Exercise 2: Distribution-free lower bound for K-armed bandits (can be solved after Course #5)

As indicated in class, one of the exercises of the present homework is devoted to proving that in the stochastic K-armed bandit setting, i.e., when K arms with respective distributions ν_1, \ldots, ν_K over [0, 1] (with expectations denoted by μ_1, \ldots, μ_K) are available, no strategy S can have a sharper distribution-free regret bound than one of the order \sqrt{KT} .

More precisely, we denote by Y_t the reward obtained at each round, when picking arm I_t ; we recall that Y_t is drawn at random according to ν_{I_t} conditionally to I_t . The regret is defined as

$$R_T = T \max_{k=1,\dots,K} \mu_k - \mathbb{E}\left[\sum_{t=1}^T Y_t\right].$$

You will prove that for all $K \ge 2$ and all $T \ge K/5$,

$$R_T^{\star} = \inf_{\mathcal{S}} \sup_{\underline{\nu}} R_T \ge \frac{1}{20}\sqrt{KT}$$

where the defining infimum of R_T^{\star} is over all strategies S and the supremum is over all K-tuples of distributions $\underline{\nu} = (\nu_1, \ldots, \nu_K)$ over [0, 1].

As the proof will reveal, it actually suffices to consider Bernoulli distributions. Indeed, let $\varepsilon \in (0, 1)$ and consider the K-tuples $\underline{\nu}^{(0)}, \underline{\nu}^{(1)}, \dots, \underline{\nu}^{(K)}$ defined based on the Bernoulli distributions $B_+ = Ber(1/2 + \varepsilon/2)$ and $B_- = Ber(1/2 - \varepsilon/2)$ as follows:

- In Model 0, all arms are associated with B_- , that is, $\underline{\nu}^{(0)} = (B_-, \ldots, B_-)$.
- In Model $i \in \{1, \ldots, K\}$, all arms are associated with B_- except the *i*-th arm, which is associated with B_+ .

We denote by \mathbb{P}_i the probability induced by Model *i*, for $i \in \{0, 1, \ldots, K\}$, and by \mathbb{E}_i the corresponding expectation. We denote by $N_k(T)$ the number of times arm k was pulled by the considered strategy till round T included.

1. Explain why

$$R_T^{\star} \ge \inf_{\mathcal{S}} \sup_{\varepsilon \in (0,1)} \max_{i \in \{1,\dots,K\}} \varepsilon \Big(T - \mathbb{E}_i \big[N_i(T) \big] \Big)$$

and why there exists k_0 such that $\mathbb{E}_0[N_{k_0}(T)] \leq T/K$.

2. Use the fundamental inequality for proving lower bounds in stochastic bandit problems and Pinsker's inequality to get, for all strategies S,

$$\mathbb{E}_{0}[N_{k_{0}}(T)] \operatorname{KL}(\mathbf{B}_{-},\mathbf{B}_{+}) \geq 2\left(\mathbb{E}_{0}[N_{k_{0}}(T)/T] - \mathbb{E}_{k_{0}}[N_{k_{0}}(T)/T]\right)^{2}.$$

3. Combine the results above to derive

$$R_T^{\star} \ge \inf_{\mathcal{S}} \sup_{\varepsilon \in (0,1)} \varepsilon T \left(1 - \frac{1}{K} - \sqrt{\frac{T}{2K} \operatorname{KL}(\mathbf{B}_-, \mathbf{B}_+)} \right)$$

and conclude to the desired bound. You may use that

$$\varepsilon \in (0, 1/2) \longmapsto 2.5 \varepsilon^2 - \varepsilon \ln \frac{1 + \varepsilon}{1 - \varepsilon}$$

takes positive values.