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Exercise 2: Adversarial sparse losses

The aim of this exercise is to study what happens when both a non-negativity and a sparsity assumptions
are made on the vectors of losses picked by the opponent.

More formally, we consider the setting of linear losses, with N components, where at most s components
are positive while the other components are null. The parameter s ∈ {1, . . . , N} is fixed throughout the
game but is unknown to the statistician. The online protocol is the following.

Protocol : For all rounds t = 1, 2, . . .,
– The statistician picks a convex combination (pj,t)1⩽j⩽N while the environment simultaneously picks a

loss vector (ℓj,t)1⩽j⩽N ∈ [0,+∞)N , with at most s non-null components;
– The choices are publicly revealed.

The statistician aims to control the regret

RT =

T∑
t=1

N∑
j=1

pj,t ℓj,t − min
1⩽i⩽N

T∑
t=1

ℓi,t .

The question is:
What is the optimal order of magnitude of the regret under the non-negativity and sparsity assumptions?

Lower bound on the regret (only requires Lecture #1)

Consider the joint distribution over {0, 1}N defined as the law of a random vector L = (L1, . . . , LN ) drawn
in two steps. First, we pick s components uniformly at random among {1, . . . , N}; we call them K1, . . . ,Ks.
Then, the components not picked (k ̸= Kj for all j) are associated with zero losses, Lk = 0. The losses Lk

for picked components K1, . . . ,Ks are drawn according to a Bernoulli distribution with parameter 1/2. The
loss vector L ∈ [0, 1]N thus generated is indeed s–sparse and non-negative.

We fix an algorithm for the statistician, consider an i.i.d. sequence L1,L2, . . . of random vectors thus
generated, and study the corresponding regret

RT =

T∑
t=1

N∑
j=1

pj,t Lj,t − min
1⩽i⩽N

T∑
t=1

Li,t .

1. Show that the expectation of the regret can be written as

E
[
RT√
T

]
= E

[
max
1⩽i⩽N

1√
T

T∑
t=1

X
(i)
t

]

where the
(
X

(1)
t , . . . , X

(N)
t

)
are i.i.d. centered random vectors taking values in [−1, 1]N , with covariance

matrix denoted by Γ.

please give a closed-form definition of the X
(i)
t based on the Li,t, and also compute Γ.

2. Explain why

E

[
max
1⩽i⩽N

1√
T

T∑
t=1

X
(i)
t

]
−→ E

[
max
1⩽i⩽N

Zi

]
where (Z1, . . . , ZN ) follows the normal distribution N (0,Γ), i.e., the centered normal distribution with
covariance matrix Γ.

3. Consider the Gaussian random vector (W1, . . . ,WN ) with i.i.d. components Wi with distribution
N
(
0,Var(Z1)

)
. Show that Slepian’s lemma (stated at the bottom of next page) is applicable and

that it entails
E
[
max
1⩽i⩽N

Zi

]
⩾ E

[
max
1⩽i⩽N

Wi

]
4. Conclude to an asymptotic lower bound of the order of

√
(Ts lnN)/N ; state it carefully and rigorously.
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Upper bound on the regret (requires Lecture #2)

5. Recall first how, under the non-negativity assumption, i.e., assuming that the losses ℓj,t all lie in [0,M ],
we could prove the bound

RT ⩽ 13M lnN + 2

√√√√M min
j=1,...,N

T∑
t=1

ℓj,t lnN ,

referred to as an “improvement for small cumulative losses.”

More precisely, recall the algorithm at hand and the sketch of its performance bound above. (Answer
in a about 10–15 lines only.)

6. Deduce a 13M lnN + 2M
√
(Ts lnN)/N bound on the regret of this algorithm under the sparsity

assumption.

Does the algorithm need to know s to ensure this bound? Explain and comment.

Slepian’s lemma (1962): Let (Z1, . . . , ZN ) and (W1, . . . ,WN ) be two centered Gaussian random vectors in
RN . If

∀i ∈ {1, . . . , N}2, E
[
Z2
i

]
= E

[
W 2

i

]
and

∀(i, j) ∈ {1, . . . , N}2, i ̸= j ⇒ E
[
ZiZj

]
⩽ E

[
WiWj

]
,

then for all t ∈ R,
P
{
max
1⩽i⩽N

Zi > t
}
⩾ P

{
max
1⩽i⩽N

Wi > t
}
.
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