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K—-armed stochastic bandits

Framework, possible objectives, index strategies
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K probability distributions v4, ..., vk

with expectations p1, ..., ik —  ur= m[aé(] La
ac

At eachround t =1,2,...,

1. Statistician picks arm A; € [K]

2. She gets a reward Y; drawn according to va,
3. This is the only feedback she receives

— Exploration—exploitation dilemma
estimate the v, vs. get high rewards Y;:

Link with UQ? Emmanuel Vazquez told me:
Conceptually arms <> parameters of numerical experiments

Technically leverage bandit techniques to study El strategy
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Setting: at round each round t > 1, pick arm A; € [K], get and observe Y; ~ v4,

Objective #1: Maximize cumulative rewards <>
Minimize pseudo-regret

T T
Rr=> (0 —E[Vd) =D (1 —Elual)
t=1 t=1
= Z ( :u - Na Z]I{At a} ) Z (M* - ,Ua) E[Na(T)}
ac[K] ac[K]

<+ Control the E[N,(T)]

Objective #2: Identify best arm <> Minimize IP’(IT ¢ arg max,ua)
ac[K]
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Model: v1, ..., vk are distributions over [0, 1]

A classical strategy: UCB [upper confidence bound]
Auer, Cesa-Bianchi and Fisher [2002]

21
For t > K, pick  A¢p1 € argmax < 11a(t) + st
ac[K] Na(t)

Exploitation: cf. empirical mean f,(t)
Exploration: cf. \/21Int/N,(t) favors arms a not pulled often

Suboptimal regret bounds of two types

8In T
- Distribution-dependent bound: Rt S Y ——

*
a:pa<p* K Ha

— Distribution-free bound: sup Rr SVBKTInT

V1, VK
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Model: v1,...,vk are distributions over [0, 1]

Another index-based strategy:

MOSS [minimax optimal strategy in the stochastic setting]
Audibert and Bubeck [2009]

1 T
For t > K, pick A1 € argmaxq fia(t) + In
i a€[K] { a( ) Na(t) N KNa(t)

In; = max{In, 0}; there exist anytime versions

Distribution-free regret bounds sup Ry of optimal order vV KT

V1, VK

— Upper bound: 49/ KT for MOSS

— Lower bound: (1/20)vKT
Auer, Cesa-Bianchi, Freund and Schapire [2002]
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Model: v1, ..., vk are distributions over [0, 1]

KL-UCB strategy

Honda and Takemura [2015]; Cappé, Garivier, Maillard, Munos, Stoltz [2013];
Garivier, Hadiji, Ménard, Stoltz [2022]

Key quantity Kinf(va, %) = inf{KL(va, ;) : E(v}) > p*}

@(t’ Na(t))

, _ e <
Indices  U,(t) =supq p € [0,1] 1 Kinf (Pa(t), ) < No(D)

Typically, p(t, Na(t)) of order Int;  for t > K, pick  Agy1 € argmax Us(t)
a€[K]

Optimal distribution-dependent regret bounds:

Ml T —9(nInT)

g ]Cinf(Van :U'*)

For lower bounds: Lai and Robbins [1985]; Burnetas and Katehakis [1996]; Garivier,
Ménard and Stoltz [2019]
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Model: v1, ..., vk are distributions over [0, 1]

KL-UCB-Switch strategy

Garivier, Hadiji, Ménard, Stoltz [2022]

Index strategy of the form: for each arm a € [K], use
—  KL-UCB index if N,(t) < (t/K)®
—  MOSS index if Na(t) > (t/K)®

Optimal bounds of the two types:
— Distribution-dependent bound, with the —©(InIn T) term

— Distribution-free bound: sup Rt S K+23VKT

Vl,..VK
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Model: v1, ..., vk are distributions over [0, 1]

Summary / Reviewed index strategies all of the form:

For t > K, pick A:tq1 € arg max{ﬁa(t) + expl(t, Na(t))}
a€[K]

Possibly with fancy, or null, exploration bonuses expl(t, Na(t))

Exploitation: cf. empirical mean f,(t)

Various bounds achieved, depending on how exp/(t, N(t)) is set

— Optimal distribution-dependent bounds:

*_
Miﬂa*lnT—@(lnln T)

g ’Cinf(yanu )

— Optimal distribution-free bounds: sup Rr = @(\/ KT)

Vi, VK

Proofs for upper bounds: control E[N,(T)]



Regret lower bounds
©0000

Proofs of the regret lower bounds on [0, 1]

(At least, high-level ideas...)
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Proof ideas for the lower bounds

Strategy ¢:  maps Hy = (Y1,..., Yt) = Arp1 = ¥e(Hy)

Change of measure: compare distributions of Hy
under v = (v1,...,vk) vs. V' = (V],...,Vk)

Fundamental inequality: performs an implicit change of measure
Reference: Lai and Robbins [1985], Auer et al. [2002], Garivier et al. [2019]

For all Z taking values in [0,1] and o(H7)—-measurable

(chain rule) Z EZ[NQ(T)] KL(I/a, V;) = KL(P’;T, P:I,T)
a€[K] B
(data-proc. ineq.) = k|(EZ[Z], E, [Z])

where kI(p, g) = KL(Ber(p), Ber(q))

Later use: v/ only differs from v at some a, with Z = N,(T)/T
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Distribution-free lower bound, for distributions over [0, 1]

Problem v, = (Ber(1/2))a€[K] VS, V) = (Ber(1/2 +5H{a:k})>a€[K]

Rr = ZEEZk[Na(T)] - T€<1 B Ekk[Nk(T)/TD
aFtk

Thus, supRT > su max Te(1—=E, [NAT)/T
p T/ee(Opl)kE[K] ( ”k[ K(T)/ D

Fundamental inequality, with Z = N(T)/ T
+ Pinsker's inequality and k € [K] such that E, [Ne(T)/T] < 1/K
<T/K =—1In(1—4€%)/2 < 2.5¢2
vo [Nk(T)] KL(Ber(1/2), Ber(1/2 +¢))

E
> KI(Ey,[2], By, [2]) 2 2(By, [No(T)/T] — By, [Nk(T)/T])2

Thus, supRT > sup Ts(l—l/K—E\/1.25T/K)2@(\/KT)

v €€(0,1/4)
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Distribution-dependent bound: Rt = Z (u* — ,ua) IEZ[NQ(T)}
a€[K]

We lower bound each E, [N,(T)] for a fixed a with pa < p*; let v, with p, > p*

Problems v = (Va)acik] Vs. ¥/ = (V1,...,Va1,V5, Vat1, - -+, VK)
Fundamental inequality

on “good"” strategies Va € (0,1], E[Nk(T)] = o(T®) for subopt. k
& lower bound on ki Ki(p,q) > (1 — p)In(1/(1 — q)) —In2

=o(1)

—N—
By [No(T)] KL(va, 5) > KI (B [No(T)/ T], B [No(T)/T])
2 n(1/(1 - By [Na(T)/T)))

Since B,/ [Na(T)/T] =1=> E, [Ne(T)/T] 21— T*F, we get:
k#a

Ey [No(T)] KL(va,v}) 2 In TP
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Distribution-dependent bound: Rt = Z (u* — ,ua) IEZ[NQ(T)}
a€[K]

We lower bound each E, [N,(T)] for a fixed a with pa < p*; let v, with p, > p*

EK[NQ( T)] KL(va, v})
InT

Ey [Na(T)] KL(va,v}) 2 In T1™%,  that is, >1—a—1

Therefore, “good” strategies can ensure, at best:

liminf By [No(T)] > su 1 « L
T InT 7~ oo KL(a 1) King(var 1)

By summing over suboptimal arms:

W= [a

... RT
liminf —— > M T Ha
e InT Kin (2 107)

aclK]

Note: general proof, valid for any model D
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Adaptation to the range
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Bounded but unknown range
Reference for this part of the talk: Hadiji and Stoltz [2020]

Thatis, model: D= |] Dmm
m,M:m<M

where Dy,  set of distributions v over a given interval [m, M|
Before, we were only dealing with Dg 1

What changes?

Same distribution-free lower bound:
@((M — m)\/ﬁ) by rescaling
No worsening due to ignorance of the range

Different distribution-dependent lower bound:
Rr/InT — +o0 as Kinf(va, p*, D) =0
But any rate > In T may be achieved
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Focus on the UCB strategy

With a known range [m, /\/I], reads (knowledge of the range is key!)

2Int
Ayl € argmax | a(t) + (M —m
t+1 ag[K] {Ma( ) ( ) Na(t)}

Extension to an unknown range:

~ (1)
Aey1 € argmax < fa(t) + 4/ —
e a€[K] { a( ) Na(t)

where Int < p(t) < t; eventually, /¢ 2Int

Guarantee: for all bandit problems vq,...,vk in D,

) R
limsup —T < +0o0

o(T)

®yep =  is the corresponding distribution-dependent rate for adaptation to the range
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Distribution-free rate for adaptation to the range

Pfree : N — (0,400) such that

Vm < M,
VI/;[, ..., UK in Dm,My
vT > 1, RT < (M — m)®ree(T)

By the lower bound proved for [m, M] = [0, 1]:
Biree(T) > O(VKT)

AdaHedge on estimated payoffs + mixing achieves
Ppree(T) =~ 7(M — m)V TKIn K

Reference for AdaHedge: Cesa-Bianchi, Mansour, Stoltz [2005, 2007] and De Rooij,
van Erven, Griinwald, Koolen [2014]

Note: vIn K shaved off (with different strategy) when M is known
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AdaHedge on estimated payoffs + mixing

Randomized strategy: A;~p: fort> K+1

Y: — C
Pt,a

where C is the average of the payoffs in the first K rounds

Unbiased estimated payoffs: )A(La = +C

t
AdaHedge: qt+17ao<exp<—nt Z Xt@,)
s=K+1

Mixing:  pr = (1 —7t)ar +7: 1/K

Strategy actually built for adversarial payoffs
(= arbitrary sequences)



0000080
What about simultaneous bounds?
Reminder for known range [0,1]: In T and v/ T rates for regret upper bounds

Theorem: If ®pee(T) < T then @y, (T) X Prree(T) = O(T)
Example: ®gee(T) = O(V/T) now forces $yep(T) > ©(VT)

— We finally exhibit some heavy price for adaptation!

Proof: by the fundamental inequality
+ lack of upper end on payoffs in D

AdaHedge on estimated payoffs + mixing simultaneously achieves
Phree(T) =O(VT) and &, (T) =0 (VT)
Analysis heavily based on Seldin and Lugosi [2017]

Actually, all pairs @gee(T) = O(T*) and Pyep(T) = O(TI7%)
with a € [1/2, 1) may be achieved, by setting the mixing factor properly



FYI—Proof of “If Bpree(T) < T then Oy, (T) X Ppree(T) = O(T)"

Based on fundamental inequality + lack of upper end on payoffs in D

We lower bound each E, [Na(T)] for a fixed a with pi, < pu*

Problems v, v/ only differing at v, = (1 — €)va + €0, 1c/c
such that v, 1§, 4/ and pl > p*
podn_ 1 sothat  KL(vs,vl) = En[Inf] ~ e
dv} 1—¢
Fundamental inequality and ki(p, ) 2 (1 — p)In(1/(1 — q))
~e =o(1)

—— —T
Ey [No(T)] KL(va, ) > kI(IEK[Na(T)/T}, E, [NQ(T)/TD
2 n(1/(1 - Ex [N(T)/T]))

Indeed: (4" — 1) Eu [Na(T)] < Rr(1) < (M — m) Spee(T) < T

Similarly: |n(1/(1 ~E, [Na(T)/T])) > In(c bree( T) /(Te))
As: (s = ) (T = B [No(T)] ) < R7() < (M + /e = m) @ee(T)

Picking & ~ ®gee(T)/T: (q)free( T)/ T) EK[NB( T)} 2 cst
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Best-arm identification

With fixed budget and for possibly non-parametric models
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Objective #2: BAI with fixed budget T
Reference for this final part of the talk: Barrier, Garivier, and Stoltz [2022]

Bandit problem v = (v1,...,vk) with unique optimal arm a*(v)

where optimality is in expectation:  px = m?x] Ha
ac[K

T rounds, where arms A; are pulled, rewards Y; are obtained

Then: issue a recommendation /1 € [K]

Goal: upper and lower bound PK(IT + a*(y))

Note—BAI with fixed confidence ¢ well understood

Track and Stop strategies, by Aurélien Garivier, Emilie Kaufmann, and co-authors
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Typical strategy: Successive rejects
By Audibert and Bubeck [2010], with analysis based on Hoeffding's inequality

K — 1 regimes, and in each regime r=1,... . K — 1:
— Denote by S, the set of arms not dropped so far; S; = [K]
— Play each arm in S, an equal number of times

— Drop arm with smallest average payoff since the beginning

(not smallest average payoff in regime r)

By carefully setting regimes (based on T and K): when D C Py 1,

lim sup 1 In P (/7— £ a*(y)) < _; i ('M‘Q*_—W
T—+o0 - =T InK 2<k<K k

where pigr = p1y) > p2) 2 - 2 k)

— Called a gap-based bound
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Lower bounds?
Gap-based approach by Audibert and Bubeck [2010]

Studied Dy = {Ber(x) : x € [p,1—p]} for p>0

Methodology actually extends to models D such that
Vv, in D, KL(v,v") < Cp (BE(v) — E(z/))2
For instance, Cp, = 1/(2p(1 — p))
Careful and explicit analysis leading to: for all strategies,
. (Ma* - M(k))2
|Im_I‘rnf InP, (IT # a*(g)) > -5Cp 22?<|2KT

Difference: —5 Cp vs. —1/InK in front of the min
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New non-parametric approach

Key quantities: note the reverse order in the KL compared to [Cins

Lie(x,v) =inf{KL(¢,v) : ¢ € D s.t. B(¢) < x}
and  Li¢(x,v) =inf{KL(¢,v): ( € Dst. E(() > x}

Analysis of Successive rejects based on Cramér-Chernoff bounds:

1 ﬁ(V(k),I/a*)
m * < ———— m P S S
llrﬂiuoop InPy(I7 # @' () < InK 2<k|<nK k
where  L(v,Var) = inf L2 (%, vk)) + LSc(X, Var
( (k)> “a ) Xe[ﬂ(k)»Ma*]{ |nf( (k)) |nf( a )}

By Pinsker’s inequality: yields the gap-based upper bound for D = P 1

Special case x = p ) for the lower bounds
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New non-parametric approach: simple lower bound

Alternative problem v/ differing from v only at a*(v),
with distribution ¢ s.t. E(¢) < pk)

gr E P, (I # a*(v)) = Py (It = (V) _— 1,

T—+o0

while  pr E P, (Ir # a*(v)) _— 0

T—+oo
Fundamental inequality: <1/K
(Ber(pr). Ber(qr)) _ Ev [Ny ()]
1 KL (Ber(pt), Ber(gr v | Na(v)
—Inpr ~ = < T KL(C, var)
Hence, L (1) Var)
1 1
liminf =InP,(/ * >—— inf  KL((, va
liminf —InP, (I # a*(v)) K e (¢, var)

Pruning argument to get the min over k € {2,..., K}
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