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Sequential Learning: Homework #2

What I care about (again). I care about well-written proofs: with sufficient details, with calculations
worked out and leading to pleasant and readable bounds. I favor quality of the writing over the quantity of
questions answered. I give bonus points for elegant solutions.

Formats of your submission, deadline. Please send your solutions in a sequential manner, one exercise
after the other. Wait for my OK to send a new solution, as I may request you to re-work a solution badly
written. I may take 1 or 2 business days to get back to you, please take this into account when trying to
abide by the deadline.

I expect to receive PDF files, with answers either handwritten and neatly scanned (as I do for my weekly
lecture notes) or typed in LATEX.

The PDF file must be named YourName-HW2-ExN.pdf, where YourName is to be replaced by your family
name, and N by the exercise number. E.g., my submission for the second exercise of this homework would
be named Stoltz-HW2-Ex2.pdf.

Deadline is Friday, April 1, at 6pm. This is a strict deadline. Please start early to allow for the iterations,
do not wait for the last minute.

Beware: Typos. Most likely the statement comes with typos. This is part of the job. Try to correct
them on your own!
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Exercise 1: Explore then commit (can be solved after Course #4)

Consider a stochastic bandit setting with K = 2 arms only, each associated with a probability distribution
ν1, ν2 over [0, 1], with respective expectations µ1, µ2. Assume that you have to play for a given horizon
T ⩾ 4. Explore each arm by pulling it m times, where 1 ⩽ m ⩽ T/2. Compute the empirical averages µ̂1,m
and µ̂2,m obtained. For the remaining T − 2m steps, play only the arm j with maximal empirical average
µ̂j,m (ties broken arbitrarily). What is the regret of this strategy (called “explore then commit”)?

For the analysis, we will assume with no loss of generality that arm 1 is the optimal arm and we will
denote by ∆ = µ1 − µ2 the gap between the expectations associated with the two arms.

1. Show that P
{
µ̂1,m < µ̂2,m

}
⩽ exp

(
−m∆2/c

)
where c is a constant (provide a numerical value).

2. Conclude that the regret is bounded by m∆+ (T − 2m)∆ exp
(
−m∆2/c

)
.

3. Assume that T and the range [0, 1] are known. How should we choose m? Show a distribution-free
bound on the regret that is a o(T ) — but it does not need to be of the typical

√
T order of magnitude,

it can be (much) larger. Reminder: “distribution-free” means that the bound should only depend on T
and on [0, 1], not on the specific bandit problem considered, e.g., not on ∆.
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