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Exercise 2: Distribution-free lower bound for K—armed bandits
(can be solved after Course #05)

As indicated in class, one of the exercises of the present homework is devoted to proving that in the
stochastic K—armed bandit setting, i.e., when K arms with respective distributions vy, ...,vg over [0, 1]
(with expectations denoted by u1, ..., ux) are available, no strategy S can have a sharper distribution-free
regret bound than one of the order vV KT.

More precisely, we denote by Y; the reward obtained at each round, when picking arm I;; we recall that
Y; is drawn at random according to v, conditionally to I;. The regret is defined as
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You will prove that for all K > 2 and all T' > K/5,
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where the defining infimum of R is over all strategies S and the supremum is over all K—tuples of distri-
butions v = (v1, ..., vk) over [0,1].

As the proof will reveal, it actually suffices to consider Bernoulli distributions. Indeed, let € € (0, 1) and
consider the K—tuples v(©, v . 1K) defined based on the Bernoulli distributions B = Ber(1/2 +¢/2)
and B_ = Ber(1/2 —¢/2) as follows:

— In Model 0, all arms are associated with B_, that is, »(©) = (B_, ..., B_).
— In Model ¢ € {1,...,K}, all arms are associated with B_ except the i—th arm, which is associated

We denote by P; the probability induced by Model i, for i € {0,1,..., K}, and by E; the corresponding
expectation. We denote by Ni(7T) the number of times arm k& was pulled by the considered strategy till
round 7" included.

1. Explain why
R7 > inf sup max <T—E N;(T )
T S EG(U 1) Ze{l» 9K} Z|: ’ )}
and why there exists kg such that Eg [Nko (T)] <T/K.

2. Use the fundamental inequality for proving lower bounds in stochastic bandit problems and Pinsker’s
inequality to get, for all strategies S,

Eo [Ny (7)] KL(B_,B,.) > 2(Eo [Ny, (T)/T] — By, [Ny (7)/7])

3. Combine the results above to derive

Ry > inf sup T 1——\/KLB B4)
S c€(0,1)

and conclude to the desired bound. You may use that
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takes positive values.
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