t} based

- on the past observations $y_{1}^{t-1} = (y_{1}, \ldots, y_{t-1})$,
- and the current and past expert forecasts $f_{j,s}$, where $s \in \{1, \ldots, t\}$ and $j \in \{1, \ldots, N\}$.
We assume that the set \mathcal{X} of predictions is convex and we restrict the statistician to form *convex combinations* of the expert forecasts.

At each instance t, the statistician thus picks a convex weight vector $p_t = (p_{1,t}, \ldots, p_{N,t})$ and forms

$$
\hat{y}_t = \sum_{j=1}^{N} p_{j,t} f_{j,t}
$$

The observations y_t will *not* be considered stochastic; thus the performance criterion will be a relative one.

The *aim* of the statistician is to predict –on average– as well as the *best constant convex combination* of the expert forecasts.

... But we need first to indicate how to assess the accuracy of a given prediction!
To that end, we consider a convex loss function $\ell : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}_+$.

When $\mathcal{X} \subseteq \mathbb{R}$ and $\mathcal{Y} \subseteq \mathbb{R}$, possible choices are

- the square loss $\ell(x, y) = (x - y)^2$;
- the absolute loss $\ell(x, y) = |x - y|$
- the absolute percentage of error $\ell(x, y) = |x - y|/|y|$.

The cumulative losses of the statistician and of the constant convex combinations $\mathbf{q} = (q_1, \ldots, q_N)$ of the expert forecasts equal

$$\hat{L}_T = \sum_{t=1}^T \ell \left(\sum_{j=1}^N p_{j,t} f_{j,t}, y_t \right)$$
and

$$L_T(\mathbf{q}) = \sum_{t=1}^T \ell \left(\sum_{j=1}^N q_j f_{j,t}, y_t \right)$$

The regret is defined as the difference

$$R_T = \hat{L}_T - \min_{\mathbf{q}} L_T(\mathbf{q})$$
Recall that the regret R_T is defined as the difference

$$\hat{L}_T - \min_q L_T(q) = \sum_{t=1}^T \ell \left(\sum_{j=1}^N p_{j,t} f_{j,t}, y_t \right) - \min_q \sum_{t=1}^T \ell \left(\sum_{j=1}^N q_j f_{j,t}, y_t \right)$$

We are interested in aggregation rules with (uniformly) vanishing per-round regret,

$$\limsup_{T \to \infty} \frac{1}{T} \sup \left\{ \hat{L}_T - \min_q L_T(q) \right\} \leq 0$$

where the supremum is over all possible sequences of observations and of expert forecasts. (Not just over most of these sequences!)

Remarks:

- This is why this framework is referred to as prediction of individual sequences or as robust aggregation of expert forecasts.
- The best convex combination q^* is known only in hindsight whereas the statistician has to predict in a sequential fashion.
This framework leads to a meta-statistical interpretation:

– each series of expert forecasts may be given by a statistical forecasting method, possibly tuned with some given set of parameters;

– these base forecasts relying on some stochastic model are then combined in a robust and deterministic manner.

The cumulative loss of the statistician can be decomposed as

\[\hat{L}_T = \min_q L_T(q) + R_T \]

This leads to the following interpretations:

– the term indicating the performance of the best convex combination of the expert forecasts is an approximation error;

– the regret term measures a sequential estimation error.
A simple strategy

Let’s do some maths. But simple maths, and for 10 minutes only!
Reminder of the aim:

Choose sequentially the convex weights $p_{j,t}$

To uniformly bound the regret with respect to all convex weight vectors q,

$$\sum_{t=1}^{T} \ell \left(\sum_{j=1}^{N} p_{j,t} f_{j,t}, y_t \right) - \sum_{t=1}^{T} \ell \left(\sum_{j=1}^{N} q_j f_{j,t}, y_t \right)$$

When $\mathcal{X} \subseteq \mathbb{R}^d$ and when ℓ is convex in its first argument, sub-gradients exist, i.e.:

For all $x \in \mathcal{X}$ and $y \in \mathcal{Y}$, there exists $\nabla \ell(x, y)$ such that

$$\forall x' \in \mathcal{X}, \quad \ell(x, y) - \ell(x', y) \leq \nabla \ell(x, y) \cdot (x - x')$$
To uniformly bound the regret with respect to all convex weight vectors q, we write

$$\max_{q} \sum_{t=1}^{T} \ell \left(\sum_{j=1}^{N} p_{j,t} f_{j,t}, y_t \right) - \sum_{t=1}^{T} \ell \left(\sum_{j=1}^{N} q_j f_{j,t}, y_t \right)$$

$$\leq \max_{q} \sum_{t=1}^{T} \nabla \ell \left(\sum_{k=1}^{N} p_{k,t} f_{k,t}, y_t \right) \cdot \left(\sum_{j=1}^{N} p_{j,t} f_{j,t} - \sum_{j=1}^{N} q_j f_{j,t} \right)$$

$$= \max_{q} \sum_{t=1}^{T} \left(\sum_{j=1}^{N} p_{j,t} \tilde{\ell}_{j,t} - \sum_{j=1}^{N} q_j \tilde{\ell}_{j,t} \right)$$

$$= \sum_{t=1}^{T} \sum_{j=1}^{N} p_{j,t} \tilde{\ell}_{j,t} - \min_{i=1,\ldots,N} \sum_{t=1}^{T} \tilde{\ell}_{i,t}$$

where we denoted

$$\tilde{\ell}_{j,t} = \nabla \ell \left(\sum_{k=1}^{N} p_{k,t} f_{k,t}, y_t \right) \cdot f_{j,t}$$
Via the (signed) pseudo-losses $\tilde{\ell}_{j,t}$, it suffices to consider the following simplified framework.

At each round $t = 1, 2, \ldots$,

- the statistician picks a convex weight vector $\mu_t = (\mu_{1,t}, \ldots, \mu_{N,t})$;

- the environment then determines, possibly with the knowledge of μ_t, a loss vector $\ell_t = (\ell_{1,t}, \ldots, \ell_{N,t})$;

- the values of μ_t and ℓ_t are both revealed.

The aim is to bound uniformly the regret

$$R_T = \sum_{t=1}^{T} \sum_{j=1}^{N} \mu_{j,t} \ell_{j,t} - \min_{i=1,\ldots,N} \sum_{t=1}^{T} \ell_{i,t}$$
For all $j \in \{1, \ldots, N\}$, we pick $\mu_{j,1} = 1/N$ and for all $t \geq 2$,

$$
\mu_{j,t} = \frac{\exp \left(-\eta \sum_{s=1}^{t-1} \ell_{j,s} \right)}{\sum_{k=1}^{N} \exp \left(-\eta \sum_{s=1}^{t-1} \ell_{k,s} \right)}
$$

This strategy is known as performing exponentially weighted averages of the past cumulative losses of the experts (with fixed learning rate $\eta > 0$).

Lemma. Consider two real numbers $m \leq M$.

For all $\eta > 0$ and for all individual sequences of elements $\ell_{j,t} \in [m, M]$,

$$
R_T = \sum_{t=1}^{T} \sum_{j=1}^{N} \mu_{j,t} \ell_{j,t} - \min_{i=1,\ldots,N} \sum_{t=1}^{T} \ell_{i,t} \leq \frac{\ln N}{\eta} + \eta \frac{(M-m)^2}{8} T.
$$

References: Vovk '90; Littlestone and Warmuth '94
Proof of the regret bound

It relies on Hoeffding’s lemma: for all random variables X with range $[m, M]$, for all $s \in \mathbb{R}$,

$$\ln \mathbb{E}[e^{sX}] \leq s \mathbb{E}[X] + \frac{s^2}{8} (M - m)^2$$

For all $t = 1, 2, \ldots$,

$$-\eta \sum_{j=1}^{N} \mu_{j,t} \ell_{j,t} = -\eta \sum_{j=1}^{N} \frac{\exp \left(-\eta \sum_{s=1}^{t-1} \ell_{j,s} \right)}{\sum_{k=1}^{N} \exp \left(-\eta \sum_{s=1}^{t-1} \ell_{k,s} \right)} \ell_{j,t}$$

$$\geq \ln \left(\frac{\sum_{j=1}^{N} \exp \left(-\eta \sum_{s=1}^{t} \ell_{j,s} \right)}{\sum_{k=1}^{N} \exp \left(-\eta \sum_{s=1}^{t-1} \ell_{k,s} \right)} \right) - \frac{\eta^2}{8} (M - m)^2$$

A telescoping sum appears and leads to

$$\sum_{t=1}^{T} \sum_{j=1}^{N} \mu_{j,t} \ell_{j,t} \leq -\frac{1}{\eta} \ln \left(\frac{\sum_{j=1}^{N} \exp \left(-\eta \sum_{s=1}^{T} \ell_{j,s} \right)}{N} \right) + \eta \frac{(M - m)^2}{8} T.$$

$$\leq \min_{i=1, \ldots, N} \sum_{t=1}^{T} \ell_{i,t} + \frac{\ln N}{\eta}.$$
We now discuss the obtained bound. Recall that \([m, M]\) is the loss range.

The stated bound can be optimized in \(\eta\):

\[
R_T \leq \min_{\eta > 0} \left\{ \frac{\ln N}{\eta} + \eta \frac{(M - m)^2}{8} T \right\} = (M - m) \sqrt{\frac{T}{2 \ln N}}
\]

for the (theoretical) optimal choice

\[
\eta^* = \frac{1}{M - m} \sqrt{\frac{8 \ln N}{T}}
\]

This choice depends on \(M\) and \(m\), which are not necessarily known beforehand, as well as on \(T\), which may not be bounded (if the prediction game goes forever).

Since no fixed value of \(\eta > 0\) ensures that \(R_T = o(T)\), we still have no fully sequential strategy... but this can be taken care of.
The possible patches are, first, to resort to the \textit{“doubling trick.”}

Alternatively, the learning rates of the exponentially weighted average strategy may \textit{vary over time}, depending on the past: for \(t \geq 2 \),

\[
\mu_{j,t} = \frac{\exp\left(-\eta_t \sum_{s=1}^{t-1} \ell_{j,s}\right)}{\sum_{k=1}^{N} \exp\left(-\eta_t \sum_{s=1}^{t-1} \ell_{k,s}\right)}
\]

By a careful such adaptive choice of the \(\eta_t \), the following regret bound can be obtained:

\[
R_T \leq \Box (M - m) \sqrt{T \ln N} + \Box (M - m) \ln N
\]

where the \(\Box \) denote some universal constants.

We thus recover the \textit{same orders of magnitude} for the regret bound.

References: Auer, Cesa-Bianchi and Gentile '02; Cesa-Bianchi, Mansour and Stoltz '07
However, these theoretically satisfactory solutions would not work well in practice. This is what we do instead.

The exponentially weighted average strategy E_η with fixed learning rate η picks the convex combination $\mu_t(\eta)$, where

$$\mu_{j,t}(\eta) = \frac{\exp \left(-\eta \sum_{s=1}^{t-1} \ell_{j,s} \right)}{\sum_{k=1}^{N} \exp \left(-\eta \sum_{s=1}^{t-1} \ell_{k,s} \right)}$$

We denote its cumulative loss $\hat{L}_t(\eta) = \sum_{s=1}^{t} \sum_{j=1}^{N} \mu_{j,s}(\eta) \ell_{j,s}$

Based on the family of the E_η, we build a data-driven meta-strategy which at each instance $t \geq 2$ resorts to

$$\mu_t(\eta_t) \quad \text{where} \quad \eta_t \in \arg\min_{\eta > 0} \hat{L}_{t-1}(\eta)$$

Reference: An idea of Vivien Mallet
Non stationarity

Competing against sequences of experts with few shifts
In changing environments the performance of a given fixed convex combination p can be poor.

A more ambitious goal is to mimic the performance of sequences of the form

$$p = (p^1, \ldots, p^1, p^2, \ldots, p^2, \ldots, p^{m+1}, \ldots, p^{m+1}),$$

where among the T rounds up to m shifts can occur.

The cumulative loss $L^*_{T,m}$ of the best such sequence p is usually much smaller than the cumulative loss of the best fixed convex combination in hindsight, $\min_q L_T(q)$.

The cumulative loss can be decomposed as

$$\hat{L}_T = L^*_{T,m} + R_{T,m},$$

where $R_{T,m}$ is the corresponding regret. And the question is:

How much larger does the regret bound get?
The fixed-share algorithm resembles the exponentially weighted average algorithm, except that at the end of each round the weights are redistributed, via a mixing with the uniform distribution:

\[p_{i,t} \] becomes \(\alpha + (1 - N\alpha)p_{i,t} \)

Fixed-share thus relies on two parameters \(\alpha \geq 0 \) and \(\eta > 0 \).

When these are optimally tuned, the regret bound is

\[R_{T,m} \leq \Box \sqrt{Tm \ln N} + ... \]

where \(\Box \) is some constant depending on the scale of the problem.

We will see that in practice –when indeed breaks occur– this worsening of the regret (by a factor of \(\sqrt{m} \)) is more than compensated by the better approximation error.
Three empirical studies

- Forecasting of air quality
- Forecasting of the electricity consumption
- Forecasting of the production data of oil reservoirs
Three empirical studies

The methodology of our studies is in four steps:

1. Build the experts (possibly on a training data set) and pick another data set for the evaluation of our methods;

2. Compute some benchmarks and some reference oracles;

3. Evaluate our strategies when run with fixed parameters (i.e., with the best parameters in hindsight);

4. The performance of interest is actually the one of the data-driven meta-strategies.
First study: Forecasting of air quality

Starting date: September 2005

Academic partner: Vivien Mallet, INRIA, project-team CLIME

Industrial partner: Edouard Debry, INERIS (Institut National de l’EnviRonnement Industriel et des Risques)

M.Sc. students involved over time:

- Boris Mauricette (6 months in 2007; from M2 Pro Paris-Diderot and ENS de Lyon)
- Sébastien Gerchinovitz (5 months in 2008; from M2 Maths Paris-Sud)
- Karim Drifi (4 months in 2009; from M2 MVA ENS Cachan)
- Paul Baudin (4 months in 2012; from M2 MVA ENS Cachan)

Associated publication: in the Journal of Geophysical Research
Some characteristics of one among the studied data sets:

- 126 days during summer '01; one-day ahead prediction
- 241 stations in France and Germany
- Typical ozone concentrations between 40 \(\mu g \, m^{-3} \) and 150 \(\mu g \, m^{-3} \); sometimes above the values 180 \(\mu g \, m^{-3} \) or 240 \(\mu g \, m^{-3} \)
- 48 experts, built in Mallet et Sportisse '06 by choosing a physical and chemical formulation, a numerical approximation scheme to solve the involved PDEs, and a set of input data (among many)
<table>
<thead>
<tr>
<th>Uniform mean</th>
<th>Best expert</th>
<th>Best p</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.41</td>
<td>22.43</td>
<td>21.45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Original version</th>
<th>Fixed history length</th>
<th>Discounted version</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.47</td>
<td>21.37</td>
<td>21.31</td>
</tr>
</tbody>
</table>

The version with fixed history length H only uses the losses encountered in the past H rounds. The version with discounted losses puts more weight on more recent losses (while still considering all past losses).

RMSE of the data-driven (original) version of the exponentially weighted average strategy: 21.77
Our strategies do not focus on a single expert.

The weights associated with the experts can change quickly and significantly over time (which illustrates in passing that the performance of the considered experts varies over time).

Convex weight vectors output by the exponentially weighted average strategy.
Second study: Forecasting of the electricity consumption

Starting date: March 2009

Industrial partner: Yannig Goude, EDF R&D

M.Sc. students involved over time:
- Marie Devaine (5 months in 2009; from M2 Maths Paris-Sud)
- Pierre Gaillard (5 months in 2011; from M2 MVA ENS Cachan)

Associated publication: in Machine Learning Journal
Specialized experts are available: each of them only outputs a forecast when specific conditions are met (working day vs. weekend, temperature, etc.).

The definitions and strategies need to be generalized to this setting.

Exhaustive list of references: Blum ’97; Freund et al. ’97; Cesa-Bianchi and Lugosi ’03; Blum and Mansour ’07... This is it!

On our data set,

- 3 families of experts, 24 experts in total;
- [operational constraint:] one-day ahead prediction at a half-hour step, i.e., the next 48 half-hour instances are to be predicted every day at noon
Electricity consumption in France

- Year 2007–08 (left)
- Typical summer week (right)
Some orders of magnitude for the prediction problem at hand are indicated below.

<table>
<thead>
<tr>
<th>Time intervals</th>
<th>Every 30 minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of days D</td>
<td>320</td>
</tr>
<tr>
<td>Time instances T</td>
<td>$15360 \ (= 320 \times 48)$</td>
</tr>
<tr>
<td>Number of experts N</td>
<td>24 ($= 15 + 8 + 1$)</td>
</tr>
<tr>
<td>Median of the y_t</td>
<td>56 330 MW</td>
</tr>
<tr>
<td>Bound B on the y_t</td>
<td>92 760 MW</td>
</tr>
</tbody>
</table>
We indicate RMSE (average errors and 95% standard errors).

<table>
<thead>
<tr>
<th></th>
<th>Best expert</th>
<th>Uniform mean</th>
<th>Best p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>782 ± 10</td>
<td>724 ± 11</td>
<td>658 ± 9</td>
</tr>
<tr>
<td>Exp. weights</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Best parameter</td>
<td>629 ± 8</td>
<td></td>
<td>637 ± 9</td>
</tr>
<tr>
<td>Adaptive</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Shifts</th>
<th>$m = T - 1 = 15359$</th>
<th>$m = 200$</th>
<th>$m = 50$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>223 ± ?</td>
<td>414 ± ?</td>
<td>534 ± ?</td>
</tr>
<tr>
<td>Fixed-Share</td>
<td>Best parameter</td>
<td>Adaptive</td>
<td></td>
</tr>
<tr>
<td></td>
<td>599 ± 9</td>
<td>629 ± 8</td>
<td></td>
</tr>
</tbody>
</table>
Average RMSEs (in GW / not in MW) according to the half hours

A picture is worth thousand tables, right?

The average RMSE were similar but the behaviors seem **different** by the **half-hours**.
Third study: Forecasting of the production data of oil reservoirs

Starting date: April 2012

Industrial partner: Sébastien Da Veiga, IFP Energies nouvelles

M.Sc. students involved over time:
- Charles-Pierre Astolfi (5 months in 2012; from M2 MVA ENS Cachan)

Associated publication: to be written up!
This data set is made of **synthetical but realistic** data.

We study 18 time series in parallel: 6 wells are considered on a field and 3 properties are studied,

- the cumulated quantity of oil [CO] produced;
- the water cut [WCUT; ratio of water compared to total liquids produced];
- the gas-oil ratio [GOR].

The difficulty is that the **orders of magnitude** of the 3 properties are extremely different and no beforehand standardization is available.

The **about 100 experts** are based on geological parameters only (so-called “simulatable experts” in the literature).

Observations are **noisy**.
References

In case you’re not bored to death (yet) by this topic!
The so-called “red bible!”

Prediction, Learning, and Games
Nicolò Cesa-Bianchi et Gábor Lugosi
I published a survey paper (containing this talk!) one year ago in the *Journal de la Société Française de Statistique*

Abstract: This paper is an extended written version of the talk I delivered at the "XVe Journées de Statistique" in Ottawa, 2008, when being awarded the Marie-Jeanne Laurent-Duhamel prize. It is devoted to surveying some fundamental as well as some more recent results in the field of sequential prediction of individual sequences with expert advice. It then performs two empirical studies following the stated general methodology: the first one to air-quality forecasting and the second one to the prediction of electricity consumption. Most results mentioned in the paper are based on joint works with Yannig Goude (EDF R&D) and Vivien Mallet (INRIA), together with some students whom we co-supervised for their M.Sc. theses: Marie Devaine, Sébastien Gerchinovitz and Boris Mauricette.

Keywords: Sequential aggregation of predictors, prediction with expert advice, individual sequences, air-quality forecasting, prediction of electricity consumption

Even better (or worse)—it is in French!