
Homework #2 – March 2022 Homework #2 – March 2022 Homework #2 – March 2022

Exercise 2: Distribution-free lower bound for K–armed bandits
(can be solved after Course #5)

As indicated in class, one of the exercises of the present homework is devoted to proving that in the
stochastic K–armed bandit setting, i.e., when K arms with respective distributions ν1, . . . , νK over [0, 1]
(with expectations denoted by µ1, . . . , µK) are available, no strategy S can have a sharper distribution-free
regret bound than one of the order

√
KT .

More precisely, we denote by Yt the reward obtained at each round, when picking arm It; we recall that
Yt is drawn at random according to νIt conditionally to It. The regret is defined as

RT = T max
k=1,...,K

µk − E

[
T∑
t=1

Yt

]
.

You will prove that for all K ⩾ 2 and all T ⩾ K/5,

R⋆
T = inf

S
sup
ν
RT ⩾

1

20

√
KT ,

where the defining infimum of R⋆
T is over all strategies S and the supremum is over all K–tuples of distri-

butions ν = (ν1, . . . , νK) over [0, 1].
As the proof will reveal, it actually suffices to consider Bernoulli distributions. Indeed, let ε ∈ (0, 1) and

consider the K–tuples ν(0), ν(1), . . . , ν(K) defined based on the Bernoulli distributions B+ = Ber(1/2 + ε/2)
and B− = Ber(1/2− ε/2) as follows:

– In Model 0, all arms are associated with B−, that is, ν
(0) = (B−, . . . ,B−).

– In Model i ∈ {1, . . . ,K}, all arms are associated with B− except the i–th arm, which is associated
with B+.

We denote by Pi the probability induced by Model i, for i ∈ {0, 1, . . . ,K}, and by Ei the corresponding
expectation. We denote by Nk(T ) the number of times arm k was pulled by the considered strategy till
round T included.

1. Explain why

R⋆
T ⩾ inf

S
sup

ε∈(0,1)
max

i∈{1,...,K}
ε
(
T − Ei

[
Ni(T )

])
and why there exists k0 such that E0

[
Nk0(T )

]
⩽ T/K.

2. Use the fundamental inequality for proving lower bounds in stochastic bandit problems and Pinsker’s
inequality to get, for all strategies S,

E0

[
Nk0(T )

]
KL(B−,B+) ⩾ 2

(
E0

[
Nk0(T )/T

]
− Ek0

[
Nk0(T )/T

])2
.

3. Combine the results above to derive

R⋆
T ⩾ inf

S
sup

ε∈(0,1)
ε T

(
1− 1

K
−
√

T

2K
KL(B−,B+)

)

and conclude to the desired bound. You may use that

ε ∈ (0, 1/2) 7−→ 2.5 ε2 − ε ln
1 + ε

1− ε

takes positive values.
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