Sequential Learning: Homework \#1

What I care about. I care about well-written proofs: with sufficient details, with calculations worked out and leading to pleasant and readable bounds. I favor quality of the writing over the quantity of questions answered. I give bonus points for elegant solutions.

Formats of your submission, deadline. Please send your solutions in a sequential manner, one exercise after the other. Wait for my OK to send a new solution, as I may request you to re-work a solution badly written. I may take 1 or 2 business days to get back to you, please take this into account when trying to abide by the deadline.

I expect to receive PDF files, with answers either handwritten and neatly scanned (as I do for my weekly lecture notes) or typed in $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$.

The PDF file must be named YourName-HW1-ExN.pdf, where YourName is to be replaced by your family name, and N by the exercise number. E.g., my submission for the first exercise would be named Stoltz-HW1-Ex1.pdf.

Deadline is Friday, March 4, at 6 pm . This is a strict deadline: submitting after this deadline will negatively impact your grade, with the impact depending on the delay.

Beware: Typos. Most likely the statement comes with typos. This is part of the job. Try to correct them on your own!

Exercise 1: The polynomially weighted average forecaster

We consider the "vanilla" setting of linear losses, with $N \geqslant 2$ components: for all rounds $t=1,2, \ldots$,

- The statistician picks a convex combination $\left(p_{j, t}\right)_{1 \leqslant j \leqslant N}$ while the environment simultaneously picks a loss vector $\left(\ell_{j, t}\right)_{1 \leqslant j \leqslant N}$;
- The choices are publicly revealed.

The statistician aims to control the regret

$$
R_{T}=\sum_{t=1}^{T} \sum_{j=1}^{N} p_{j, t} \ell_{j, t}-\min _{1 \leqslant i \leqslant N} \sum_{t=1}^{T} \ell_{i, t}
$$

We will actually denote by

$$
R_{i, T}=\sum_{t=1}^{T} \sum_{j=1}^{N} p_{j, t} \ell_{j, t}-\sum_{t=1}^{T} \ell_{i, t}
$$

the regret associated with the component $i \in\{1, \ldots, N\}$. We also denote by $u_{+}=\max \{u, 0\}$ the nonnegative part of a real number u, and write \boldsymbol{u}_{+}the vector based on $\boldsymbol{u}=\left(u_{1}, \ldots, u_{N}\right) \in \mathbb{R}^{N}$ with components $\left(u_{j}\right)_{+}$.

Strategy: The statistician considers the following strategy, with hyperparameter $p \geqslant 2$: for $t \geqslant 1$,

$$
p_{j, t}=\frac{\left(R_{j, t-1}\right)_{+}^{p-1}}{\sum_{k=1}^{N}\left(R_{k, t-1}\right)_{+}^{p-1}} \quad \text { if } \quad \sum_{k=1}^{N}\left(R_{k, t-1}\right)_{+}^{p-1}>0
$$

and $p_{j, t}=1 / N$ otherwise (this is in particular the case when $t=1$).

Analysis in the case $p=2$ (only requires Lecture \#1)

We consider the special case $p=2$ to have a smooth start. We introduce the instantaneous regret vectors: for all $t \geqslant 1$,

$$
\boldsymbol{r}_{t}=\left(r_{i, t}\right)_{1 \leqslant i \leqslant N}=\left(\sum_{j=1}^{N} p_{j, t} \ell_{j, t}-\ell_{i, t}\right)_{1 \leqslant i \leqslant N}
$$

We then define the cumulative regret vector $\boldsymbol{R}_{T}=\boldsymbol{r}_{1}+\ldots+\boldsymbol{r}_{T}$.

1. Explain why $(u+v)_{+} \leqslant\left|u_{+}+v\right|$ for all real numbers $(u, v) \in \mathbb{R}^{2}$ and why we therefore have

$$
\left\|\left(\boldsymbol{R}_{t}\right)_{+}\right\| \leqslant\left\|\left(\boldsymbol{R}_{t-1}\right)_{+}+\boldsymbol{r}_{t}\right\|
$$

2. Show that

$$
\left\|\left(\boldsymbol{R}_{t-1}\right)_{+}+\boldsymbol{r}_{t}\right\|^{2}=\left\|\left(\boldsymbol{R}_{t-1}\right)_{+}\right\|^{2}+\left\|\boldsymbol{r}_{t}\right\|^{2}
$$

3. Provide a regret bound for the algorithm considered, say, for losses $\ell_{j, t}$ all lying in some $[m, M]$ range; provide a closed-form regret bound only depending on m, M, T and N.
4. Does the algorithm need to know m, M and T ? Are the dependencies in T and N optimal?

Analysis for $p>2$ (optional; only requires Lecture \#1)

This part of the exercise is optional. If you send a solution, it must be a complete solution covering all questions 5-8 (not just questions 7-8).

The general analysis of this strategy relies on a function Φ defined as: for all $\boldsymbol{u}=\left(u_{1}, \ldots, u_{N}\right) \in \mathbb{R}^{N}$,

$$
\Phi(\boldsymbol{u})=\left(\sum_{i=1}^{N}\left(u_{i}^{+}\right)^{p}\right)^{2 / p}
$$

5. Show that for all $t \geqslant 2$, there exists $\xi_{t} \in \mathbb{R}^{N}$ such that

$$
\Phi\left(\boldsymbol{R}_{t}\right) \leqslant \Phi\left(\boldsymbol{R}_{t-1}\right)+\frac{1}{2} \sum_{i, j=1}^{N} \partial_{i j}^{2} \Phi\left(\xi_{t}\right) r_{i, t} r_{j, t}
$$

You may use that Φ is C^{2}-regular on a subset of \mathbb{R}^{N} to determine. Carefully explain how you handle the cases where this $C^{2}-$ regularity cannot be directly exploited.
6. Prove the bound

$$
\sum_{i, j=1}^{N} \partial_{i j}^{2} \Phi\left(\xi_{t}\right) r_{i, t} r_{j, t} \leqslant 2(p-1)\left\|\boldsymbol{r}_{t}\right\|_{p}^{2}
$$

You may do so by using that $\psi(x)=x^{2 / p}$ is concave (thus $\psi^{\prime \prime} \leqslant 0$) and by introducing $f(x)=x_{+}^{p}$ for the sake of more concise and more abstract calculations; Hölder's inequality may be useful as well.
7. Conclude to a $(M-m) \sqrt{(p-1) N^{2 / p} T}$ regret bound.
8. Propose a good value of p (simple enough and readable, not necessarily some optimal value) so that the upper bound obtained is optimal as far as its dependencies in T and N are concerned.

