Exercise 2: Adversarial sparse losses

The aim of this exercise is to study what happens when both a non-negativity and a sparsity assumptions are made on the vectors of losses picked by the opponent.

More formally, we consider the setting of linear losses, with N components, where at most s components are positive while the other components are null. The parameter $s \in \{1, \ldots, N\}$ is fixed throughout the game but is unknown to the statistician. The online protocol is the following.

Protocol: For all rounds $t = 1, 2, \ldots,$

- The statistician picks a convex combination $(p_{j,t})_{1 \leq j \leq N}$ while the environment simultaneously picks a
- loss vector $(\ell_{j,t})_{1 \leq j \leq N} \in [0, +\infty)^N$, with at most s non-null components;
- The choices are publicly revealed.

The statistician aims to control the regret

$$R_T = \sum_{t=1}^T \sum_{j=1}^N p_{j,t} \,\ell_{j,t} - \min_{1 \le i \le N} \sum_{t=1}^T \ell_{i,t} \,.$$

The question is:

What is the optimal order of magnitude of the regret under the non-negativity and sparsity assumptions?

Lower bound on the regret (only requires Lecture #1)

Consider the joint distribution over $\{0,1\}^N$ defined as the law of a random vector $\mathbf{L} = (L_1, \ldots, L_N)$ drawn in two steps. First, we pick *s* components uniformly at random among $\{1, \ldots, N\}$; we call them K_1, \ldots, K_s . Then, the components not picked $(k \neq K_j \text{ for all } j)$ are associated with zero losses, $L_k = 0$. The losses L_k for picked components K_1, \ldots, K_s are drawn according to a Bernoulli distribution with parameter 1/2. The loss vector $\mathbf{L} \in [0, 1]^N$ thus generated is indeed *s*-sparse and non-negative.

We fix an algorithm for the statistician, consider an i.i.d. sequence L_1, L_2, \ldots of random vectors thus generated, and study the corresponding regret

$$R_T = \sum_{t=1}^T \sum_{j=1}^N p_{j,t} L_{j,t} - \min_{1 \le i \le N} \sum_{t=1}^T L_{i,t}.$$

1. Show that the expectation of the regret can be written as

$$\mathbb{E}\left[\frac{R_T}{\sqrt{T}}\right] = \mathbb{E}\left[\max_{1 \le i \le N} \frac{1}{\sqrt{T}} \sum_{t=1}^T X_t^{(i)}\right]$$

where the $(X_t^{(1)}, \ldots, X_t^{(N)})$ are i.i.d. centered random vectors taking values in $[-1, 1]^N$, with covariance matrix denoted by Γ .

please give a closed-form definition of the $X_t^{(i)}$ based on the $L_{i,t}$, and also compute Γ .

2. Explain why

$$\mathbb{E}\left[\max_{1\leqslant i\leqslant N}\frac{1}{\sqrt{T}}\sum_{t=1}^{T}X_{t}^{(i)}\right]\longrightarrow \mathbb{E}\left[\max_{1\leqslant i\leqslant N}Z_{i}\right]$$

where (Z_1, \ldots, Z_N) follows the normal distribution $\mathcal{N}(\mathbf{0}, \Gamma)$, i.e., the centered normal distribution with covariance matrix Γ .

3. Consider the Gaussian random vector (W_1, \ldots, W_N) with i.i.d. components W_i with distribution $\mathcal{N}(0, \operatorname{Var}(Z_1))$. Show that Slepian's lemma (stated at the bottom of next page) is applicable and that it entails

$$\mathbb{E}\Big[\max_{1\leqslant i\leqslant N} Z_i\Big] \geqslant \mathbb{E}\Big[\max_{1\leqslant i\leqslant N} W_i\Big]$$

4. Conclude to an asymptotic lower bound of the order of $\sqrt{(Ts \ln N)/N}$; state it carefully and rigorously.

Upper bound on the regret (requires Lecture #2)

5. Recall first how, under the non-negativity assumption, i.e., assuming that the losses $\ell_{j,t}$ all lie in [0, M], we could prove the bound

$$R_T \leq 13M \ln N + 2\sqrt{M \min_{j=1,...,N} \sum_{t=1}^T \ell_{j,t} \ln N},$$

referred to as an "improvement for small cumulative losses."

More precisely, recall the algorithm at hand and the sketch of its performance bound above. (Answer in a about 10-15 lines only.)

6. Deduce a $13M \ln N + 2M\sqrt{(Ts \ln N)/N}$ bound on the regret of this algorithm under the sparsity assumption.

Does the algorithm need to know s to ensure this bound? Explain and comment.

Slepian's lemma (1962): Let (Z_1, \ldots, Z_N) and (W_1, \ldots, W_N) be two centered Gaussian random vectors in \mathbb{R}^N . If

$$\forall i \in \{1, \dots, N\}^2, \qquad \mathbb{E}[Z_i^2] = \mathbb{E}[W_i^2]$$

and

$$\forall (i,j) \in \{1,\ldots,N\}^2, \quad i \neq j \quad \Rightarrow \quad \mathbb{E}[Z_i Z_j] \leqslant \mathbb{E}[W_i W_j],$$

then for all $t \in \mathbb{R}$,

$$\mathbb{P}\Big\{\max_{1\leqslant i\leqslant N} Z_i > t\Big\} \geqslant \mathbb{P}\Big\{\max_{1\leqslant i\leqslant N} W_i > t\Big\} \,.$$