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K–armed stochastic bandits

Framework, possible objectives, index strategies
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K probability distributions ν1, . . . , νK
with expectations µ1, . . . , µK −→ µ⋆ = max

a∈[K ]
µa

At each round t = 1, 2, . . .,
1. Statistician picks arm At ∈ [K ]
2. She gets a reward Yt drawn according to νAt

3. This is the only feedback she receives

−→ Exploration–exploitation dilemma
estimate the νa vs. get high rewards Yt

Link with UQ? Emmanuel Vazquez told me:

Conceptually arms ↔ parameters of numerical experiments

Technically leverage bandit techniques to study EI strategy
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Setting: at round each round t ⩾ 1, pick arm At ∈ [K ], get and observe Yt ∼ νAt

Objective #1: Maximize cumulative rewards ↔
Minimize pseudo-regret

RT =
T∑

t=1

(
µ⋆ − E[Yt ]

)
=

T∑

t=1

(
µ⋆ − E[µAt ]

)

=
∑

a∈[K ]

(
(
µ⋆ − µa

)
E

[
T∑

t=1

I{At=a}

])
=
∑

a∈[K ]

(
µ⋆ − µa

)
E
[
Na(T )

]

↔ Control the E
[
Na(T )

]

Objective #2: Identify best arm ↔ Minimize P
(
IT ̸∈ argmax

a∈[K ]
µa

)
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Model: ν1, . . . , νK are distributions over [0, 1]

A classical strategy: UCB [upper confidence bound]
Auer, Cesa-Bianchi and Fisher [2002]

For t ⩾ K , pick At+1 ∈ argmax
a∈[K ]

{
µ̂a(t) +

√
2 ln t

Na(t)

}

Exploitation: cf. empirical mean µ̂a(t)

Exploration: cf.
√

2 ln t/Na(t) favors arms a not pulled often

Suboptimal regret bounds of two types

– Distribution-dependent bound: RT ≲
∑

a:µa<µ⋆

8 lnT

µ⋆ − µa

– Distribution-free bound: sup
ν1,...,νK

RT ≲
√
8KT lnT
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Model: ν1, . . . , νK are distributions over [0, 1]

Another index-based strategy:

MOSS [minimax optimal strategy in the stochastic setting]
Audibert and Bubeck [2009]

For t ⩾ K , pick At+1 ∈ argmax
a∈[K ]

{
µ̂a(t) +

√
1

Na(t)
ln+

T

KNa(t)

}

ln+ = max{ln, 0}; there exist anytime versions

Distribution-free regret bounds sup
ν1,...,νK

RT of optimal order
√
KT

– Upper bound: 49
√
KT for MOSS

– Lower bound: (1/20)
√
KT

Auer, Cesa-Bianchi, Freund and Schapire [2002]
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Model: ν1, . . . , νK are distributions over [0, 1]

KL-UCB strategy
Honda and Takemura [2015]; Cappé, Garivier, Maillard, Munos, Stoltz [2013];

Garivier, Hadiji, Ménard, Stoltz [2022]

Key quantity Kinf(νa, µ
⋆) = inf

{
KL(νa, ν

′
a) : E (ν

′
a) > µ⋆

}

Indices Ua(t) = sup

{
µ ∈ [0, 1] : Kinf

(
ν̂a(t), µ) ⩽

φ
(
t,Na(t)

)

Na(t)

}

Typically, φ
(
t,Na(t)

)
of order ln t; for t ⩾ K , pick At+1 ∈ argmax

a∈[K ]
Ua(t)

Optimal distribution-dependent regret bounds:
∑

a:µa<µ⋆

µ⋆ − µa
Kinf(νa, µ⋆)

lnT −Θ(ln lnT )

For lower bounds: Lai and Robbins [1985]; Burnetas and Katehakis [1996]; Garivier,

Ménard and Stoltz [2019]
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Model: ν1, . . . , νK are distributions over [0, 1]

KL-UCB-Switch strategy

Garivier, Hadiji, Ménard, Stoltz [2022]

Index strategy of the form: for each arm a ∈ [K ], use

– KL-UCB index if Na(t) ⩽ (t/K )5

– MOSS index if Na(t) ⩾ (t/K )5

Optimal bounds of the two types:

– Distribution-dependent bound, with the −Θ(ln lnT ) term

– Distribution-free bound: sup
ν1,...,νK

RT ≲ K + 23
√
KT
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Model: ν1, . . . , νK are distributions over [0, 1]

Summary / Reviewed index strategies all of the form:

For t ⩾ K , pick At+1 ∈ argmax
a∈[K ]

{
µ̂a(t) + expl

(
t,Na(t)

)}

Possibly with fancy, or null, exploration bonuses expl
(
t,Na(t)

)

Exploitation: cf. empirical mean µ̂a(t)

Various bounds achieved, depending on how expl
(
t,Na(t)

)
is set

– Optimal distribution-dependent bounds:
∑

a:µa<µ⋆

µ⋆ − µa
Kinf(νa, µ⋆)

lnT −Θ(ln lnT )

– Optimal distribution-free bounds: sup
ν1,...,νK

RT = Θ
(√

KT
)

Proofs for upper bounds: control E
[
Na(T )

]
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Proofs of the regret lower bounds on [0, 1]

(At least, high-level ideas...)
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Proof ideas for the lower bounds

Strategy ψ: maps Ht = (Y1, . . . ,Yt) 7→ At+1 = ψt(Ht)

Change of measure: compare distributions of HT

under ν = (ν1, . . . , νK ) vs. ν
′ = (ν ′1, . . . , ν

′
K )

Fundamental inequality: performs an implicit change of measure
Reference: Lai and Robbins [1985], Auer et al. [2002], Garivier et al. [2019]

For all Z taking values in [0, 1] and σ(HT )–measurable

(chain rule)

∑

a∈[K ]

Eν

[
Na(T )

]
KL(νa, ν

′
a) = KL

(
PHT
ν , PHT

ν′
)

(data-proc. ineq.) ⩾ kl
(
Eν [Z ], Eν′ [Z ]

)

where kl(p, q) = KL
(
Ber(p),Ber(q)

)

Later use: ν ′ only differs from ν at some a, with Z = Na(T )/T
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Distribution-free lower bound, for distributions over [0, 1]

Problem ν0 =
(
Ber(1/2)

)
a∈[K ]

vs. νk =
(
Ber
(
1/2 + ε I{a=k})

)
a∈[K ]

RT
def
=
∑

a ̸=k

εEνk

[
Na(T )

]
= Tε

(
1− Eνk

[
Nk(T )/T

])

Thus, sup
ν

RT ⩾ sup
ε∈(0,1)

max
k∈[K ]

Tε
(
1− Eνk

[
Nk(T )/T

])

Fundamental inequality, with Z = Nk(T )/T

+ Pinsker’s inequality and k ∈ [K ] such that Eν0

[
Nk (T )/T

]
⩽ 1/K

⩽T/K︷ ︸︸ ︷
Eν0

[
Nk(T )

]
=− ln(1−4ε2)/2 ⩽ 2.5ε2︷ ︸︸ ︷

KL
(
Ber(1/2), Ber(1/2 + ε)

)

⩾ kl
(
Eν0 [Z ], Eνk [Z ]

)
⩾ 2
(
Eνk

[
N0(T )/T

]
− Eνk

[
Nk(T )/T

])2

Thus, sup
ν

RT ⩾ sup
ε∈(0,1/4)

Tε
(
1− 1/K − ε

√
1.25T/K

)
⩾ Θ

(√
KT
)
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Distribution-dependent bound: RT =
∑

a∈[K ]

(
µ⋆ − µa

)
Eν

[
Na(T )

]

We lower bound each Eν
[
Na(T )

]
for a fixed a with µa < µ⋆; let ν′a with µa > µ⋆

Problems ν = (νa)a∈[K ] vs. ν ′ = (ν1, . . . , νa−1, ν
′
a, νa+1, . . . , νK )

Fundamental inequality
on“good”strategies ∀α ∈ (0, 1], E[Nk (T )] = o(Tα) for subopt. k

& lower bound on kl kl(p, q) ⩾ (1− p) ln
(
1/(1− q)

)
− ln 2

Eν

[
Na(T )

]
KL(νa, ν

′
a) ⩾ kl

( =o(1)︷ ︸︸ ︷
Eν

[
Na(T )/T

]
, Eν′

[
Na(T )/T

])

≳ ln
(
1/
(
1− Eν′

[
Na(T )/T

]))

Since Eν′
[
Na(T )/T

]
= 1−

∑

k ̸=a

Eν′
[
Nk (T )/T

]
≳ 1− Tα−1, we get:

Eν

[
Na(T )

]
KL(νa, ν

′
a) ≳ lnT 1−α
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Distribution-dependent bound: RT =
∑

a∈[K ]

(
µ⋆ − µa

)
Eν

[
Na(T )

]

We lower bound each Eν
[
Na(T )

]
for a fixed a with µa < µ⋆; let ν′a with µa > µ⋆

Eν
[
Na(T )

]
KL(νa, ν

′
a) ≳ lnT 1−α, that is,

Eν
[
Na(T )

]
KL(νa, ν′a)

lnT
≳ 1− α → 1

Therefore, “good” strategies can ensure, at best:

lim inf
T→∞

Eν

[
Na(T )

]

lnT
⩾ sup

ν′a:µ′
a>µ⋆

1

KL(νa, ν ′a)
def
=

1

Kinf(νa, µ⋆)

By summing over suboptimal arms:

lim inf
T→∞

RT

lnT
⩾
∑

a∈[K ]

µ⋆ − µa
Kinf(νa, µ⋆)

Note: general proof, valid for any model D
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Adaptation to the range
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Bounded but unknown range
Reference for this part of the talk: Hadiji and Stoltz [2020]

That is, model: D =
⋃

m,M:m<M

Dm,M

where Dm,M set of distributions ν over a given interval [m,M]

Before, we were only dealing with D0,1

What changes?

Same distribution-free lower bound:

Θ
(
(M −m)

√
KT
)
by rescaling

No worsening due to ignorance of the range

Different distribution-dependent lower bound:

RT/ lnT → +∞ as Kinf(νa, µ
⋆,D) = 0

But any rate ≫ lnT may be achieved
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Focus on the UCB strategy

With a known range [m,M], reads (knowledge of the range is key!)

At+1 ∈ argmax
a∈[K ]

{
µ̂a(t) + (M −m)

√
2 ln t

Na(t)

}

Extension to an unknown range:

At+1 ∈ argmax
a∈[K ]

{
µ̂a(t) +

√
φ(t)

Na(t)

}

where ln t ≪ φ(t) ≪ t; eventually,
√
φ(t) ⩾ (M −m)

√
2 ln t

Guarantee: for all bandit problems ν1, . . . , νK in D,

lim sup
RT

φ(T )
< +∞

Φdep = φ is the corresponding distribution-dependent rate for adaptation to the range
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Distribution-free rate for adaptation to the range

Φfree : N → (0,+∞) such that

∀m < M,
∀ν1, . . . , νK in Dm,M ,
∀T ⩾ 1, RT ⩽ (M −m)Φfree(T )

By the lower bound proved for [m,M] = [0, 1]:

Φfree(T ) ⩾ Θ
(√

KT
)

AdaHedge on estimated payoffs + mixing achieves

Φfree(T ) ≈ 7(M −m)
√
TK lnK

Reference for AdaHedge: Cesa-Bianchi, Mansour, Stoltz [2005, 2007] and De Rooij,

van Erven, Grünwald, Koolen [2014]

Note:
√
lnK shaved off (with different strategy) when M is known
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AdaHedge on estimated payoffs + mixing

Randomized strategy: At ∼ pt for t ⩾ K + 1

Unbiased estimated payoffs: X̂t,a =
Yt − C

pt,a
+ C

where C is the average of the payoffs in the first K rounds

AdaHedge: qt+1,a ∝ exp

(
−ηt

t∑

s=K+1

X̂t,a

)

Mixing: pt = (1− γt)qt + γt 1/K

Strategy actually built for adversarial payoffs
(= arbitrary sequences)
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What about simultaneous bounds?
Reminder for known range [0, 1]: lnT and

√
T rates for regret upper bounds

Theorem: If Φfree(T ) ≪ T then Φdep(T )× Φfree(T ) ⩾ Θ(T )

Example: Φfree(T ) = Θ
(√

T
)
now forces Φdep(T ) ⩾ Θ

(√
T
)

→ We finally exhibit some heavy price for adaptation!

Proof: by the fundamental inequality
+ lack of upper end on payoffs in D

AdaHedge on estimated payoffs + mixing simultaneously achieves

Φfree(T ) = Θ
(√

T
)

and Φdep(T ) = Θ
(√

T
)

Analysis heavily based on Seldin and Lugosi [2017]

Actually, all pairs Φfree(T ) = Θ(Tα) and Φdep(T ) = Θ(T 1−α)

with α ∈ [1/2, 1) may be achieved, by setting the mixing factor properly
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FYI—Proof of“If Φfree(T ) ≪ T then Φdep(T )×Φfree(T ) ⩾ Θ(T )”

Based on fundamental inequality + lack of upper end on payoffs in D

Adaptation to the range

We lower bound each Eν
[
Na(T )

]
for a fixed a with µa < µ⋆

Problems ν, ν ′ only differing at ν ′a = (1− ε)νa + ε δµa+c/ε

such that νa ⊥ δµa+c/ε and µ′a > µ⋆

f =
dνa

dν′a
=

1

1− ε
so that KL(νa, ν′a) = Eνa [ln f ] ≈ ε

Fundamental inequality and kl(p, q) ≳ (1− p) ln
(
1/(1− q)

)

Eν

[
Na(T )

]
≈ε︷ ︸︸ ︷

KL(νa, ν
′
a) ⩾ kl

( =o(1)︷ ︸︸ ︷
Eν

[
Na(T )/T

]
, Eν′

[
Na(T )/T

])

≳ ln
(
1/
(
1− Eν′

[
Na(T )/T

]))

Indeed: (µ⋆ − µa)Eν
[
Na(T )

]
⩽ RT (ν) ⩽ (M −m)Φfree(T ) ≪ T

Similarly: ln
(
1/
(
1− Eν′

[
Na(T )/T

]))
≳ ln

(
c ′Φfree(T ) /(Tε)

)

As: (µ′
a − µ⋆)

(
T − Eν′

[
Na(T )

])
⩽ RT (ν

′) ⩽ (M + c/ε−m)Φfree(T )

Picking ε ∼ Φfree(T )/T :
(
Φfree(T )/T

)
Eν

[
Na(T )

]
≳ cst
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Best-arm identification

With fixed budget and for possibly non-parametric models
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Objective #2: BAI with fixed budget T
Reference for this final part of the talk: Barrier, Garivier, and Stoltz [2022]

Bandit problem ν = (ν1, . . . , νK ) with unique optimal arm a⋆(ν)

where optimality is in expectation: µa⋆ = max
a∈[K ]

µa

T rounds, where arms At are pulled, rewards Yt are obtained

Then: issue a recommendation IT ∈ [K ]

Goal: upper and lower bound Pν

(
IT ̸= a⋆(ν)

)

Note—BAI with fixed confidence δ well understood

Track and Stop strategies, by Aurélien Garivier, Emilie Kaufmann, and co-authors
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Typical strategy: Successive rejects
By Audibert and Bubeck [2010], with analysis based on Hoeffding’s inequality

K − 1 regimes, and in each regime r = 1, . . . ,K − 1:

– Denote by Sr the set of arms not dropped so far; S1 = [K ]

– Play each arm in Sr an equal number of times

– Drop arm with smallest average payoff since the beginning
(not smallest average payoff in regime r)

By carefully setting regimes (based on T and K ): when D ⊆ P0,1,

lim sup
T→+∞

1

T
ln Pν

(
IT ̸= a⋆(ν)

)
⩽ − 1

lnK
min

2⩽k⩽K

(
µa⋆ − µ(k)

)2

k

where µa⋆ = µ(1) > µ(2) ⩾ . . . ⩾ µ(K)

→ Called a gap-based bound
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Lower bounds?
Gap-based approach by Audibert and Bubeck [2010]

Studied Dp =
{
Ber(x) : x ∈ [p, 1− p]

}
for p > 0

Methodology actually extends to models D such that

∀ν, ν ′ in D, KL(ν, ν ′) ⩽ CD
(
E(ν)− E(ν ′)

)2

For instance, CDp = 1/
(
2p(1− p)

)

Careful and explicit analysis leading to: for all strategies,

lim inf
T→+∞

1

T
lnPν

(
IT ̸= a⋆(ν)

)
⩾ −5CD min

2⩽k⩽K

(
µa⋆ − µ(k)

)2

k

Difference: −5CD vs. −1/lnK in front of the min
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New non-parametric approach

Key quantities: note the reverse order in the KL compared to Kinf

L<
inf(x , ν) = inf

{
KL(ζ, ν) : ζ ∈ D s.t. E(ζ) < x

}

and L>
inf(x , ν) = inf

{
KL(ζ, ν) : ζ ∈ D s.t. E(ζ) > x

}

Analysis of Successive rejects based on Cramér-Chernoff bounds:

lim sup
T→+∞

1

T
lnPν

(
IT ̸= a⋆(ν)

)
⩽ − 1

lnK
min

2⩽k⩽K

L
(
ν(k), νa⋆

)

k

where L
(
ν(k), νa⋆

)
= inf

x∈[µ(k),µa⋆ ]

{
L⩾
inf(x , ν(k)) + L⩽

inf(x , νa⋆)
}

By Pinsker’s inequality: yields the gap-based upper bound for D = P0,1

Special case x = µ(k) for the lower bounds



Setting / Strategies Regret lower bounds Adaptation to the range Best-arm identification

New non-parametric approach: simple lower bound

Alternative problem ν ′ differing from ν only at a⋆(ν),
with distribution ζ s.t. E(ζ) < µ(K)

qT
def
= Pν′

(
IT ̸= a⋆(ν)

)
⩾ Pν′

(
IT = a⋆(ν ′)

)
−→

T→+∞
1 ,

while pT
def
= Pν

(
IT ̸= a⋆(ν)

)
−→

T→+∞
0

Fundamental inequality:

− 1

T
ln pT ∼ KL

(
Ber(pT ),Ber(qT )

)

T
⩽

⩽1/K︷ ︸︸ ︷
Eν′
[
Na⋆(ν)

]

T
KL
(
ζ, νa⋆

)

Hence,

lim inf
T→+∞

1

T
lnPν

(
IT ̸= a⋆(ν)

)
⩾ − 1

K

L<
inf(µ(K),νa⋆ )︷ ︸︸ ︷

inf
E(ζ)<µ(K)

KL
(
ζ, νa⋆

)

Pruning argument to get the min over k ∈ {2, . . . ,K}
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