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Sequential Learning: Homework #1

What I care about. I care about well-written proofs: with sufficient details, with calculations worked
out and leading to pleasant and readable bounds. I favor quality of the writing over the quantity of questions
answered. I give bonus points for elegant solutions.

Formats of your submission, deadline. Please send your solutions in a sequential manner, one exercise
after the other. Wait for my OK to send a new solution, as I may request you to re-work a solution badly
written. I may take 1 or 2 business days to get back to you, please take this into account when trying to
abide by the deadline.

I expect to receive PDF files, with answers either handwritten and neatly scanned (as I do for my weekly
lecture notes) or typed in LATEX.

The PDF file must be named YourName-HW1-ExN.pdf, where YourName is to be replaced by your
family name, and N by the exercise number. E.g., my submission for the first exercise would be named
Stoltz-HW1-Ex1.pdf.

Deadline is Friday, March 4, at 6pm. This is a strict deadline: submitting after this deadline will
negatively impact your grade, with the impact depending on the delay.

Beware: Typos. Most likely the statement comes with typos. This is part of the job. Try to correct
them on your own!
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Exercise 1: The polynomially weighted average forecaster

We consider the “vanilla” setting of linear losses, with N ⩾ 2 components: for all rounds t = 1, 2, . . .,
– The statistician picks a convex combination (pj,t)1⩽j⩽N while the environment simultaneously picks a

loss vector (ℓj,t)1⩽j⩽N ;
– The choices are publicly revealed.

The statistician aims to control the regret

RT =
T∑
t=1

N∑
j=1

pj,t ℓj,t − min
1⩽i⩽N

T∑
t=1

ℓi,t

We will actually denote by

Ri,T =
T∑
t=1

N∑
j=1

pj,t ℓj,t −
T∑
t=1

ℓi,t

the regret associated with the component i ∈ {1, . . . , N}. We also denote by u+ = max{u, 0} the non-
negative part of a real number u, and write u+ the vector based on u = (u1, . . . , uN ) ∈ RN with compo-
nents (uj)+.

Strategy : The statistician considers the following strategy, with hyperparameter p ⩾ 2: for t ⩾ 1,

pj,t =
(Rj,t−1)

p−1
+∑N

k=1(Rk,t−1)
p−1
+

if

N∑
k=1

(Rk,t−1)
p−1
+ > 0

and pj,t = 1/N otherwise (this is in particular the case when t = 1).

Analysis in the case p = 2 (only requires Lecture #1)

We consider the special case p = 2 to have a smooth start. We introduce the instantaneous regret vectors:
for all t ⩾ 1,

rt = (ri,t)1⩽i⩽N =

 N∑
j=1

pj,t ℓj,t − ℓi,t


1⩽i⩽N

We then define the cumulative regret vector RT = r1 + . . .+ rT .

1. Explain why (u+ v)+ ⩽
∣∣u+ + v

∣∣ for all real numbers (u, v) ∈ R2 and why we therefore haveww(Rt)+
ww ⩽

ww(Rt−1)+ + rt
ww

2. Show that ww(Rt−1)+ + rt
ww2

=
ww(Rt−1)+

ww2
+ ∥rt∥2

3. Provide a regret bound for the algorithm considered, say, for losses ℓj,t all lying in some [m,M ] range;
provide a closed-form regret bound only depending on m, M , T and N .

4. Does the algorithm need to know m, M and T? Are the dependencies in T and N optimal?

Analysis for p > 2 (optional; only requires Lecture #1)

This part of the exercise is optional. If you send a solution, it must be a complete solution covering all
questions 5–8 (not just questions 7–8).

The general analysis of this strategy relies on a function Φ defined as: for all u = (u1, . . . , uN ) ∈ RN ,

Φ(u) =

(
N∑
i=1

(u+i )
p

)2/p
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5. Show that for all t ⩾ 2, there exists ξt ∈ RN such that

Φ(Rt) ⩽ Φ(Rt−1) +
1

2

N∑
i,j=1

∂2ijΦ(ξt) ri,t rj,t

You may use that Φ is C2–regular on a subset of RN to determine. Carefully explain how you handle
the cases where this C2–regularity cannot be directly exploited.

6. Prove the bound
N∑

i,j=1

∂2ijΦ(ξt) ri,t rj,t ⩽ 2(p− 1)∥rt∥2p

You may do so by using that ψ(x) = x2/p is concave (thus ψ′′ ⩽ 0) and by introducing f(x) = xp+ for
the sake of more concise and more abstract calculations; Hölder’s inequality may be useful as well.

7. Conclude to a (M −m)
√

(p− 1)N2/pT regret bound.

8. Propose a good value of p (simple enough and readable, not necessarily some optimal value) so that
the upper bound obtained is optimal as far as its dependencies in T and N are concerned.
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