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Exercise 2: Adversarial sparse losses

The aim of this exercise is to study what happens when both a non-negativity and a sparsity assumptions
are made on the vectors of losses picked by the opponent.

More formally, we consider the setting of linear losses, with N components, where at most s components
are positive while the other components are null. The parameter s € {1,..., N} is fixed throughout the
game but is unknown to the statistician. The online protocol is the following.

Protocol: For all rounds t = 1,2, ...,
— The statistician picks a convex combination (p;:)i<j<n while the environment simultaneously picks a
loss vector (£j4)1<j<n € [0,+00)", with at most s non-null components;
— The choices are publicly revealed.

The statistician aims to control the regret
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The question is:
What is the optimal order of magnitude of the regret under the non-negativity and sparsity assumptions?

Lower bound on the regret (only requires Lecture #1)

Consider the joint distribution over {0,1}"V defined as the law of a random vector L = (Ly, ..., Ly) drawn
in two steps. First, we pick s components uniformly at random among {1,..., N}; we call them K, ..., K.
Then, the components not picked (k # K for all j) are associated with zero losses, Ly = 0. The losses Ly,
for picked components K1, ..., K are drawn according to a Bernoulli distribution with parameter 1/2. The
loss vector L € [0, 1]V thus generated is indeed s-sparse and non-negative.

We fix an algorithm for the statistician, consider an i.i.d. sequence L1, Lo, ... of random vectors thus
generated, and study the corresponding regret
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1. Show that the expectation of the regret can be written as

Rr 1 ) (i)
E|l—| =E| max — X"
[\/T] llsisN VT ; K ]

where the (Xt(l), . ,Xt(N)) are i.i.d. centered random vectors taking values in [—1, 1]V, with covariance
matrix denoted by I'.
i)

please give a closed-form definition of the Xt( based on the L;;, and also compute I'.

2. Explain why

[mN w2 Z X ] | max 2
where (Z1, ..., Zy) follows the normal dlstrlbutlon N(0,T), i.e., the centered normal distribution with
covariance matrix I.

3. Consider the Gaussian random vector (W7y,...,Wy) with ii.d. components W; with distribution
N (O,Var(Zl)). Show that Slepian’s lemma (stated at the bottom of next page) is applicable and
that it entails

IE[ max Zl} > E{ max WZ]

1<i<N 1<i<N

4. Conclude to an asymptotic lower bound of the order of /(T'sln N)/N; state it carefully and rigorously.
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Upper bound on the regret (requires Lecture #2)

5. Recall first how, under the non-negativity assumption, i.e., assuming that the losses £;; all lie in [0, M],
we could prove the bound

T
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referred to as an “improvement for small cumulative losses.”

More precisely, recall the algorithm at hand and the sketch of its performance bound above. (Answer
in a about 10-15 lines only.)

6. Deduce a 13M In N + 2M+/(Tsln N)/N bound on the regret of this algorithm under the sparsity
assumption.

Does the algorithm need to know s to ensure this bound? Explain and comment.

Slepian’s lemma (1962): Let (Z1,...,Zn) and (W1,...,Wx) be two centered Gaussian random vectors in
RN If
vie{l,...,N}*,  E[Z}] =E[W/]
and
V(i,j) €{1,....,N}*, i#j = E[ZZ] <E[WW,],

then for all ¢ € R,
IP’{ max Zz->t} Z]P’{ max Wi>t}.

1<i<N 1<GKN

Sequential learning, sequential optimization — Gilles Stoltz (CNRS / Université Paris-Saclay) 5



