Exercise 2: Distribution-free lower bound for K-armed bandits (can be solved after Course \#5)

As indicated in class, one of the exercises of the present homework is devoted to proving that in the stochastic K-armed bandit setting, i.e., when K arms with respective distributions ν_{1}, \ldots, ν_{K} over $[0,1]$ (with expectations denoted by μ_{1}, \ldots, μ_{K}) are available, no strategy \mathcal{S} can have a sharper distribution-free regret bound than one of the order $\sqrt{K T}$.

More precisely, we denote by Y_{t} the reward obtained at each round, when picking arm I_{t}; we recall that Y_{t} is drawn at random according to $\nu_{I_{t}}$ conditionally to I_{t}. The regret is defined as

$$
R_{T}=T \max _{k=1, \ldots, K} \mu_{k}-\mathbb{E}\left[\sum_{t=1}^{T} Y_{t}\right] .
$$

You will prove that for all $K \geqslant 2$ and all $T \geqslant K / 5$,

$$
R_{T}^{\star}=\inf _{\mathcal{S}} \sup _{\underline{\underline{1}}} R_{T} \geqslant \frac{1}{20} \sqrt{K T},
$$

where the defining infimum of R_{T}^{\star} is over all strategies \mathcal{S} and the supremum is over all K-tuples of distributions $\underline{\nu}=\left(\nu_{1}, \ldots, \nu_{K}\right)$ over $[0,1]$.

As the proof will reveal, it actually suffices to consider Bernoulli distributions. Indeed, let $\varepsilon \in(0,1)$ and consider the K-tuples $\underline{\nu}^{(0)}, \underline{\nu}^{(1)}, \ldots, \underline{\nu}^{(K)}$ defined based on the Bernoulli distributions $\mathrm{B}_{+}=\operatorname{Ber}(1 / 2+\varepsilon / 2)$ and $\mathrm{B}_{-}=\operatorname{Ber}(1 / 2-\varepsilon / 2)$ as follows:

- In Model 0 , all arms are associated with B_{-}, that is, $\underline{\nu}^{(0)}=\left(\mathrm{B}_{-}, \ldots, \mathrm{B}_{-}\right)$.
- In Model $i \in\{1, \ldots, K\}$, all arms are associated with B_{-}except the i-th arm, which is associated with B_{+}.
We denote by \mathbb{P}_{i} the probability induced by Model i, for $i \in\{0,1, \ldots, K\}$, and by \mathbb{E}_{i} the corresponding expectation. We denote by $N_{k}(T)$ the number of times arm k was pulled by the considered strategy till round T included.

1. Explain why

$$
R_{T}^{\star} \geqslant \inf _{\mathcal{S}} \sup _{\varepsilon \in(0,1)} \max _{i \in\{1, \ldots, K\}} \varepsilon\left(T-\mathbb{E}_{i}\left[N_{i}(T)\right]\right)
$$

and why there exists k_{0} such that $\mathbb{E}_{0}\left[N_{k_{0}}(T)\right] \leqslant T / K$.
2. Use the fundamental inequality for proving lower bounds in stochastic bandit problems and Pinsker's inequality to get, for all strategies \mathcal{S},

$$
\mathbb{E}_{0}\left[N_{k_{0}}(T)\right] \mathrm{KL}\left(\mathrm{~B}_{-}, \mathrm{B}_{+}\right) \geqslant 2\left(\mathbb{E}_{0}\left[N_{k_{0}}(T) / T\right]-\mathbb{E}_{k_{0}}\left[N_{k_{0}}(T) / T\right]\right)^{2} .
$$

3. Combine the results above to derive

$$
R_{T}^{\star} \geqslant \inf _{\mathcal{S}} \sup _{\varepsilon \in(0,1)} \varepsilon T\left(1-\frac{1}{K}-\sqrt{\frac{T}{2 K} \mathrm{KL}\left(\mathrm{~B}_{-}, \mathrm{B}_{+}\right)}\right)
$$

and conclude to the desired bound. You may use that

$$
\varepsilon \in(0,1 / 2) \longmapsto 2.5 \varepsilon^{2}-\varepsilon \ln \frac{1+\varepsilon}{1-\varepsilon}
$$

takes positive values.

